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Abstract. Runting-stunting syndrome (RSS) in broiler chickens is an enteric disease 

that causes significant economic losses to poultry producers worldwide due to 

elevated feed conversion ratios, decreased body weight during growth, and 

excessive culling. Of specific interest are the viral agents associated with RSS which 
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have been difficult to fully characterise to date. Past research into the aetiology of 

RSS has implicated a wide variety of RNA and DNA viruses however, to date, no 

individual virus has been identified as the main agent of RSS and the current opinion 

is that it may be caused by a community of viruses, collectively known as the virome. 

This paper attempts to characterise the viral pathogens associated with 2 – 3 week 

old RSS-affected and unaffected broiler chickens using next-generation sequencing 

and comparative metagenomics. Analysis of the viromes identified a total of 20 DNA 

& RNA viral families, along with 2 unidentified categories, comprised of 31 distinct 

viral genera and 7 unclassified genera. The most abundant viral families identified in 

this study were the Astroviridae, Caliciviridae, Picornaviridae, Parvoviridae, 

Coronaviridae, Siphoviridae, and Myoviridae. This study has identified historically 

significant viruses associated with the disease such as chicken astrovirus, avian 

nephritis virus, chicken parvovirus, and chicken calicivirus along with relatively novel 

viruses such as chicken megrivirus and sicinivirus 1 and will help expand the 

knowledge related to enteric disease in broiler chickens, provide insights into the 

viral constituents of a healthy avian gut, and identify a variety of enteric viruses and 

viral communities appropriate for further study. 

Keywords: Metagenomics, Virome, Next Generation Sequencing, Runting-Stunting 

Syndrome, Poultry, Picornavirus 

 

Introduction. The overall performance of a poultry flock is dependent on various 

factors such as feed quality, poultry house management, and the presence of 

pathogenic microorganisms. One of the largest contributing factors to thriving flocks 

is the development and proper functioning of the gastrointestinal (GI) tract. The avian 
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GI tract represents a site of nutrient absorption and contains many different types of 

microorganisms (collectively known as the microbiome) and plays host to a variety of 

commensal and pathogenic microbes including viruses, bacteria, and fungi. Sub-

optimal functioning of the GI tract can result in poor performance and can lead to 

production problems such as a poorer feed conversion ratio (FCR; the efficiency of 

converting feed to body mass), uneven flock growth, and can be caused by enteric 

diseases such as  runting-stunting syndrome (RSS) in broiler chickens. 

RSS, also known as malabsorption syndrome, was reported in broiler flocks as early 

as the 1970s by Kouwenhoven et al. (1978a,b) who described symptoms such as 

proventriculitis, poor FCR, and runting, which is defined as undersized at hatch. 

Further research described a wide variety of clinical symptoms including growth 

depression, irregular feathering (helicopter feathering, abnormal colouring), the 

presence of watery diarrhoea, other enteric problems such as intestinal lesions and 

pale intestines, and in severe cases mortality (Smart et al., 1988; Shapiro et al., 

1998; Otto et al., 2006; de Wit et al., 2011). Globally, the incidence of RSS and 

uneven flock growth can cause substantial economic losses to poultry producers due 

to culls of stunted, undersized birds that are too small to pass through the processing 

plant. 

Of specific interest is the enteric viral population associated with RSS of which many 

RNA and DNA viruses have been implicated and co-infections of multiple viruses 

such as rotavirus, chicken astrovirus (CAstV), avian nephritis virus (ANV), and 

reoviruses have been detected in birds affected with RSS or with poor performance 

(Reynolds et al., 1986; Guy, 1998; Kang et al., 2012). Metagenomic research into a 

similar disease in turkeys, known as poult enterits complex (PEC), has helped shed 

some light into the range of enteric pathogens associated with avian malabsorption 
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diseases (Day et al., 2010; Day & Zsak, 2013) with Day et al. (2010) describing at 

least 16 different RNA viral genera from a pool of affected birds. Other enteric 

pathogens associated with avian malabsorption diseases include reoviruses, 

parvoviruses, and members of the family Caliciviridae; many of which have also 

been observed in broiler chickens (Spackman et al., 2005; Smyth et al., 2007; 

Pantin-Jackwood et al., 2008, Wolf et al., 2011, Zsak et al., 2013). Pantin-Jackwood 

et al. (2008) demonstrated the presence of avian nephritis virus (ANV) in chicken 

flocks but also in turkey flocks for the first time indicating that some level of cross-

species interaction can occur. Additionally, Day et al. (2007) demonstrated that both 

turkeys and chickens exhibit species-specific viruses such as turkey astrovirus 

(TAstV) and chicken astrovirus (CAstV). 

Although previous studies detected many of these enteric viruses in affected flocks, 

and in different combinations of co-infections, some of these same viruses have 

been found in healthy flocks making it difficult to determine which viruses are 

implicated in the disease. For example, Reynolds et al. (1987) demonstrated that 

avian astrovirus and rotavirus were detected in ‘normal’ turkey poults as well as 

affected poults and Pantin-Jackwood et al. (2006) reported the presence of CAstV 

and ANV in healthy flocks as well as affected.  

Some of the viruses associated with RSS are difficult to cultivate in the laboratory 

which makes them difficult to study using conventional techniques (Todd et al., 

2010). Furthermore, a conventional approach such as viral cultivation and Sanger 

sequencing would make it difficult and time consuming to study the community of 

viruses in an affected flock especially novel viruses. In order to study the complete 

enteric virome, and provide an unbiased comparison of affected and unaffected 

birds, a more comprehensive approach should be applied and high-throughput 
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sequencing is an ideal method to examine the community of viruses inhabiting the 

enteric tracts of broiler flocks (Day et al., 2010). 

High-throughput, next generation sequencing (NGS) is a tool that has been 

successfully used to characterise microbial communities from a variety of complex 

environmental samples (Mardis, 2008; Patterson et al., 2009; Li et al., 2015). Using 

current NGS technologies it is possible to achieve deep sequencing coverage from 

samples that permits comparative metagenomic analysis between samples to 

identify key pathogens related to avian enteric disease. Bacterial metagenomics via 

amplicon sequencing is a well researched area due to the availability of the highly 

conserved 16S ribosomal RNA (rRNA) sequence found in bacteria (Riesenfeld et al., 

2004; Gill et al., 2006; Wang & Qian, 2009). As there is no viral equivalent of the 16S 

rRNA gene it is more appropriate to use a shotgun sequencing approach to discover 

novel viruses from environmental samples.  

