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Abstract

The complexity of modern geochemical data setadseasing in several aspects (number of
available samples, number of elements measuredberuoi matrices analysed, geological-
environmental variability covered, etc), hencesibecoming increasingly necessary to apply
statistical methods to elucidate their structurgisTpaper presents an exploratory analysis of
one such complex data set, the Tellus geochemadaswrvey of Northern Ireland (NI). This
exploratory analysis is based on one of the mostidmental exploratory tools, principal
component analysis (PCA) and its graphical reptasien as a biplot, albeit in several
variations: the set of elements included (only majwides vs. all observed elements), the
prior transformation applied to the data (nonetamdardization or a logratio transformation)
and the way the covariance matrix between comparisrgstimated (classical estimation vs.
robust estimation). Results show that a log-ra@ARrobust or classical) of all available
elements is the most powerful exploratory settprgviding the following insights: the first
two processes controlling the whole geochemicahtian in NI soils are peat coverage and a
contrast between “mafic” and “felsic” background lithologies; peat covered areas are detected

as outliers by a robust analysis, and can be titercfl out if required for further modelling;

and peat coverage intensity can be quantified Wiéh%Br in the subcomposition (Br, Rb,
Ni).

Keywords. centered log-ratio transformation, clr, spuriagrelation, compositional data
analysis.



1. Introduction

Geochemical datasets are increasing, both in thebauof samples routinely collected and in
the number of components analysed. These datasdtglé elements with typical values
which cover ranges of magnitude from % to ppm areppb. Such geochemical datasets
may cover a single deposit or formation, a reldyigeall area or region of interest, a country
or a whole continent or subcontinent, involve onenany matrices (river water, underground
water, moss or other vegetal tissues, rock, sséam sediments, single grains of the same
mineral phase, etc.), be static or imply a timel&ian. It is becoming, thus, increasingly
necessary to have appropriate tools to explorepbisntially large geochemical variability
An example of such framework is provided by any sradregional geochemistry survey
(GEMAS for Europe: Reimann et al. 2014aAmistralia: Caritat and Cooper, 2011aNorth
America: Smith et al., 2011; Drew et al., 2010; Canada: Friske et al., 2013; China: Wang et
al., 2015), typically having thousands of sampleslysed for several tens of elements
covering diverse geological units in non-homogesealimatic zones and landscape
environments.

Until now, most practitioners in the field of geechistry analyse such databases with a quite
informal, intuitive approach. Such an approach adses plotting the data in standard
bivariate diagrams (a.k.a. Harker diagrams), tratardiagrams (ternary diagrams) or less
frequently using multivariate approaches (Schoeligagrams, Piper diagrams, spider
diagrams) that have been proposed by others, amduking these plots to identify known
patterns. This approach can be tedious (as the ewupflexisting proposed diagrams grows
with time) and unfortunately, merely confirmatorythat either the expected grouping, trend
or pattern is conveniently observed, otherwiseyatslsimply do not show the contradictory
diagram in their reports. It is thus reploratory (i.e. allowing a search for known as well as
unexpected patterns). An alternative approach,rbaapincreasingly popular, is to apply an
appropriate multivariate statistical analysis te tlata set.

For exploratory purposes, the most appropriatestacg Principal Component Analysis (PCA)
and related projection techniques (FA: Factor Asigly PP: Projection Pursuit, DA:
Discriminant Analysis, etc). All of these technigusearch for a few linear combinations of
the available variables (@rojection) that contain “interesting” patterns. Each method
specifies in a quantitative manner what is defiasdinteresting”. Many of these techniques
also allow a graphical representation of both thgimal variables (the chemical elements)
and the observations (the samples) in the firstifé@resting projections, thus providing quite
powerful exploratory tools(abriel, 1971; Grafelman and van Eeuwijk 2003itchison,
1997; Pawlowsky-Glahn and Buccianti, 2011). For the sake of sioifyli this paper deals
with PCA but many of the conclusions apply to otbeploratory projection methods.

Underlying such statistical methods there is md&nosome assumption of joint normal
distribution for the data. In geochemical case is&dhis might be an acceptable assumption
for many major components and in small carefullyngked datasets, but it becomes
decreasingly reliable with increasing complexitynoth trace elements. In fact trace elements
are said to rather follow lognormal (or quasi-lognal) distributions, particularly on large
spatial scales (Ahreng954a; 1954b).

