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Abstract 

The reuse of industrial by-products is important for members of numerous industrial sectors. However, 
though the benefits of reuse are evident from an economical point of view, some compounds in these 
materials can have a negative effect on users’ health.  
 In this study, the radon emanation and exhalation features of red mud were surveyed using heat-
treatment (100 to 1200°C). As a result of the 1200°C-treated samples, massic radon exhalation capacity 
reduced from 75 ± 10 mBq kg-1 h-1 to 7 ± 4 mBq kg-1 h-1, approximately 10% of the initial exhalation 
rate. 
 To find an explanation for internal structural changes, the porosity features of the heat-treated 
samples were also investigated. It was found that the cumulative pore volume reduced significantly in 
less than 100 nm, which can explain the reduced massic exhalation capacity in the high temperature 
treated range mentioned above. 
 SEM snapshots were taken of the surfaces of the samples as visual evidence for superficial 
morphological changes. It was found that the surface of the high temperature treated samples had 
changed, proving the decrement of open pores on the surface. 
 
Keywords: red mud, heat-treatment, radon exhalation, by-product, building material industry, 
additional material 

1. Introduction 

The inherent compounds of building materials can have a negative effect on human health. Today, the 

reuse of red mud in the building material industry has developed into both a public discussion and a 

debate among scientists and the industrial sector. To avoid the contingent negative effects caused by the 

reuse of this material and its inherent properties, different possibilities from a range of perspectives have 

to be considered.  



Recently, several studies have addressed the reuse possibilities of industrial by-products reasons 

that are disposed in waste reservoirs. As a result of the depletion of raw materials, the reuse of these 

materials has become the focal point of interest. On the one hand, reuse could reduce the environmental 

impact of deposited by-products, while the health risks of doing so can be prevented by the dusting of 

reservoirs in the vicinity of inhabited areas (Kovács et al. 2012; Karangelos et al. 2004).  

The integration of by-products into other industries as secondary raw materials can be beneficial 

for companies from an economical perspective. However, the reuse of new types of synthetic materials 

has raised concerns among authorities, the public and researchers (Gelencsér et al. 2011; Winkler 2014). 

In some cases, certain components of raw materials can remain in the by-product and pose an elevated 

risk to humans. During the applied Bayer-process, for example, the aluminium industry produces large 

amount of alkali red mud, wherein a significant amount of natural radionuclide content of bauxite 

remains. 

The natural radionuclide content of manufactured building material products (e.g. Szabó et al. 

2013; Trevisi et al. 2012, Cosma et al. 2013) contributes to natural background radiation in two ways. 

On the one hand, the gamma radiation of the primordial radionuclides (K-40 and daughter elements of 

U-238, Th-232) increases the external gamma dose rate. On the other hand, the inhaled Rn-222, Rn-220 

and their progenies augment the risk of the evolution of lung cancer (UNSCEAR 2008; WHO 2009). 

Radon is a radioactive noble gas that originates from Ra-226 content with a relatively long half-life 

(3.82 d). This time can be enough to get out of the matrix into the pore space and into the air as well, 

depending on the condition of the containing matrix.  

While the alpha particle ejected from the Ra-226 isotope as a result of alpha decay, the daughter 

element (Rn-222) is recoiled and can be released into the pore space or embedded in adjacent particles, 

owing to its kinetic energy (86 keV) remaining as the result of energy from alpha decay (Ishimori et al. 

2013). 

The emanation coefficient or emanation power is defined as the quantitative rate of the released 

radon from the crystal structure into the open pore space to the total amount of the generated in the 

matrix. Thus, many factors determine the amount of the emanated radon such as the variation of the 

radium concentration of particles, density, homogeneity in radium distribution, grain size, volume of 

pore space and moisture content (Ishimori et al. 2013). 

Only the emanated radon has a chance to exhale from the open pores of the matrix into the air 

depending on the several influencing parameters such as, porosity, temperature, moisture content, 

pressure conditions and thickness, amongst others. 

The determination of radon exhalation has not standardized in international level due to 

difficulties of “ideal” conditions of measurement circumstances (Kovler et al. 2011)  

The radon exhalation is the radon activity that diffuses per unit of time from a material to the 

air surrounding the material, in Bq s-1 defined in NEN 5699:2001 EN standard (Netherlands 

Standardization Institute (NEN) 2001). By dividing the radon exhalation rate by either the area of the 
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exhaling surfaces or by the mass of the sample, the areic (radon flux Bq m-2 s-1) and massic radon 

exhalation rates (Bq kg-1 s-1) can be calculated. The exhalation rate related to mass should depend on 

several factors, such as porosity and geometry (especially on the thickness) of the sample.  