One of the major advantages of certain, newer NGS platforms is the ability to obtain 

longer reads from a single run; for example up to 800 base pairs (bp) for a single 

read using Roche’s FLX+ system or 600 bp from a 300 bp, paired end read by the 

MiSeq system from Illumina, which are comparable with read lengths obtained from 

conventional Sanger sequencing. This increases accuracy of sequence assembly in 

regards to RNA viruses due to their high mutation rates leading to a high degree of 

variability and their ability to form quasispecies (Todd et al., 2011; Smyth et al., 

2012). This paper describes the application of next generation sequencing to 

characterise the DNA and RNA viral communities present within samples from 

broiler birds affected and unaffected by RSS. 
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Materials & Methods 

Sample preparation. Broiler chickens of between 13 and 21 days of age were 

received from UK farms. The gut contents of between 2 and 7 of these birds were 

pooled from RSS affected flocks displaying growth depression (VF13-188 E, VF14-

91 A1, VF14-91 A2, VF14-92 A1, VF14-92 A2) and from two unaffected flocks of 

healthy birds (VF14-181 A1, VF14-181 B1). From each pool 2 g of gut content was 

removed from the intestinal tract of the chicken and added to 18 mL phosphate 

buffered saline (PBS), pH 7.2, in a 50 mL centrifuge tube and was homogenised with 

sterile glass beads and vortexed thoroughly for 10 minutes followed by centrifugation 

for 30 minutes at 2400 x g, 4oC. The supernatant was transferred to a fresh 50 mL 

centrifuge tube and centrifuged at 5000 x g, 4oC for 15 minutes. The supernatant 

was removed and filtered through sterile 0.22 µm syringe filters (Merck-Millipore, 

Billerica, MA, USA). The filtered supernatant was then ultracentrifuged (Sorvall WX 

Ultra Series, Thermo Scientific, Waltham, MA, USA) for 5 hours at 113,000 x g, 4oC 

using the SW40-Ti rotor (Beckman-Coulter, Brea, CA, USA). The supernatant was 

removed and the pellet formed was resuspended in 1 mL sterile PBS buffer, pH 7.2. 

Removal of exogenous nucleic acids. RNase A (2 µg, Thermo Scientific) and 100 

U DNase 1 (Thermo Scientific) were added as per the manufacturer’s protocol to the 

enriched viral suspension and mixed by gently tapping the aliquot. The suspension 

was incubated in a water bath at 37oC for 30 minutes followed by inactivation by 

adding ethylenediaminetetraacetic acid (EDTA, Thermo Scientific) supplied with the 

DNase 1 kit, as per the manufacturer’s instructions, and incubating at 65 oC for 10 

minutes. Samples were divided into two fractions for DNA and RNA extraction and 

placed on ice. 
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DNA & RNA extraction. Total RNA was extracted from samples as prepared above 

using the Ribopure RNA extraction kit (Life Technologies, Carlsbad, CA, USA), 

according to manufacturer’s instructions and collected in a 1.5 mL tube. Total DNA 

was extracted using the Viral RNA Mini Kit (Qiagen, Manchester, UK) to 

manufacturer’s instructions and collected in a 1.5 mL tube. The Viral RNA mini kit 

was shown to extract DNA just as efficiently as it extracted RNA and more efficiently 

than other DNA extraction kits (unpublished results). 

Whole transcriptome & whole genome amplification. Extracted DNA and RNA 

were subjected to whole genome amplification (WGA) and whole transcriptome 

amplification (WTA) respectively to produce enough genomic material for 

sequencing. WGA and WTA reactions were carried out in parallel using the Repli-g 

Cell WGA & WTA Kit (Qiagen) according to manufacturer’s guidelines using random 

primers. The WTA reaction converted RNA to cDNA. 

Library preparation. Genomic material was fragmented via sonication to achieve a 

900 - 1200 bp range suitable for sequencing by the FLX+ system (Roche, Penzberg, 

Upper Bavaria, Germany). Total WGA and WTA material (60 µL) from each sample 

was diluted in 940 µL sterile PBS, pH 7.2, and sonicated at full power using the 

Soniprep 150 (MSE, London, UK) using an exponential probe. Samples were 

sonicated for 7 cycles each alternating between 10 seconds sonication followed by 

10 seconds cooling on ice. 

For the GS Junior system (Roche) genomic material was fragmented via sonication 

to achieve a 600 – 900 bp range suitable for sequencing. This was achieved via the 

same method as the FLX+ using 9 sonication cycles instead of 7. 
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Sonicated samples were purified using the QiaQuick PCR Purification Kit (Qiagen) 

according to the manufacturer’s guidelines. 

Purified samples were subject to end repair, followed by sequencing adaptor ligation, 

and removal of small fragments using the Rapid Library Preparation Reagents & 

Adaptors Kit (Roche) according to manufacturer’s guidelines. When preparing a 

single sample the RL adaptor from the kit was used. When multiplexing samples 

each sample utilised a different MID adaptor from the MID Adaptor Kit (Roche). 

Samples VF14-91 A1, VF14-91 A2, VF14-92 A1, VF14-92 A2, VF14-181 A1, and 

VF14-181 B1 were multiplexed in a single run. This was followed by a quality check 

on the 2100 Bioanalyser (Agilent, Santa Clara, CA, USA) using the High Sensitivity 

DNA kit (Agilent) to ensure optimum base pair range was achieved. Quantification 

for sequencing was performed on the QuantiFluor fluorometer (Promega, Madison, 

WI, USA). Due to the 200 µL minimum volume required by the QuantiFluor 

Fluorometer (Promega) a modified protocol was used. A dilution series was prepared 

using the RL Standard from the Rapid Library Preparation Reagents & Adaptors Kit 

(Roche). 