On the other hand, existing user-friendly multiegei statistics software is typically built for a
variety of applications, where often the variabdemlysed do not share the same units of
measurement. Thus, when one wants to build a lioeabination of these variables, they are
typically standardized to remove units (otherwise avould be adding apples with oranges).
This is an unnecessary step in most geochemicaselst for two reasons. Firstly, all
components share the same units if they relatbeécsame composition, even though some
variables might be in % and others in ppm or ppbrafore we can meaningfully compare



them. Secondly, wean (and sometimedo) add apples and oranges, when we expect two or
more elements to behave equivalently (e.g. K anthNaPiper or a TAS diagrams).

Finally, compositional data are known to be closed,if we would consider all elements and
measure them without error then they would sum0@?4 (or 16 ppm) on each sample. This
constant sum constraint was identified to inducearisps behaviour on the correlation
coefficient by Chayes (1960): the so calleegative bias (the tendency of correlation
coefficients between major components to be negptnd thespurious correlation effect
(the fact that correlation between two componemigredictably changes when considering
different subcompositions). These problems do mdy affect the correlation coefficients:
any statistical method based on them (as all ptiojeenethods mentioned before) do suffer
from the same spurious charactButfer, 1975; 1976; 1975; 1979; Chayes and Trochimczyk,
1978; Pawlowsy, 1984). These effects can be noticed even when usingva rhajor
components, where their total sum approaches 100%.

In the 80s Aitchison (1982, 1986) suggested thhthelse problems would be solved by
realizing that compositional data only carry relatinformation. He showed that this implies
that an appropriate statistical analysis of contgwsl data should be based on log-ratio
transformed data, and introduced a compositiongdrredtive to projections, calletbg-
contrasts. The fact is that all of the methods mentionedieetre straightforward to apply to
geochemical data by using log-contrasts.

The aim of this paper is to compare the performarfca popular projection-based analysis
(PCA) using a logratio approach with a non-transf@tion strategy, in order to: (a) show the
potential of a truly exploratory analysis with teedtatistical methods, and (b) demonstrate the
advantages of using log-ratios over more classagbroaches. These aspects will be
illustrated with the Tellus soil geochemical survegmpleted by the Geological Survey of
Northern Ireland (GSNI).

The geology of Northern Ireland (see maps SM1 i@ ¢mline supplementary material)
includes a stratigraphic record commencing in thesdproterozoic including all geological
systems up to the Palaeogene (Mitchell 2004). Tlis created a diversity of geological
bedrock across the region. The north-east is ddeidnhy the Palaeogene basalt lava and
lacustrine sedimentary rocks, whilst the north-westdominated largely by Dalradian
psammite and semipelite. Mudstone, sandstone amesione Carboniferous in age (with a
Devonian component) are found across central tthseast Northern Ireland. The southeast
comprises Ordovician and Silurian marine sedimgntewcks with younger igneous
complexes. Extensive Palaeogene granite bedrocktitge the Mourne mountains to the
south-east, The advance of ice sheets and thetwatels over the last 100,000 years has
resulted in at least 80% of bedrock covered by Sigid deposits such as glacial till and
post-glacial alluvium and peat. In Northern Irelatige total amount of carbon stored in soils
such as peat is estimated to be 38@0Huiickshank et al. 1998; Keaney et al. 2013). This is
due to the relatively high carbon density of pead arganic-rich soils. Therefore, it is very
important to obtain best estimates of peat covea(proxy for soil carbon) to manage carbon
changes over time.

2. Materials and Methods

2.1. Sampling and data acquisition

The GSNI Tellus ground based geochemical survempteted between 2004 and 2006,
comprises 13,860 soil samples taken at a 20cm deptlected on a regular grid of one
sample site every 2Kn(Young and Donald 2013) following the G-BASE saimglregime

established by British Geological Survey (BGS).sTlprovides a spatial dataset with an



extensive suite of soil geochemical analysis. Tb# samples used in this paper were
analysed for 60 elements and inorganic compouniig ygessed pellet X-Ray Fluorescent
Spectrometry (XRF) using Wavelength Dispersive X&fectrometry (WD-XRF) and Energy
Dispersive/Polarised XRF Spectrometry (ED-XRF). Hagnpling and analysis regimes for
the geochemical surveys included in the Tellus &urare detailed in Smyth (2007) and
Young and Donald (2013).

A simplified bedrock classification was defined éason the scheme used by Rawlins et al.
(2012). This defined the rock types: gabbro, gmriasalt, andesite, acid volcanics, dykes,
psammite and semipelite, conglomerate, sandstihie, &renite, mudstone and limestone. A
second classification defined the rock types imterof their textural and then chemical

characteristics. The last scheme defined the Quertesuperficial deposits including peat.