It is possible to ensure an extreme case when the thickness of the samples is very small against 

the diffusion length of radon. In that case only the sample characteristics (Ra-226 content, emanation 

coefficient, and the amount of the sample) have influence on exhalation rate (López-Coto et al. 2009). 

It means all the emanated radon can exhale from the matrix and the massic radon exhalation rate can be 

determined. 

Generally, the diffusion length in case of porous materials is higher than 40 cm (Keller et al. 

2001, Mujahid et al. 2005) (e.g. porous soil and brick 40 cm, gypsum 110 cm, sand 200 cm). Owing to 

that fact, this assumption can be used for comparison (Kovler et al. 2005) if the sample thickness of 

porous material is less than 5 cm.  

The above-mentioned circumstances had a significant effect on the final exhalation capacity of 

the materials. For this reason, the determination of Ra-226 content is not sufficient for characterizing 

the raw material, since radon emanation and the exhalation greatly depends on internal structure changes 

occurring as a result of the applied processing technique (Kovács et al. 2012; López-Coto et al. 2009; 

Tuccimei et al. 2006; Prasad et al. 2012; Cosma et al. 2001; Sas et al. 2012). Several studies have dealt 

with the usability of red mud in the building material industry in terms of thermal behaviour (Zhang et 

al. 2011; Sglavo et al. 2000a, 2000b; Pontikes et al. 2007, 2009; Yao et al. 2013). 

 

1.1 The aims of this study: 

• Determination of the emanation- and massic exhalation-modifying effects of heat treatment on 

red mud samples as a result of applied heat-treatment. 

• Determination of the main internal structural changes of the heat-treated samples (pore space, 

specific surface, superficial morphology determination with SEM) 

• Comparison of the heat-treated red mud massic exhalation characteristics and the obtained 

internal structural changes 

2. Material and methods 

2.1 Sampling and sample preparation 

The investigated red mud sample was collected from a 1 to 2 m depth of red mud reservoirs in Ajka 

(Hungary). The samples were heated to a constant mass at a temperature of 105 ± 3°C, grinded under 

0.63 mm and homogenized. In order to obtain Ra-226 activity concentration of the sample the powdered 

red mud was put into aluminium Marinelli vessel, weighted, sealed and stored during 27 days to reach 

the secular equilibrium between Rn-222 and its progenies. 
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For massic exhalation measurement spherical-shaped red mud samples were prepared. The size 

of the samples was 0.5 cm diameter to ensure exhalation condition which was not dependent from 

sample.  

This is the reason why the effect diffusion length can be neglected under presented measurement 

conditions. Of course the inhomogeneity of the samples also can have effect but because of the low 

sample thickness and the continuous and slow warm up program of the kiln the balanced internal 

structure changes of the samples was ensured. Furthermore glazing material was not used which could 

cardinally change the surface of treated samples. This is the reason why all the emanated radon can 

exhale from the prepared matrix. 

To ensure the representative conditions, parallel procedures were carried out. The total amount 

of prepared sample was divided into two equal parts (sample “A” and sample “B”). In the case of the 

heat-treatments, samples A and B were treated in a pre-programmed kiln (one hour heating, three hours 

constant heat; following on, cooled down to room temperature by itself. Following treatment in certain 

temperatures, the massic radon exhalation features of the samples were measured. Thereafter, the 

samples were again treated at a higher temperature. Altogether, seven different temperatures were used 

ranging from 100 to 1200°C (100, 200, 400, 600, 800, 1000 and 1200 °C). All the massic exhalation 

measurements were performed in room temperature after heat-treatments. 

 

2.2 Gamma spectrometry 

The Ra-226 activity concentration was determined via its progenies (295 keV of Pb-214 and 

609 keV of Bi-214) reached the secular equilibrium by gamma spectrometry used a semiconductor 

HPGe detector (ORTEC GMX40-76, efficiency of 40 %). The data and spectra were recorded by 

ORTEC DSPEC LF 8196 MCA. The system was calibrated with IAEA soil reference material. 