 

 

 

 

Each standard was vortexed and centrifuged briefly at each stage of the dilution. 50 

µL of each sample was made up to 200 µL with TE buffer in order to obtain an 

accurate measurement using the fluorometer. The fluorometer was set to raw 

readings and utilised the blue channel. RFU values were input into the Rapid Library 
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Calculator (Roche, www.my454.com) which calculated the dilutions required to bring 

each sample to a working stock of 1 x 107 molecules/µL suitable for emulsion PCR 

(emPCR). Once quantified, libraries were pooled together and 2 µL was used for 

emPCR, which was carried out to manufacturer’s guidelines as found in the emPCR 

Amplification Method Manual – Lib-L (Roche). 

For MiSeq (Illumina, San Diego, CA, USA) library preparation the Nextera XT library 

preparation kit (Illumina) was used as per manufacturer’s instructions. 

Sequencing. Sequencing on the GS Junior system was performed to standard 

protocol as found in the GS Junior Sequencing Method Manual (Roche). Sequencing 

on the FLX+ system was performed in Mannheim, Germany by Roche. 

Sequencing on the MiSeq was performed to standard protocol as found in the MiSeq 

System User Guide (Illumina) using 300 bp paired end reads. 

Data analysis. 454 sequencing reads were demultiplexed and assembled 

separately into contigs using the Newbler version 3.0 assembly software (Roche). 

MiSeq (Illumina) sequencing reads were assembled via BaseSpace (Illumina) using 

the Velvet assembly tool v1.0.0 (Zerbino & Birney, 2008). Contigs were input into the 

Basic Local Alignment Search Tool (BLAST, Geer et al., 2010) using the non-

redundant (nr) nucleotide (nt) database searching against highly similar sequences 

(megablast). Resulting XML files were input into Metagenome Analyser v5.7.1 

(MEGAN, Huson et al., 2011) for taxonomic analysis using default settings. Multiple 

alignments were performed using Geneious v6.1.8 (http://www.geneious.com, 

Kearse et al., 2012) against reference viral genomes indicated by MEGAN analysis.  
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Sequencing data. Sequence data was uploaded to MG-RAST 

(http://metagenomics.anl.gov/, Meyer et al., 2008) and made publically available at 

the following link: http://metagenomics.anl.gov/linkin.cgi?project=17287. Accession 

numbers: 4689857.3 (VF13-188 E), 4689861.3 (VF14-91 A1), 4689859.3 (VF14-91 

A2), 4689858.3 (VF14-92 A1), 4689855.3 (VF14-92 A2), 4689860.3 (VF14-181 A1), 

4689856.3 (VF14-181 B1). 

 

Results & Discussion 

Enteric virome analysis. Sequencing results produced 2,036,415 high quality reads 

which were assembled into 64,232 contigs ranging between 61 – 3,176 bp with the 

majority of contigs ranging between 250 – 500 bp. Short contigs were visually 

inspected for repetitive and low complexity sequences and removed where 

appropriate. A total of 2,533 contigs were assigned to 20 DNA & RNA viral families 

(Table 1) along with 2 unclassified categories and were comprised of 31 distinct viral 

genera and 7 unclassified categories (Fig. 2). The remaining contigs were assigned 

to cellular organisms (bacteria, fungi, and avian species) or produced no hits against 

the BLAST nucleotide database. 

 

 

 

 

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

 a
t Q

ue
en

's
 U

ni
ve

rs
ity

] 
at

 0
5:

46
 2

4 
M

ay
 2

01
6 



10 
 

Table 1. Number of contigs assigned to viral families from MEGAN taxonomic 

analysis. 

 Viral Sequence Hits 

Name VF13-188 E VF14-91 A1 VF14-91 A2 VF14-92 A1 VF14-92 A2 VF14-181 A1 

a 

VF14-181 B1 

a 

Picornaviridae 232 

(62.03%) 

27 

(3.03%) 

16 

(11.27%) 

9 

(1.60%) 

63 

(21.80%) 

8 

(12.31%) 

20 

(9.48%) 

Caliciviridae 2 

(0.53%) 

52 

(5.84%) 

21 

(14.79%) 

0 

(0%) 

25 

(8.65%) 

13 

(20.00%) 

0 

(0%) 

Astroviridae 73 

(19.52%) 

192 

(21.55%) 

42 

(29.58%) 

0 

(0%) 

114 

(39.45%) 

7 

(10.77%) 

5 

(2.37%) 

Coronaviridae 0 

(0%) 

0 

(0%) 

4 

(2.82%) 

0 

(0%) 

8 

(2.77%) 

6 

(9.23%) 

2 

(0.95%) 

Reoviridae 0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

3 

(1.04%) 

9 

(13.85%) 

2 

(0.95%) 

Parvoviridae 12 

(3.21%) 

2 

(0.22%) 

20 

(14.08%) 

1 

(0.18%) 

2 

(0.69%) 

16 

(24.62%) 

52 

(24.64%) 

Circoviridae 0 

(0%) 

0 

(0%) 

0 

(0%) 

2 

(0.36%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Retroviridae 8 

(2.14%) 

3 

(0.34%) 

0 

(0%) 

45 

(8.02%) 

8 

(2.77%) 

1 

(1.54%) 

0 

(0%) 

Polyomaviridae 2 

(0.53%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

3 

(1.04%) 

0 

(0%) 

0 

(0%) 

Herpesviridae 41 

(10.96%) 

18 

(2.02%) 

4 

(2.82%) 

34 

(6.06%) 

49 

(16.96%) 

2 

(3.08%) 

6 

(2.84%) 

Leviviridae 0 

(0%) 

1 

(0.11%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Bunyaviridae 0 

(0%) 

4 

(0.45%) 

0 

(0%) 

1 

(0.18%) 

2 

(0.69%) 

0 

(0%) 

0 

(0%) 

Siphoviridae 0 

(0%) 

173 

(19.42%) 

16 

(11.27%) 

157 

(27.99%) 

6 

(2.08%) 

1 

(1.54%) 

122 

(57.82%) 

Myoviridae 0 

(0%) 

419 

(47.03%) 

16 

(11.27%) 

212 

(37.79%) 

2 

(0.69%) 

2 

(3.08%) 

1 

(0.47%) 

Podoviridae 0 

(0%) 

0 

(0%) 

0 

(0%) 

28 

(4.99%) 

1 

(0.35%) 

0 

(0%) 

1 

(0.47%) 
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Baculoviridae 0 

(0%) 

0 

(0%) 

0 

(0%) 

4 

(0.71%) 