2.2. Quantifying variability and dependence

Let us consider the proportions of theelements measured on one particular samms a
vector of D non-negative valueg, = [x,;,Xn2, ..., Xpp]. Consider a sample @i of these
vectors. The variance is the classical way of maéaguhe variability of each component,

N

1 N2

sz = mzl(x'” — xj) )
n=

where the mean value of tlieh variable is computed as

N
_ 1
Xj = NZ xnj.
n=1

The covariance between two variabiesdj

N
1 _ _
Sij = mZ(xni - xi)(xnj - Xj)

n=1
is often used to describe the co-dependence dinhevariables. But given that this quantity
has units (the product of the units of variableand j), most often the dimensionless
correlation coefficient;; = sl-j/(sl-sj) is reported. Variance, covariance and correlatiotine
D components can be arranged in two matrices,
S=|: =~ and R =

1 - rp
oo
2
Sp1 " Sp Tp1 1

called covariance matrix and correlation matrix.td&Nthat the correlation matrix coincides
with the covariance matrix of the standardized ssay,; = (x,; — X;)/Si;-

St " Sip

If we understand that each vectqr x,, ..., Xy represents a point on tiiedimensional real
spaceR?, then the vector of meaXs= [x,, X,, ..., Xp] represents the centre of gravity of the
cloud of points, and the covariance matrix is aiséed with an ellipsoid describing the shape
of the data cloud. This duality between mean vectmariance matrix and a geometric object
has been exploited to define robust alternativekeaclassical formulae given before. The so
called minimum determinant covariance (MCD) looks the smallest ellipsoid that contains
50% of the data, and delivers its associated meduevand covariance matrix as a robust
estimator of these statisticRdusseeuw and van Driessen, 1999; Filzmoser, Hron and
Reimann, 2009). Robust statistics have the propgerbe resistant to arbitrary contaminations
of a high proportion of observations: as it is defl, the MCD can admit contaminations in
less than 50% of the data. The method is equivateselecting that 50% plus one data that
are most probably non-contaminated, and filtermgrest of the observations by giving them



a weight of zero.

2.3. Principal component analysis (PCA)

Principal component analysis can be defined inrs¢weays. For the goals of this paper, it is
convenient to understand it as a description ofsthe, shape and orientation of the ellipsoid
associated with the covariance matfxor the correlation matriR (obtained with the
classical formulae or with the MCD procedure). Thisscription is obtained with the
eigenvectors{v,,v,, ...,vp} and eigenvaluegi,, 1,,...,Ap} of the matrix analysed. The
matrix V, containing the eigenvectors in columns, is calleelloadings matrix. The first
vector defines the largest principal axis of tHgsbid, and the direction of highest variability
of the data set. The second principal axis is linkethe second eigenvector, and so on. These
vectors form a new reference system, onto whighrégect both the observations and the axes
of the original variables. Because the new varsftleeprincipal components) are ordered in
decreasing variance, if we select the firstof them we will obtain the best rank
approximation to the true data skbég in the sense to produce the minimal distortiorhef
real distances observed in the original set ofaldess) (Eckart and Young, 1936). Moreover,
the last eigenvectors, those related to smallexneglues, define principal components the
scores of which have very low variance: these gralccomponents deserve some attention as
well, because they might provide insights on geasistant combinations of variables, in the
fashion of equilibrium constants.

2.5. Compositional data adaptions

In the case of compositional data, it has been iowed that covariance and correlation are
flawed measures of spread and codependence. Insteadhould analyse the data after a log-
ratio transformation (Aitchison, 1986). Many lodigatransformations have been proposed in
the literature, each having some advantages ambdiks(Aitchison, 1982; Aitchison, 1986;
Egozcue et. al 200Egozcue and Pawlowsky-Glahn, 2005). For the purpose ofghjser, we
use Aitchison’s centered logratio transformatidn) for PCA

X
clr(x) = IHW,

where these logarithms must be applied componesg-wilihis is the conventional choice in

exploratory applications of principal componentlgsia, because it allows us to keep track of

the individual original components whilst presegvithe multivariate relative scale of

compositional data (Pawlowsky-Glahn, Egozcue arldsEmabelgado, 2015; Ch. 5).

2.6. Graphical representation of PCA: the biplot

A very compact graphical representation of a datacan be obtained by plotting scatterplots
of the data on the first 2 or 3 eigenvectors of RIBA, together with the original axes. This is
called abiplot (Gabriel, 1971), and it can be based on eithebast or a classical estimate of:
(a) the covariance or (b) the correlation of rauwnponents, or alternatively (c) the covariance
of the clr-transformed composition. Its most ingtireg feature is the analogy on a biplot
between rays and variables: the length of eachsragughly proportional to the variance of
its associated variable, while the cosine of thgleuibetween two rays is an indicator of the
correlation coefficient between their associatedatdes. Moreover, these rules apply to the
links between arrow tips, which represent therdifference between two variables.