 

2.3 Determination of exhalation rate and emanation factor 

The prepared and heat-treated samples were surveyed from the massic exhalation point of view. After 

sample preparation, 0.5 – 0.5 kg of red mud spheres was enclosed in a glass accumulation chamber 

covered by a metal cap. The homogeneity of the inner air was ensured by a small size 12 V DC ventilator, 

which was placed inside the chamber. The chamber volume was more than ten times higher than the 

sample volume to avoid the back diffusion of radon into the sample pores (Tuccimei et al. 2006; Prasad 

et al. 2012; Cosma et al. 2001).  

 The radon leakage features of the accumulation chambers were surveyed with the help of a 

PYLON RN 2000A-type passive radon source. All the accumulation chambers were filled with Rn-222 

gas. The radon activity concentration in the chambers were measured with AlphaGUARD 2000 portable 

radon monitor under close loop circulation. After measurement the valves of the chamber were closed 

during 3 days and the monitor was removed from the sampling loop. The remaining activity 
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concentrations in the cambers were measured again and volume correction (required because of the 

dilution effect of sampling kit volume, e.g. pipes, detector chamber, desiccant) was applied. Finally, the 

measured and corrected activity concentration was compared with calculated activity concentration 

derived from initial radon concentration. The leakage rates of the prepared chambers were lower than 

1%. 

Before measurements the chambers were purged with radon-free N2 gas prior to the 

accumulation to reduce the initial radon concentration (C0) to zero. Following the accumulation period, 

the chamber was connected to a closed loop system (Fig. 1), wherein the radon increment was flowed 

by a radon-proof pump and passed through a desiccant and an air filter into an AlphaGUARD 2000 

portable radon monitor. The detector of the measurements system was a pulse ionization chamber with 

an active volume of 0.56 dm3. The samples were surveyed under “10 min FLOW MODE”.  

 
Fig. 1. Closed loop exhalation sampling system 

Beside the radon the thoron also obtain access to the detector chamber. To avoid the disturbing effect 

on airflow caused by the thoron content (cannot be distinguished by the instrument), the airflow was 

ceased after 20 minutes, while the measurements were continued for another 40 more minutes. The 

thoron contend decayed after the pump was stopped (within 10 minutes) and the radon content was 

obtained only after the 30 – 60 minutes period as a result of the measured average activity 

concentration. 

The massic radon exhalation could be calculated using the following formula (Kovler 2006; 

Petropolous et al. 2001; Quindos et al. 1994): 

t
t

0Mass e1
t

tm
VCeCE λ−

⋅λ−

−
⋅λ

⋅
⋅
⋅

+⋅=        (1) 

http://dx.doi.org/10.1016/j.jenvrad.2005.10.005
http://dx.doi.org/10.1016/S0048-9697(01)00674-X
http://rpd.oxfordjournals.org/content/56/1-4/171.full.pdf+html


 
Where: 

• C0 = initial radon concentration [Bq/m3] 

• C = accumulated radon concentration [Bq/m3] 

• EMass = massic exhalation rate [mBqkg-1 h-1] 

• t = accumulation time [h] 

• V = volume of the accumulation kit [m3]  

• m = mass of the sample [kg] 

• λ = decay constant of radon [h-1] 

 
2.4 Specific surface, pore volume measurements 

The exhalation behaviour of porous materials and the internal structure parameters, such as specific 

surface, pore volume and pore size distribution are interdependent features. The porosity features of the 

samples were measured using a combined method. The micro- (< 2 nm) and mezo-porosity (2 to 300) 

were investigated with a Micromeritics ASAP 2000 device. The surface-adsorbed gases were removed 

with a vacuum (p < 0.1 mmHg) at 100°C. Then, adsorption and desorption isotherms for nitrogen gas 

were measured at the temperature of liquid nitrogen. According to the BET theory (Brunauer-Emmett-

Teller), the specific surface of the samples was calculated (Brunauer et al. 1938).  

The macro-porosity interval (above 300 nm) was investigated with the help of a SMH6 mercury 

poremeter. Samples (1 to 5 g) were placed in a vacuum (p < 0.1 mmHg) at room temperature. The 

measuring receptacle was filled with mercury and the change in Hg level in the capillary was recorded 

against pressure (0 to 760 mmHg) (Jobbágy et al. 2009). Finally, the results were merged to gain 

comprehensive data about the internal structure of heat-treated red mud samples. 