1 

(0.35%) 

0 

(0%) 

0 

(0%) 

Inoviridae 0 

(0%) 

0 

(0%) 

0 

(0%) 

1 

(0.18%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Phycodnaviridae 0 

(0%) 

0 

(0%) 

0 

(0%) 

4 

(0.71%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Closteroviridae 0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

1 

(0.35%) 

0 

(0%) 

0 

(0%) 

Poxviridae 0 

(0%) 

0 

(0%) 

0 

(0%) 

8 

(1.43%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Unclassified 

Phages 

1 

(0.27%) 

0 

(0%) 

3 

(2.11%) 

55 

(9.80%) 

1 

(0.35%) 

0 

(0%) 

0 

(0%) 

Unclassified 

Viruses 

3 

(0.80%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

0 

(0%) 

Total 374 891 142 561 289 65 211 

Percentage values were calculated for each sample according to the total number of 

viral contigs assigned per sample found at the bottom of each sample column. 

aVF14-181 A1 & B1 represent unaffected samples. 

 

Across all samples the most abundant viral families identified were the 

Picornaviridae, Astroviridae, Caliciviridae, Parvoviridae, Herpesviridae, Siphoviridae, 

and Myoviridae (Table 1). Within the affected samples the most abundant groups 

included the Picornaviridae, Astroviridae, Siphoviridae, and Myoviridae. The most 

abundant family identified in sample VF13-188 E was the Picornaviridae with over 

half of the total amount of contigs (62.03%) being assigned to this family and the 

second most abundant family being the Astroviridae with 19.52% of contigs being 

assigned (Table 1). This sample differed from all others due to the absence of any 

viral contigs assigned to the bacteriophage families Siphoviridae, Myoviridae, and 

Podoviridae. Sample VF14-91 A1 displayed the Myoviridae as the most abundant 
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family (47.03%) followed by the Astroviridae (21.55%) and the Siphoviridae 

(19.42%). The most abundant family associated with sample VF14-91 A2 was the 

Astroviridae (29.58%) followed by an even spread across the families Picornaviridae 

(11.27%), Caliciviridae (14.79%), Parvoviridae (14.08%), Siphoviridae (11.27%), and 

Myoviridae (11.27%). Sample VF14-92 A1 differed compared to all other samples 

with no viral contigs assigned to the Astroviridae and Caliciviridae and only a small 

number of viral contigs associated with the Picornaviridae (1.60%). Within this 

sample the most abundant families were the Myoviridae (37.79%) and the 

Siphoviridae (27.99%). Additionally, this sample had the largest amount of 

Retroviridae contigs associated with it (8.02%) compared to all other samples. 

Sample VF14-92 A2 showed a similar viral profile to that of sample VF13-188 E as 

the most abundant viral families were the Astroviridae (39.45%) and the 

Picornaviridae (21.80%) closely followed by the Herpesviridae (16.96%). 

Within the unaffected sample set, sample VF14-181 A1 displayed the Paroviridae as 

the most abundant family with 24.62% of the viral contigs being thus assigned.  This 

was followed by the Caliciviridae (20.00%) which was most abundant in this sample 

compared to all others (Table 1). This sample also displayed a relatively even spread 

across the families Picornaviridae (12.31%), Astroviridae (10.77%), Coronaviridae 

(9.23%), and Reoviridae (13.85%). The most abundant family identified in sample 

VF14-181 B1 was the Siphoviridae with over half the viral contigs being assigned to 

this family (57.82%). This sample was also very similar to the other unaffected 

sample, VF14-181 A1, in regards to the Parvoviridae family with 24.64% of the viral 

contigs being associated with this family (compared to 24.62% associated with 

sample VF14-181 A1). The unaffected samples displayed a larger abundance of 

Parvoviridae contigs compared to the affected samples while the affected samples 

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

 a
t Q

ue
en

's
 U

ni
ve

rs
ity

] 
at

 0
5:

46
 2

4 
M

ay
 2

01
6 



13 
 

displayed a larger abundance of Picornaviridae and Astroviridae compared to the 

unaffected samples (Table 1). A higher abundance of the bacteriophage families was 

observed in the affected samples compared with the unaffected samples. 

Noticeably, there was an absence or low abundance of Reoviridae contigs across all 

samples even though reoviruses have been strongly associated with RSS. Otto et al. 

(2006) described the presence of reoviruses via RT-PCR from 32/34 (94%) of RSS-

affected broiler chicks tested and also from 2/7 (29%) of ‘healthy’ control birds 

tested. The birds tested in the 2006 study ranged from 5 – 14 days of age compared 

to the present study which tested 2 – 3 week old birds. As reoviruses are quite 

commonly detected in young broiler chicks it may be possible that any reovirus 

infection has largely cleared from these older birds and is present in relatively low 

abundance accounting for the absence of Reoviridae contigs in the majority of 

samples (Table 1). 

 

RNA virome analysis. 

Picornaviridae. Members of the family Picornaviridae (order: Picornavirales) were 

detected across all 7 (100%) samples with a total of 375 viral contigs assigned to this 

family (Table 1). The majority of viral contigs (293) in this metagenomic analysis 

were assigned to the unclassified Picornaviridae category with the remaining contigs 

(82) assigned to 3 recognised genera – Gallivirus, Kobuvirus, and Megrivirus (Fig. 

2). Within these genera, viral contigs showed similarity to multiple species such as 

chicken gallivirus 1 (Gallivirus), aichivirus C (Kobuvirus), and chicken megrivirus 

(Megrivirus). A total of 217 contigs characterised as unclassified Picornaviridae 

showed similarity to the species sicinivirus 1, a novel picornavirus isolated from 
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commercial broiler chickens in Cork, Ireland (Bullman et al., 2014) and recently 

reported in mainland China (Zhou et al., 2015). Sicinivirus 1 contigs were almost 

exclusively associated with RSS-affected samples with only one sicinivirus 1 contig 

associated with unaffected sample VF14-181 A1. Sicinivirus 1 was commonly found 

alongside chicken megrivirus, chicken picornavirus 1, 4, and 5, and aichivirus C 

however the pathogenic potential of sicinivirus 1 is yet to be determined. The 

remaining viral contigs (76) associated with the unclassified Picornaviridae displayed 

similarity to chicken picornavirus 1, 4, and 5, picornavirus chicken/CHK1/USA/2010, 

pigeon picornavirus B, and aichivirus C. The species chicken picornavirus 1, 4, 5, 

chicken megrivirus, and aichivirus C were only associated with the affected samples 

compared to picornavirus chicken/CHK1/USA/2010, pigeon picornavirus B, and 

chicken gallivirus 1 which were found in both affected and unaffected samples. 