These general rules boil down, in the case of aance biplot of raw data, to the following:
(a.1) long rays typically represent the variablé whe largest average values, because of the
typical proportionality effect between theriance and mean in positive variables; (a.2)



parallel rays indicate variables that are well elated, positively if the rays point towards the
same direction, negatively otherwise; and (a.3) orthogonal rays indicate that the variables are
poorly correlated to uncorrelated. In the case cbraelation biplot of raw data, these criteria
are: (b.1) long rays typically represent variablesy well correlated with the 2 principal
components of the plot; and (b.2) parallel resp. (b.3) orthogonal rays indicate that the
variables are well resp. poorly correlated withreather. In the case of a covariance biplot of
log-ratio transformed data, we can say that: (th&)length of a link is proportional to the
variance of the simple log-ratio between the twmponents involved, hence coincident rays
(with very short links) indicate variables whicheahnighly poportional; (c.2) parallel links
(hence collinear variables) suggest subcomposititmminated by a single one-dimensional
process, i.e. where all simple log-ratios well correlated among them; (c.3) orthogonal links

on the other hand suggest that the two involvedrddigs (or subcompositions) are
uncorrelated. On a compositional biplot, not venycin attention is paid to the rays, as they
represent clr-transformed variables, which shoutd be confounded with the original
components. They still have some interpretabiisyjllustrated later in section 3.4.

All criteria of variability and correlation listeébove are actually just hints. Being a
projection, the biplot aims at best to capturefthese high-dimensional relations on a single
diagram or two. This will only be a realistic repeatation if the proportion of total variance
captured by the chosen principal components is leigbugh. In geological systems, the
experience of the authors suggests that above 6&Xptained variance, what biplot shows is
typically a good approximation to the real struetuin the data set. In the next sections, this
proportion of explained variance is always includlethe axes of each biplot.

PCA is properly defined for homogeneous, normaisiributed data from a single

population, i.e. where no groups or clusters oc@iherwise two sorts of variability are

merged: the inner variability of each group, and thariability between the groups. These
sources of variability are in general unrelategréper PCA should actually target the within-
group variability, which might obscured by the beem-groups variability. However, a biplot
can still be used for grouped data sets, albahiexploratory fashion only. In this case, it is
wise to track which observations correspond to egohip, in order to highlight systematic
differences between groups. If the groups do npeap properly merged in the biplot, then
the PCs rather relate to between-group differendese that a PCA biplot is not tailored to
highlight these differences. For this purpose, kiegd representations of discriminant
analysis should be more appropriate. This is howeggond the scope of this paper.

3. Results

3.1. PCA of raw data
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Figure 1 Comparison of biplots of the first 3 claakand robust principal components obtained fierraw composition o
major components, with an indication of the projporof explained variance.

The biplots of the first three PCs (Figure 1), bbttm a classical perspective and with a
robust approach, show a clear dominance of LOI,,SM30; and FgOs on the geochemical
variability within the subcomposition of major cooments. This is related to the well-known
proportionality effect, an (undesirable) positive correlation betweemtiean and the variance
of a positive variable (Figure 2). In both the siaal and robust approaches, PC1 compares
LOI to Si0,, while PC2 compares these two againsOAland FgOs. No clear structure can
be distinguished in PC3. With regard to the datud] a clear cut V-shape appears in all
cases, with the two sides of the V roughly orth@jdo the two most dominant variables in
each diagram: a composition would have to have theg&iOG, or LOI to fall beyond these
alignments.
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3.2. PCA of standardized data

The proportionality effect can be removed by statidang each variable. Figure 3 shows the
resulting biplots of the two first classical andust PCs. The most striking difference with
the raw biplots is that almost all variables inwsv show up now with significant
contributions to the biplot. In the classical ca®€l is a sort of contrast between LOI and the
rest of the major oxides, while PC2 is a contragivieen CaO-F©;-TiO,-MgO and SiG-
K20-N&O. Looking at the data cloud, and in particulacéotain subsets of data, it appears
that samples from peat-covered areas tend tol@igahe link between LOI and Si(Quite
clear differences can also be seen between thégussbf samples on basalts against those
from acidic magmatic rocks (granites, granodiorigesl acidic volcanic materials): basalts
concentrate along the axis formed by CaQ@dz€eliO,-MgO, while acidic materials
(especially granites and granodiorites) ratherrfadir the tips of SiEK,0-NaO. Other rocks

of typical acidic fingerprint (psammites and metdps, arenite-rich siliciclastics) fall as well
in positions near to the axes $iR,0-NgO and LOI.