 

2.5 Superficial morphology measurement 

The superficial morphological conversion of the heat-treated samples was observed with a Phillips XL 

30 ESEM. This device was suitable for taking snapshots during the procedure, when the electron beam 

was in a vacuum and the sample holder chamber was under pressure (0.1 to 40 mmHg). The dryness of 

the sample and the conductive layer coverage was not necessary. In order to find the optimal resolution, 

the applied magnification varied between 100x and 1000x. ESEM pictures were taken from every heat 

interval to follow the state of the surface. 
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3. Results and discussion 

3.1 Gamma spectrometry and radon exhalation measurement 

The Ra-226 content of investigated red mud sample was 182 ± 18 Bq/kg which is approximately six 

times higher than the world average of soils’ (32 Bq/kg)’ published in UNSCEAR 2008 Report 

(UNSCEAR 2010). The obtained result was the lowest compared of .red mud samples originated from 

other red mud reservoirs of Ajka (Sas et al. 2015).  

 On the basis of the obtained massic exhalation results, the massic exhalation characteristics of the heat-

treated samples can be illustrated (Fig. 2). The results of the parallel measurements clearly proved that 

the massic exhalation features greatly depended on the applied heat. The initial massic exhalation 

capacity (75 ± 10 mBq kg-1 h-1) was increased by 30% (103 ± 13 mBq kg-1 h-1), which can likely be 

explained by the departure of the structural water content. As a result of the modification that occurred 

in the structural condition, the rearrangement of the porosity conditions was likely. 

In the next temperature step, the massic exhalation began to reduce at a continuous rate. In the 

case of 800°C, the massic exhalation capacity reduced to less than 35 ± 8 mBq kg-1 h-1 (approximately 

50% of the initial capacity), whilst in the case of 1200°C, the measured average value was only 7 ± 4 

mBq kg-1 h-1, which was approximately 10% of the initial value.   

The emanation coefficient of investigated samples were calculated from obtained massic 

exhalation results.  (Kovler et al. 2005) The obtained emanation factors in function of applied heat 

treatment are illustrated in Fig 2.  

 

http://www.unscear.org/docs/reports/2008/09-86753_Report_2008_GA_Report.pdf
http://link.springer.com/article/10.1007%2Fs10967-015-3966-z
http://www.sciencedirect.com/science/article/pii/S0265931X0500055X


Fig. 2. Massic exhalation and radon emanation characteristic in function of applied heat-treatment 
temperatures 

In a previous study published by Jobbágy et al. 2009 (measurements were carried out in same 

laboratory of University of Pannonia) the emanation dependency in function of heat treatment were 

investigated. Despite of the different measurement technique and the red mud sample used by Jobbágy 

et al. 2009 the characteristic of the emanation curves of both study were very similar.  Owing to that 

fact it can be stated that the thermal behaviour of different red mud samples are similar. 

The significant changes in the massic exhalation capacity and calculated emanation factors 

clearly proved that the internal structure of the heat treated samples changed significantly. For this 

reason, the comparison of different states of internal structure conditions was necessary to understand 

the exhalation behaviour of red mud. 

 
3.2 Internal structural parameters 

 The distribution of the pore volume in the function of the pore diameter provided the first 

approximate explanation (see Fig. 3).  

 
Fig. 3. Cumulative pore volume in function of pore size between 1-1000 nm 

The cumulative pore size distribution of the heat-treated samples can be seen. The curves clearly 

prove that significant differences were found between the porosity features of the investigated samples. 

The highest total pore volume results were observed in the case of the highest temperature treated 

samples, where the cumulative pore volume in the function of the pores size shows that in the lower 

case range (< 100 nm), the frequency of the pores was very low. This was assumed to be the reason why 

the massic exhalation capacities were very low in the high temperatures treatments.  
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The abovementioned fact can be prominently observed in Fig. 4, where the cumulative pore 

volume is illustrated to be between 1.7 to 100 nm. The total pore volume of the 1000°C-treated samples 

was more than four times lower than in the 100°C-treated samples. Therefore, it can be stated that the 

massic exhalation capacity of the heat-treated samples mainly depended on the total pore volume of the 

mezzo-pores.  

However, a strong correlation was found between the mezo-pores and the massic exhalation 

features; the elevated massic exhalation capacity in the case of the 200°C-treated samples pointed to an 

elevated pore volume range, which also had the biggest effect on the amount of emanated radon and 

exhaled radon. 