Members of the Picornaviridae are characterised by non-enveloped icosahedral 

virions, around 30 nm in diameter, containing a single-stranded positive-sense RNA 

(ssRNA(+)) genome, 7 – 9 kb in length (Stanway, 1990; LeGall et al., 2008). 

Picornaviruses have been linked to disease across multiple species (such as sheep, 

cattle, humans, felines, and birds) and have been implicated in enteric disease (Knox 

et al., 2012; Tapparel et al., 2013). Previous metagenomic studies into the avian gut 

microbiome have identified multiple picornavirus species in disease-affected and 

healthy birds, findings which have been echoed in the present study. However, the 

pathogenic potential of these viruses in avian species remains relatively unknown 

due to the large amount of genetic variation observed among these viruses (Day et 

al., 2010; Farkas et al., 2012; Bullman et al., 2014; Day et al., 2015a,b; Zhou et al., 

2015). In the present study picornaviruses were commonly found alongside the 

Astroviridae, Caliciviridae, Parvoviridae, and bacteriophage families (Table 1) and 
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seem to be prevalent in growth-stunted birds. Due to the large number of 

picornavirus strains in circulation it is perhaps unsurprising that picornavirus contigs 

were also detected in the unaffected samples and is possible that non-pathogenic 

picornavirus strains may be constituents of a healthy avian gut virome. 

Coronaviridae. Members of the family Coronaviridae (order: Nidovirales) were 

detected in 4/7 samples and were found in both affected (2/5) and unaffected (2/2) 

samples although in relatively low numbers with a greater number of contigs found in 

samples VF14-92 A2 and VF14-181 A1 (Table 1). All viral contigs (20) assigned to 

the Coronaviridae family belonged to the genus Gammacoronavirus (Fig. 2) with all 

20 of the viral contigs displaying high similarity (98 – 100% nucleotide identity) to 

infectious bronchitis virus (IBV). Although both unaffected samples were observed to 

also have IBV contigs, this may be due to the small sample set tested. Members of 

this family are characterised by enveloped, positive-stranded RNA genomes, 26 – 32 

kb in length (Brian & Baric, 2005; Gorbalenya et al., 2006). Coronaviruses have been 

detected in a variety of wild animals and are responsible for mild to severe 

respiratory symptoms, central nervous system diseases, and gastrointestinal 

diseases (Gallagher & Buchmeier, 2001; Weiss & Navas-Martin, 2005; Weiss & 

Leibowitz, 2011). The main coronavirus affecting chickens is IBV which can cause 

respiratory disease and can also replicate in non-respiratory areas such as enteric 

tissues. Although IBV is not typically associated with enteric disease it may 

contribute to enteritis in combination with other microbial factors (Cavanagh & Gelb 

Jr., 2003; Cavanagh, 2007; Jackwood et al., 2012). 

Caliciviridae. A total of 113 viral contigs belonging to the Caliciviridae family were 

detected in 5/7 of the tested samples and were found in 4/5 affected samples and 

1/2 unaffected samples. A total of 98 viral contigs displayed similarity to calicivirus 
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isolates calicivirus chicken/V0021/Bayern/2004 (85 – 96% nucleotide identity), 

calicivirus chicken/V0027/Bayern/2004 (90 – 93% nucleotide identity), and calicivirus 

chicken/V0013/Bayern/2004 (89% nucleotide identity) with the remaining contigs 

(15) showing similarity to chicken calicivirus isolates chicken/L11038 polyprotein 

gene (90 – 98% nucleotide identity), chicken/L11041 polyprotein gene (91 – 96% 

nucleotide identity), and caliciQ45/2013 polyprotein gene (81 – 93% nucleotide 

identity). The Caliciviridae family is comprised of 5 recognised genera (Lagovirus, 

Nebovirus, Norovirus, Sapovirus, and Vesivirus) and an unclassified Caliciviridae 

genus with the Caliciviridae contigs in this study belonging to the unclassified 

Caliciviridae genus. Virions belonging to the Caliciviridae family are typically non-

enveloped, around 30 – 40 nm in diameter, and with an RNA genome of around 7.5 

kb in length (Thiel & König, 1999). The Caliciviridae family can infect a variety of host 

organisms including humans, birds, pigs, cattle, and avian species and have been 

associated with gastroenteritis in humans as early as the 1970s (Kapikian et al., 

1972; Smith et al., 1977; Chen et al., 2006; Wolf et al., 2009). Calicivirus has been 

detected and characterised from both healthy chickens and chickens displaying 

growth retardation via electron microscopy, reverse transcriptase polymerase chain 

reaction (RT-PCR) and next-generation sequencing (Day et al., 2010; Wolf et al., 

2011; Day et al., 2015a). A previous metagenomic analysis of SPF and SPF sentinel 

birds performed by Day et al. (2015a) described the majority of viral contigs (11,309) 

associated with the SPF flock being assigned to the Caliciviridae family (99.05%) 

with the virus appearing to clear from sentinel birds placed on commercial farms with 

enteric and respiratory problems although testing of a backyard sentinel flock, with a 

history of enteric disease, identified 7819 contigs (25.55%) assigned to the 

Caliciviridae family. Conversely, in the present study, members of the Caliciviridae 
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were more commonly associated with RSS-affected samples with the most common 

isolate being calicivirus chicken/V0021/Bayern/2004, the same isolate described by 

Day et al. (2015a) in the SPF and backyard flocks, this isolate was also detected in 

unaffected sample VF14-181 A1. Contigs displaying similarity to the isolates L11038, 

L11041, Q45, and calicivirus chicken/V0027/Bayern/2004 were only found in RSS-

affected samples possibly suggesting and association with enteric disease while 

isolate calicivirus chicken/V0013/Bayern/2004 was only associated with unaffected 

sample VF14-181 A1 and not in affected samples. Interestingly, there were no 

Caliciviridae contigs associated with affected sample VF14-92 A1 (Table 1). 