The biplot of a robust PCA shows a very similarttyne, although this time PC1 appears to be
dominated by Si@against the rest of major oxides; no relevant differences exist between the
robust and classical versions of PC2. In effecsimilar preferential distribution of data
samples according to groups can be observed betihieetwo sets of biplots, namely with
peat concentrating on positive values of PC1 (high), basalts on negative values of PC2
(high CaO, FgDs, TiO,) and granites, granodiorites, psammites, metapekind siliciclastics
on positive PC2 (N, K;0, SiQ).
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Biplots of standardized components can be extetal@ttlude (standardized) trace elements.
These are shown in Figure 4. In this case, no f&egmit difference can be observed between
the robust and classical PCA results (except aewant mirroring of the PC1 axis), and
actually both diagrams are pretty much expansidrthase of Figure 3 by including more
elements following known (Rollinson, 1993) geochemhiassociations: volatiles (Cl, Br) with
LOI, “mafic” elements (Ni, Co, Cr, V, Zn, Y, Yb) Wi TiO,, MgO and Fg0s;, and “felsic”
elements (Rb, Ba, Cs, Sm, Ce, La) with®and KkO. CaO (and Sr) appears related to the
mafic component and strongly controlled by basathpositional variation.

It is as well worth mentioning that the standartima process did not remove the boundary
effects related to negative components: in theolspbf Figure 3 one can still observe clear
cut alignments of samples orthogonal to certaiovesrand in the direction opposite to the
arrow (TiG,, MgO or FegOs; in granites; NayO or LOI in basalts; K,O in limestones). One of
the inconveniences of boundary effects is thatrémilting cloud of dots does not bring
further insights beyond those provided by a terrthagram or a scatterplot of the variables
affected. This can be seen by comparing the pregeaiplots (Figure 1 and Figure 3) with
the color ternary diagrams of the online supplegntaterials (SM2).
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3.3. PCA of log-ratio transformed data

Applying a log-ratio transformation to the compmsidl data set has the advantage of
removing simultaneously the proportionality effaod the boundary effects, as can be seen in
Figure 5. In the case of a biplot based on clrdfammed data, one should look for groups of
variables falling together (e.g..®, NaO, SiQ,) and sets of collinear variables (CaO, MnO,
Fe,0Os, LOI). These patterns can be seen on the biplbtsoth classical and robust PCA.
Nearby arrows (KO, NaO, SiQ) suggest highly proportional variables: if two iadnles are
proportional, their log-ratio should be quasi canst i.e. show a very low variance. The
normalized log-ratio of Si®to NaO shows a variance of 0.09, while the normalizedritio

of K;O to NgO is 0.07. Whether these are “small enough” valoes be judged by
comparing these with other variance values of Hmaesdata set: for instance, PC1 and PC2
show variances of resp. 1.69 and 0.99 (Figure.®)between 10 and 24 larger that the log-
ratios between N®, K;O or SiQ. If several arrows are collinear, the variabiltythin the
subcomposition formed by these variables is higligcentrated along one single direction,
i.e. one single process (or constant combinationse¥eral processes) acts on those
components. This is the case of the subcompodi@a®, MnO, FgOs;, LOI]. That “single
process” is approximately described by the first ®Qhe clr-data recomputed within that
subcomposition (Table 1, Ternary diagrams SM3 iimersupplementary materials),

subPC1 = 0.754 In(LOI) — 0.603 In(MgO) — 0.244 In(Fe,05) + 0.093 In(Ca0).

Looking at the coefficients of this subcompositioR€1, the histograms of the scores of PC1,
subPC1 and the normalized log-ratio of MnO to LBig(Ure 6) makes it evident that these
three quantities are very similar, namely

1 LOI
PC1 = subPC1 = 0.707 In(LOI) — 0.707In(Mn0) = ﬁln Y

Interestingly, the link between LOI and MnO is rbiyg horizontal (Figure 5), i.e. quasi-
parallel to the classical PC1, and even quite aimd the robust PC2. As shown in Figure 6,




high values of that log-ratio tend to appear intpeaered areas. A similar relationship can be
found between the classical PC2, the robust PC1tankbg-ratio
1 Na,0
PC2(classic) ~ PC1(robust) =~ ﬁlnﬁ,
which appears to be controlled by the lithologysdis show negative values and more
quartz-rich rocks (granites and granodiorites, pades and metapelites, arenite rich
siliciclastic materials) show positive values.