 
Fig. 4. Cumulative pore volume in function of pore size between 1-100 nm 

This elevated pore volume range was found to be between 60 to 90 nm, where the cumulated 

pore volume was the highest (see Fig. 5).  

 



 
Fig. 5. Cumulative pore volume in function of pore size between 50-100 nm 

 

3.2.1 Emanation vs. internal structure 

The specific surface of all heat-treated samples and the pore volume were calculated according to BET 

theory (Brunauer et al. 1938). The obtained results were compared with calculated emanation factors 

(Fig. 6.) to find connection between them.  

 
Fig. 6. Pore volume and specific surface dependency from emanation factor 

http://dx.doi.org/10.1021/ja01269a023


 

Strong correlation was found between the mezoporosity (1.7-300 nm) features and emanation factor as 

it was expected from cumulative pore size distribution of the heat-treated samples (Fig 3.). Owing to 

this fact it can be safely stated that the emanation factor greatly depends on the amount of the mezopores 

in materials. In case of total porosity opposite connection was found with emanation factor. The total 

volume of the pores had decreasing tendency compared with emanation factor.  

Furthermore, the emanation coefficient were also compared with specific surface characteristic of 

investigated samples. As it was also expected increasing emanation tendency was found in function of 

increasing specific surface tendency. However, the correlation was not so high compared with 

mezopores the specific surface measurements can also provide useful information about emanation 

characteristic of porous media. The slender correlation can be explained with different porosity 

distribution in the function of applied heat. In case of high temperature range. 

 

Fig. 7. Micro and mezopore dependency from emanation factor 

The micro- (1.7-300 nm) and macro pores (300-15000 nm) were compared in the function of obtained 

emanation factors as well. The result of the comparison can be seen in Fig. 7. Strong correlation was 

found with emanation characteristic in case of both parameter. The curves of each pore volume range 

proved that the micropores disappeared whilst the nanopores of the red mud formed as a result of the 

heat-treatment.  On the basis of obtained results it can be safely stated that the effect of heat-treatment 

had strong effect on porosity features of the matrix. However, the total porosity of red mud test samples 



had increasing tendency with elevated heat the massic radon exhalation and the radon emanation of red 

mud decreased. The characteristic of changes can be expressly caused by the decrement of mezopores 

which were mainly responsible for emanation phenomena. 

 

3.3 Superficial morphology 

Significant visual differences were observed in the case of  the superficial morphology snapshots with 

500x magnification and in 600°C (Fig. 8/a) and 1000°C (Fig. 8/b) treated samples. It can be safely stated 

that the surface of the samples modified in the case of the higher temperature. Furthermore, the pores 

also disappeared. The snapshots of the superficial morphology provided visual evidence of the internal 

structural changes, which can explain the close-up of the pores and as a result the radon exhalation 

modifying effect of the heat-treatment. 

 

 
Fig. 8/a. Surface of 600 °C treated samples  Fig. 8/b. Surface of 1000 °C treated samples 

4. Conclusions 

On the basis of the results obtained in this study it can be stated that radon emanation and the massic 

exhaling capacity greatly depends on the applied temperature of the heat-treatment. However, the initial 

massic exhalation increased as a result of the 200°C treatment temperature (lower temperature range). 

In the higher temperature range between 400°C to 1200°C, the massic exhalation in the samples reduced 

at a continuous rate. In case of 1200 °C treated samples the measured massic exhalation was only 10% 

of the initial. As such, the heat-treatment had a beneficial effect on massic exhalation from the 

perspective of the red mud case highlighted previously. A strong correlation was found between the 

micro porosity and the radon emanation and massic exhalation features. This correlation was based on 

the obtained pore volume distribution in the function of pore size and the comparison of pore volume in 

micro porosity range (1.7-300 nm). It was found that pores under 100 nm were primarily responsible for 

the elevated radon emanation and as such, for massic exhalation, too. In the case of the 100°C and 200°C 

temperature range, the cumulative pore volume was approximately one magnitude higher than in the 



1000°C treated samples, which was also found to be the case for the massic exhalation profile. Heat-

treatment can therefore reduce the risk originating from exhaled radon.  

Despite these promising results, the mixtures composed of red mud and other matrix 

components that are used in building material factories must be investigated, since certain components 

can have an effect on one another, which in turn can cause a potentially harmful final structure.  
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