Astroviridae. The present study has identified 433 viral contigs displaying similarity 

(81 – 100% nucleotide identity) to the Avastrovirus genus (Table 1, Fig. 2), 

specifically the species chicken astrovirus (CAstV) and avian nephritis virus (ANV) 

sero- or genotypes 1 (ANV 1), 2 (ANV 2), and 3 (ANV 3). Members of the 

Avastrovirus genus, especially ANV and CAstV, are strongly associated with RSS 

and the current study reports a much higher viral profile associated with this genus in 

RSS-affected samples with much lower profiles being observed in unaffected 

samples (Fig. 2). Contigs associated with the Astroviridae were commonly found in 

combination with the Caliciviridae, Picornaviridae, and Parvoviridae families (Table 

1) which has been described in previous metagenomic studies in chickens and 

turkeys (Day et al., 2015a,b). Viral contigs assigned to the chicken astrovirus and 

ANV 1 species were only associated with the affected sample set. Viral contigs 

associated with the ANV 2 and ANV 3 species were associated with both affected 

and unaffected sample sets with a notably larger ANV 2 profile associated with the 

affected samples. This may suggest greater ANV 2 strain diversity within the affected 

samples with certain strains exerting a greater pathogenic effect leading to stunted 
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growth. Day et al. (2015a) described a very low Astroviridae profile associated with a 

SPF flock (2 contigs, 0.02%). By contrast, Day reported increased levels of 

astrovirus contigs (1.14 – 98.97%) associated with sentinel SPF birds placed on 

commercial farms with enteric problems indicating that members of the Astroviridae 

family are more commonly found in flocks with growth problems and enteric disease. 

The Astroviridae family contains a group of enteric viruses which can infect multiple 

mammalian hosts (Genus: Mamastrovirus) and avian hosts (genus: Avastrovirus) 

causing a range of enteric disease symptoms such as diarrhoea, enteritis, interstitial 

nephritis and has been linked with visceral gout and RSS (Yamaguchi et al., 1979; 

McNulty et al., 1984; Herrmann et al., 1991; Greenberg & Matsui, 1992; Moser & 

Schultz-Cherry, 2005; Spackman et al., 2010; Benedictis et al., 2011; Lee et al., 

2013). First identified in 1975 (Madeley & Cosgrove, 1975) Astroviridae are 

characterised as small, non-enveloped virions with a positive-sensed RNA genome 

around 7 kb in length (Jiang et al., 1993; Carter, 1994; Willcocks et al., 1994). The 

Avastrovirus genus contains at least 6 recognised species – avian nephritis virus 

(ANV), chicken astrovirus (CAstV), duck astrovirus types 1 & 2 (DAstV), and turkey 

astrovirus types 1 & 2 (TAstV). Previous studies have identified astroviruses in both 

growth stunted and healthy avian hosts (Reynolds et al., 1987; Baxendale & 

Mebatsion, 2004; Pantin-Jackwood et al., 2006; Kang et al., 2012). 

 

Reoviridae. Avian Orthoreoviruses (ARV) can be present without disease in broiler 

chickens however reovirus infection can lead to several disease symptoms such as 

tenosynovitis, growth suppression, and enteritis and can also cause 

immunosuppression leaving the host susceptible to other infections (Hieronymus et 

al., 1982; Jones & Kibenge, 1984; Sharma et al., 1994 Jones, 2000). Although 
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reoviruses are widespread among avian hosts, the present study reports detection of 

reovirus in only one sample (VF-14 181 A1) which represents a healthy flock. The 

low detection rate of ARV may be a consequence of the small sample set tested or 

may suggest their relative abundance is low compared to other viruses. Reovirus 

contigs obtained from sample VF14-181 A1 were assigned to the Orthoreovirus 

genus (Fig. 2, species: Avian orthoreovirus) and displayed homology to the L1, L2, 

L3, S1, and S4 genome segments and the lambdaB core protein gene. The family 

Reoviridae, consisting of 2 subfamilies comprising of 15 genera, contains a group of 

viruses with a wide host range including invertebrates, vertebrates, plants, and fungi 

and has been described in both RSS-affected broiler chickens and healthy chickens 

(Robertson et al., 1984) and has been detected in previous avian enteric 

metagenomic studies (Day et al., 2010, 2015a). Reoviruses are non-enveloped 

viruses that contain a segmented (10 – 12 segments) double-stranded RNA genome 

(Joklik, 1981; Gouet et al., 1999; Forrest & Dermody, 2003). 

 

Retroviridae. The Retroviridae family is comprised of 2 subfamilies 

(Orthoretrovirinae and Spumaretrovirinae) and contains 7 viral genera and has a 

large host range. This study has detected the presence of 1 viral contig from one 

sample, VF14-91 A1 (Table 1), displaying similarity (100% nucleotide identity) to 

avian erythroblastosis virus (AEV, genus: Alpharetrovirus) erbA and erbB genes. 

Additionally, the same sample had one viral contig displaying 98% nucleotide 

similarity to the avian endogenous retrovirus gag gene. Endogenous viral elements 

represent either entire viral genomes or fragments of viral genomes which have 

become integrated into the host germ line. The remaining viral contigs (63) from the 

MEGAN analysis displayed short sequence similarity, 30 – 90 bp (from contigs 
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around 250 - 400 bp in length), to human endogenous retroviruses and the Lentivirus 

genus. Upon analysis the full contigs displayed homologies to various bacterial 

genera such as Salmonella, Escherichia, and Bacteroides. Retroviruses reverse 

transcribe their RNA genome into DNA using their own reverse transcriptase 

followed by integration into the host genome where they replicate using the host 

polymerase genes (Dahlberg, 1988; Coffin, 1992; Luciw & Leung, 1992; Gifford & 

Tristem, 2003). Previous studies have described the presence of endogenous avian 

retroviruses (EAVs) within domesticated chickens which are vertically transmitted 

through the host germ line following genomic integration (Frisby & Weiss, 1979). 