dr data, classic PCA (1,2) peat GR Ps VA
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Figure 5 Biplots of the first two classical and web principal components (left diagrams) for thet@dnsformed majo
components, with 8 parallel plots for several groups of samples: peat covered areas; CC=limestone and calcareous
landscapes; GR = acidic magmatic rocks (granites and granodiorites); MB = basic magmatic rocks; PS = psammites and
metapelites; SC = siliciclastic rocks; VA = acidic volcanic rocks; VB = basic volcanic rocks (basalts). Extended legend and
color versions of these figures in the online sapm@ntary material.
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Figure 6 Histograms of the scores of the first 8@s, of the three PCs within the (quasi one-dinterad) subcompositior
[LOI, MnO, Fe0; CaO] and of the normalized log-ratios of Siend KO to NaO, all on the same scale and with
indication of variance of each case.

Table 1 Loadings (eigenvectors) and variances ifgajaes) of a classical clr-PCA within the subcosipon [CaO, MnO,
Fe0s, LOI.

PC1 PC2 PC3
LOI 0.754 0.425 0.037
MnO -0.603 0.444 0.435
FeOs -0.244 -0.084 -0.827
CaO 0.093 -0.785 0.355

variance 1.622 0.148 0.092
87 % 8% 5%
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Figure 7 Biplots of the classical and robust ppaticomponents (left diagrams, PC1-PC2 for thesatas PCA, PC1-PC2
PC3 for the robust PCA) for the clr-transformed olehcomposition, with 8 parallel plots for sevegabups of samples: peat
covered areas; CC=limestone and calcareous landscapes; GR = acidic magmatic rocks (granites and granodiorites); MB =
basic magmatic rocks; PS = psammites and metapelites; SC = siliciclastic rocks; VA = acidic volcanic rocks; VB = basic
volcanic rocks (basalts). Extended legend and c@osions of these figures in the online suppleamgnaterial.

3.4. PCA of log-ratio transformed major and trace elements

Having seen the potential of using the centeredrdtig transformation for PCA of major
components, we will proceed to study simultaneowdlyvariables included in Figure 2,
which span six orders of magnitude. The same ansformation can be used, without
treating the trace elements separately from th@m@mponents. Figure 7 summarizes the



biplots obtained with classical and robust PCA, ahdws similar patterns to the biplots of
major components. In the classical case, PC1 appede controlled by the presence/absence
of peat coverage and PC2 by lithology, while in thbust case these switch roles and PC1
follows lithology while PC2 indicates peat coveralylreover, we clearly see three groups of
variables,

» group A: Rb, KO, N&O, SiG,, Zr, La, Ba, Ce, Nb, Hf
e group B: Ni, MnO, Co, Cr, €3, V, MnO, Zn, TiQ
* group C: Cl, LOI, Br, I, Se, Cd

each group formed by relatively long arrows, caesily pointing towards diverging
directions. The robust PC1 (and the classical P€&#2) be seen as a contrast between
components of groups A and B, while robust PC2 taedclassical PC1) is dominated by the
elements of group C. When such configuration isnthua ternary diagram of the
subcomposition formed by the longest arrow of egobup usually describes the whole
variability exceptionally well. This is the casetbe subcomposition [Br, Ni, Rb] (Figure 8),
showing an increasing peat influence with incregqddn mg/kg, and a lithological influence
along the log-ratio of Rb mg/kg to Ni mg/kg.

Figure 8 Ternary diagrams of the subcomposition By Rb], for the whole data set and for subsasipompare with the
biplots of PC1 and PC2 on Figure 7.

Another useful characteristic of clr biplots is tlentification of linear dependence with
parallelism: the existence of two parallel linkggests that the log-ratios of the two pairs of
variables may be highly correlated; two orthogonal links suggest as well a lack of correlation
between the corresponding log-ratios. The linksvben pairs Br-Ni, CI-Cr, Sb-TiO2 and Cd-
MnO are quite parallel in all diagrams, and corogghngly, the log-ratios of these pairs are
highly correlated (Figure)9the same can be said of Rb-Zn, Cs-I and Cr-Ni. On the other
hand, Rb-Zn and Br-Ni are orthogonal in the bipletsd their log-ratios show a quasi-zero
correlation (p-value=0.03). Moreover, the 4 logeatof the first group appear to increase
towards peat-rich areas, while those of the setmgidatio seem more related to lithology.
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Figure 9 Scatterplots of some log-ratios of the position of major and trace elements, selectedusscaf showing parallel
or orthogonal links in the biplots on Figure 7 d@fidure 8. Color versions available in the onlinesien and supplementar
materials. Correlation coefficients and their agated p-value for the hypothesis of null correlatare included.
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4. Discussion

4.1. The potential of exploratory tools

In multivariate analysis, we can consider an irdlial observation containing variables as

a point in theD-dimensional real spade”. Then, a biplot is just a projection of the whole
cloud of data points (and of tiieaxes corresponding to each variable) onto a ceplane: in
particular, PCA biplots are chosen to maximize W#aeiance of the projected data cloud.
Along this idea, Harker diagrams are also proj@stionto a certain plane, chosen to filter out
(ignore, remove) all information regarding the othe— 2 variables. Thus, if we do not have
strong prior knowledge about the probable most @b projections, exploring a data set
would require visualizind (D — 1)/2 Harker diagrams, or just a handful of biplots. Hue
data set considered hei € 41), this could have required visualizing 820 Harkexgrams,
instead of the 11 biplots of Figs. 1, 3, 5 ando8ydve a first look at a data set without being
guided (and potentially biased) by prior concepion

The analysis of these biplots suggest that mothetariability is controlled by two factors,
lithology and peat coverage, with a relative impode that depends on the exact setting of
the analysis: the principal components clearly e@ssed with peat coverage represent
between 10% and 50% of the total variability (depeg on whether a robust or a non-robust
approach is taken); those clearly linked to lithology have a contribution to variability between
25%-50%.

That peat coverage exerts such a generalized sortjsnfluence on the soil geochemistry is
not a surprise. Besides LOI (associated with watet organic matter), peat coverage is
associated with relative enrichments in Cl andi®&rt ot in I), and to a second order with Se
(but not in heavy metal contaminants), as showthenrobust biplots of PC2 and PC3 (Figure
7). It has been suggested that peat bogs fed doyetmospheric deposition (ombrotrophic)
act as archives for many types of atmospheric @aests (Shotyk 1996). Depletion of Cr,
Cu, Ni and V in peat covered areas in Northermahd| as found by Mcllwaine et al. (2014)
has been linked to biogeochemical cycling of patdigt harmful elements within peat
(Novak et al. 2011).



It is to be expected that the influence of lithglag as important as peat coverage. It is more
striking that this influence can be summarized me @ingle principal component, mainly a
contrast between mafic- and felsic-related elemgpasticularly clearly seen in the robust
PC1 of Figure 7 explaining >50% of the robust cosifianal variability of 41 elements.

In addition, a clr biplot can be used to extraansadnteresting ternary diagrams (Br-Ni-RD,
CaO-MnO-FgOs-LOI) and log-ratio scatter plots, showing eithesod correlation (e.g.,
Br/Ni, Cl/Cr, Sb/TiQ and Cd/MnO) or lack of it (e.g., Rb/Zn vs. Br/Nifhese ratios
highlight again the interplay between variable peaverage and a lithology changing
between felsic-dominated and mafic-dominated.

4.2. Comparison of raw vs. log-ratio approaches

Data transformations play a determinant role in $trictures that biplots can show. A
blindfold application of conventional software wiflost often produce a PCA on standardized
data, or equivalently, a PCA of the correlation nmatFigure 3). A “no transformation” option
can be produced if the software allows treatingdbeariance matrix of raw data, although
the information that can be extracted from it ir@xely limited (Figure 1). This is because
often the variance (and covariances) of a positasgable scales with its mean value (Figure
2). Thus, the co-dependence structure between etemal be obscured by their abundances.
One could say that standardization cannot be aslaidée relations between major and trace
elements are sought. However, this also removesctmrast between highly varying
variables (i.e. strongly controlled by processesngcwithin the studied area) and roughly
constant ones (i.e. stable with respect to thoesegssses), as all elements are scaled by the
standardization to have a variance of one unit. iRstance, we would lose the fact that,
having the same mean, Pb is 10 times more varibaleCe as shown in Figure 2.

On the other hand, in the preceding sections we heproduced some of the arguments in
favour of applying the log-ratio framework of Aiisbn (1986) and co-workers. If the analyst
considers them relevant, the centered log-ratiestamation should be applied prior to the
calculations of PCA. This transformation will rengothe proportionality effect, allowing for
a covariance-based PCA without losing the differegiaitive variances of each element.

In the application presented, the exploratory powfethe resulting clr biplots was clearly
superior to that of raw or standardized biplotstiia relevant could be seen from raw
biplots, which were strongly affected by the prajmorality effect. In the standardized biplots
with only major elements, good relations betweenKNand between Fe-Mn-Ti, and an
orthogonality of these two groups were apparenteiicing the analysis to include trace
elements provided a picture where these elemerdsciate following known rules of

geochemical affinities, but no further insights dendrawn from them. The biplot (Figure 4)
shows a clear triangular structure where each wvagen can be identified as a mixture of
three groups of elements: one related to LOI ardties, one to elements typically enriched
in mafic rocks and one of elements associated f@igic rocks.