Although not normally linked to disease EAVs have been related to subgroup J avian 

leukosis virus (ALV), an exogenous avian retrovirus, which has been reported to 

induce myeloid leukosis, can cause mortality through the development of tumours, 

and can cause immunosuppression within the host (Purchase et al., 1968; Friedman 

& Ceglowski, 1971; Fadly & Smith, 1998; Payne, 1998; Smith et al., 1998). It is 

possible that the presence of avian retroviruses in RSS-affected samples is not 

directly contributing to enteric disease however the immunosuppression caused by 

these viruses may leave affected birds susceptible to infection from other viral 

species. 

 

DNA virome analysis. 

 

Parvoviridae. Parvoviruses were detected in 7/7 samples tested with the all of the 

viral contigs displaying similarities to either the Aveparvovirus genus (90 – 100% 

nucleotide identity), specifically chicken parvovirus strains, and the Protoparvovirus 

genus (88 – 100% nucleotide identity), specifically to the NS1, NP1, VP1, and VP2 
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genes of the Protoparvovirus genus, isolates ParvoD11/2007 and ParvoD62/2013, 

and the NS1 gene of chicken parvovirus Ch_114_10 and chicken parvovirus isolates 

Ch841_3/2009/HUN and Ch538/2009/HUN. Sample VF14-181 A1, representing a 

healthy flock, contained a combination of avian orthoreovirus (strains T1781, AVS-B, 

1017-1 and 138) and chicken parvovirus ABU-P1 (Table 1) mirroring a study by 

Decaesstecker et al. (1986) in which chicken parvovirus ABU-P1 in combination with 

reoviruses failed to cause growth retardation in day old chicks following oral 

inoculation. Conversely, an earlier study isolated chicken parvovirus ABU-P1 from 

chickens with stunted growth and re-inoculation of embryos and day old SPF chicks 

with this isolate caused enteritis, a decrease in egg hatchability, and severe growth 

retardation (Kisary, 1985). All affected samples contained parvovirus contigs 

although a substantially larger Parvoviridae profile was observed in the unaffected 

samples compared to the affected samples. Both affected and unaffected samples 

contained a combination of sequences from members of the Protoparvovirus and 

Aveparvovirus genera however the affected samples contained more viral contigs 

assigned to the Protoparvovirus genus  while the unaffected samples contained 

more viral contigs assigned to the Aveparvovirus genus (species: chicken parvovirus 

ABU-P1). The Paroviridae family is divided in to 2 sub families (Densovirinae and 

Parvovirinae) that contain 13 genera between them and are characterised as having 

a non-enveloped capsid containing a single stranded DNA genome around 5 kb in 

length (Berns, 1990; Cotmore & Tattersall, 1995, 2005). 

 

Circoviridae. The Circoviridae family contains 2 distinct genera – Gyrovirus and 

Circovirus. They are characterised by a circular non-segmented single-stranded 

DNA genome, around 1.7 kb to 2.4 kb in length (Finsterbusch & Mankertz, 2009). 

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

 a
t Q

ue
en

's
 U

ni
ve

rs
ity

] 
at

 0
5:

46
 2

4 
M

ay
 2

01
6 



22 
 

The present study detected 2 viral contigs exhibiting similarity (96 – 99% nucleotide 

identity) to the Gyrovirus genus in only one RSS-affected sample, VF14-92 A1, 

which specifically showed similarity to chicken anaemia virus (CAV, genus: 

Gyrovirus) while the unaffected samples displayed no Circoviridae contigs. The 

circoviruses can infect a range of birds and mammals such as chickens, pigs, dogs, 

geese, and pigeons (Yuasa et al., 1979; Tischer et al., 1982; Todd et al., 2001; 

Kapoor et al., 2012). . McNulty et al. (1991) described the effects of subclinical CAV 

infection in broiler chickens resulting in a decrease in profitability and production - 

specifically a decrease in the average weight per bird and an adverse effect on feed 

conversion ratio theorised to be caused by the immunosuppressive capabilities of 

CAV. CAV was later detected in 4 week old growth stunted birds in combination with 

Cryptosporidium baileyi (Dobos-Kovács et al.,1994) and has been detected in broiler 

chickens displaying lymphocyte depletion (Van Santen et al., 2001) further indicating 

a role in immunosuppression. Rosenberger & Cloud (1998) also reported that the 

immunosuppressive aspects of CAV frequently lead to secondary infections with 

Clostridium perfringens and Staphylococcus aureus. This immunosuppression, in 

combination with other viral pathogens, may contribute to the development of RSS. 

Although CAV was only detected in one sample it is possible that the infection had 

largely cleared from these 2 – 3 week old birds and could have been detected if 

tested at an earlier age. Additionally, it is possible that CAV was present in samples 

in relatively low abundance. Throughout the virus enrichment process during sample 

preparation there were losses associated with each of the processing stages. It is 

possible that the less abundant CAV has been lost in these processing stages 

therefore not detected in the final sequencing results. 
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Caudovirales. The Caudovirales order contains tailed bacteriophages and is 

comprised of the families Siphoviridae, Myoviridae, and Podoviridae and were 

detected in all samples tested (Table 1). Additionally, the families Leviviridae, 

Inoviridae, and the unassigned phage category (Table 1) were comprised of phage 

sequences. Within the affected samples there was a large Caudovirales profile 

associated with samples VF14-91 A1 and VF14-92 A1 (over 50% of the viral contigs 

for each sample) and relatively little Caudovirales contigs associated with VF14-91 

A2 and VF14-92 A2 (Table 1). Interestingly, affected sample VF13-188 E contained 

no Caudovirales contigs. Unaffected sample VF14-181 A1 had a very small number 

of contigs (3) associated with the Caudovirales while unaffected sample VF14-181 

B1 had a large Caudovirales profile (over 50% viral contigs were assigned to the 

Caudovirales). In the present study the samples had an overall total of 1,165 viral 

contigs assigned to phage species with the majority of contigs being assigned to the 

families Siphoviridae (475 contigs) and Myoviridae (652 contigs) (Table 1) making 

the bacteriophages the most abundant species identified in the current study 

(45.99% of total viral contigs). Sample VF14-92 A1 had 28 viral contigs assigned to 

the Podoviridae family. Sample VF13-188 E displayed no similarity to any of the 

bacteriophage families but had one viral contig identified as an unclassified phage 

(Table 1). This was similar to samples VF14-92 A2 and VF14-181 A1 which 

displayed a very low amount of phage contigs (3.82% and 4.62% respectively) 

compared to the large abundance of phage contigs identified in samples VF14-91 A1 

(67.01%), VF14-91 A2 (24.65%), VF14-92 A1 (81.64%), and VF14-181 B1 (58.76%). 

An increase in viral contigs associated with the Caudovirales may coincide with an 

overgrowth of specific groups of intestinal bacteria which are then infected by 

species specific bacteriophages helping regulate the intestinal microbiota. The 
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majority of the viral contigs assigned to the Caudovirales were identified as 

enterobacteria phages, enterococcus phages, and bacteroides phages which relate 

to normal bacterial constituents of the chicken gastrointestinal tract such as 

Escherichia coli, Enterococcus species, and Bacteroides species (Devriese et al., 

1991; Lu et al., 2003; Amit-Romach et al., 2004). These viruses are widespread and 

co-exist with bacterial populations across a large range of hosts and environments 

and aid in regulating the diversity, population, and function of microbial communities 

(Riesenfeld et al., 2004). The role of bacteriophages in relation to RSS is unclear 

and represents an interesting group for further study since previous metagenomic 

studies have also detected members of the Caudovirales order as part of the broiler 

chicken gut microbiota in growth retarded flocks (Kim & Mundt, 2011; Day et al., 

2015a). 

 

Herpesviridae. Of the remaining viral families 154 contigs were assigned to the 

Herpesviridae family. Samples VF13-188 E and VF14-92 A2 displayed a higher 

Herpesviridae abundance (10.96% and 16.96% respectively) compared to all other 

samples which displayed a more even spread (2.02 – 6.06%). Contigs assigned to 

this family displayed similarity to the Cytomegalovirus genus (Fig. 2), with 143 

contigs displaying similarity to the Ceropithicine herpesvirus 5 species. Within this 

species all contigs assigned displayed greatest similarity (77 – 100% nucleotide 

identity) to stealth virus 1. Additionally, the small number of contigs in the 

‘unclassified virus’ category (Table 1, sample VF13-188 E) contained 3 contigs 

displaying high similarity to the species stealth virus 4 and 5 (95 – 100% nucleotide 

identity). Stealth virus 1 has previously been isolated from human hosts displaying 

symptoms such as chronic fatigue (Martin et al., 1995) and encephalopathy (Martin, 
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1996) however no studies have been conducted in relation to avian hosts but it has 

been shown to be transmissible to dogs and cats (Martin & Anderson, 1997). This 

study appears to be the first study to report the presence of stealth virus in RSS-

affected broiler chickens however further studies must be undertaken to understand 

the role this virus plays in disease. 

 

Most previous investigations into the enteric viruses associated with poultry have 

been limited to culture-dependant methods and molecular assays targeting 

previously known viruses. The use of high-throughput next generation sequencing in 

this study, and a small number of other studies, presents a viable technique for the 

characterisation of the complex viral communities present in the gastrointestinal tract 

of disease-affected and unaffected broiler chickens. This study presents preliminary 

data on the viral communities present in the poultry gut from a small number of 

samples and has identified multiple viral families historically associated with RSS co-

infecting broiler guts, along with the broad characterisation of other viral families 

such as the Siphoviridae, Myoviridae, and Podoviridae in relation to the disease. 

Additionally, this study attempts to characterise the virome associated with 

unaffected broiler chickens with the results showing a difference in the viral contigs 

assigned in the unaffected samples – typically many of the same families are 

observed in unaffected samples but with a lower number of viral contigs assigned to 

these families when compared to affected samples. The main viral families related to 

RSS-affected samples from this study included Astroviridae, Caliciviridae, 

Picornaviridae, Parvoviridae, Coronaviridae, Siphoviridae, and Myoviridae although 

many of these viral families were also found in unaffected samples indicating 

that certain strains within these families may be constituents of a normal 
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broiler gut virome. One of the advantages of the sequencing platforms used is their 

ability to be semi-quantitative; the sequencing reads and contigs output by the 

platforms are assumed to be representative of the microbial contents within a tested 

sample. However, the use of whole genome and whole transcriptome amplification 

steps in the sequencing procedures have previously been shown to introduce bias to 

sequencing results (Pinard et al., 2006) resulting in a non-quantitative analysis. The 

present study had to use whole genome and whole transcriptome amplification 

methods to generate sufficient viral genomic material from samples for library 

preparation and as such these results cannot be considered quantitative however 

the kit used to perform these procedures was shown to generally minimise bias 

when compared to other similar kits (Pinard et al., 2006). Furthermore it might be 

assumed that any bias from whole genome amplification methods may apply equally 

across all samples although further bias may be subsequently introduced by library 

preparation methods specific to each platform or kit. Subsequent quantitative 

studies currently underway via quantitative real-time PCR (qPCR) will help 

clarify the roles these viruses play in RSS and would aid in understanding the 

differences in viral load associated with each virus. These studies will also help 

characterise the differences between affected and unaffected birds leading to a 

greater knowledge of the key viral agents associated with RSS. 
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Figure captions. 

Figure 1. MEGAN taxonomic analysis displaying a viral family comparison between 

all 7 samples. VF14-181 A1 & B1 (*) represent unaffected samples. The “Viruses” 

and “dsDNA viruses, no RNA stage” categories contained viral contigs from the 

families Siphoviridae, Myoviridae, Podoviridae, Herpesviridae, Reoviridae, 

Retroviridae, Polyomaviridae, Inoviridae, Baculoviridae, and Poxviridae. These 

unassigned contigs were accounted for in Table 1. Bars located next to each taxon 

are proportional to the total number of contigs assigned to each category from 

sequencing runs. 

Figure 2. MEGAN taxonomic analysis displaying a viral genera comparison between 

all 7 samples. VF14-181 A1 & B1 (*) represent unaffected samples. Bars located 

next to each taxon are proportional to the total number of contigs assigned to each 

category from sequencing runs. 

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

 a
t Q

ue
en

's
 U

ni
ve

rs
ity

] 
at

 0
5:

46
 2

4 
M

ay
 2

01
6 



 

 

 

D
ow

nl
oa

de
d 

by
 [

T
he

 L
ib

ra
ry

 a
t Q

ue
en

's
 U

ni
ve

rs
ity

] 
at

 0
5:

46
 2

4 
M

ay
 2

01
6 