This structure of three groups of elements is pced again in the biplots generated with
the clr transformed data (Figure 5 and Figureh®ugih the associated triangular shape of the
cloud of samples is not easily recognized. Actydhg clr biplots do not show so clearly the
boundary effects of the preceding biplots. Instéad, groups can be seen: one dominated by
samples from peat-covered areas, and the othearhples from areas free of peat. Within the
(mostly) peat-free samples, no clear groupings lmaseen between the several lithologies,
rather a continuum of compositions along the féisafic axis is present (represented by a
log-ratio Rb/Ni). The biplots by lithologies showrorerging “peatification” paths from soils
that entirely reproduce the background lithologystds which do not keep any trace of this
background. This global picture as conveyed by thelti-elemental biplots can be



summarized as well in the ternary diagram Ni-Rb-Bwus, the %Br in this subcomposition
might be taken as a sort of peat penetration index.

According to the authors’ experience clr biplotsd astandardized biplots almost always
resemble each other, especially for geochemica dats with low to moderate variability.
However, the real power of clr biplots lies in thkility to suggest particular bivariate log-
ratio scatterplots and ternary diagrams where tdghrelation or absence of it can be
observed, and might be worth modelling and inteipge This ability is very limited for
standardized biplots. In other words, the authdvgays prefer clr biplots. Nevertheless,
producing one or two biplots for the two transfotimas is nowadays an easy task. Sceptical
readers are invited to explore their data sets loth approaches and compare results.

4.3. Therole of robust analyses

An analysis is said to be robust if it is not sémsito the presence of a small to moderate
number (less than 50%) of contaminated or erronsaugples. The robust methods used in
this contribution detect which samples are mostb@bdy non-contaminated and derive
estimates of mean values, variances and covaridrarasthis subset of the data. In the case
study presented here, it is appealing to consigeatification” as one such contamination
process, in which case the non-contaminated sanguekl be seen as reflections of the
lithological background. To assess the appropregenof this interpretation, the weights
allocated to each sample by a MCD covariance egtinveere compared with the information
available on peat coverage. Table 2 summarizesaliselute and relative frequencies of
samples from peat-covered areas that are considsrethminated (weight O, outlier) or
uncontaminated (weight 1, regular observation) byobust PCA analysis. The same
information is graphically conveyed in mosaic pSM4 of the online supplementary
materials. A robust analysis of the clr-transforndatha set considers 80% of the 931 samples
from peat regions to be anomalous. The 40% of #mpes from peat-free areas that are
considered anomalous as well might be relatedhergirocesses different from peat forming
mechanisms. Note that an analysis based on theastiined data does not deliver such a
clear cut picture of the association between zeegghits and peat coverage: actually, one
would even say that the weighting is rather indéeleen of the peat coverage in that case.

Table 2 Absolute frequency of co-occurrence of peaerage with weights of 0 or 1 in a robust analg$ the data set, in
the cases of clr-transformed data and standardiated Percentages are given by rows.

peat robustness weights
coverage 0 1 0 (%) 1 (%)
clr 0 2371 3620 39,6 60,4
1 73¢ 192 79,4 20,€
standardized ~ ° 2166 3825 36,2 63,8
417 514 44,¢ 55,2

In the case study presented here, the precedingidayations imply that the robust PCA
would focus on lithology controlled variations. Moas well that outliers (samples with
weight 0) are very apparent in the robust bipléigyre 10). Since they are not involved in
the choice of the projection, they tend to showyvwearked patterns, while regular samples
concentrate on a more or less circular cloud inntiédle of the diagram. Figure 10 (central
and right columns) display outliers (quite well m®@ponding to peat samples in Figure 7)
which appear to follow some sort of mixture lawvibetn the non-contaminated part of the
data set and a hypothetical pure peat composiéan thick peat cover), which would be very
rich in LOI, Br and CI. This concentrates on PC2 &3, given that PC1 is mostly a
lithological signal. This indicates the potentialdevelop these results further to provide an
improved method for estimating the extent of higinbon peat areas and organic-rich soils



using LOI, Br and ClI rather than based solely orl.l&nalysed Br, V and U from dry peat
cores, have been suggested as useful indicatorgeaf accumulation rate (Davis and
Wickham 1987). Chagué-Goff and Fyfe, (1996) suggkshat although ClI, | and Br were
probably first deposited as salts from sea sphay tvere subsequently incorporated within
the organic fraction of the peat. Biester et adlO@® showed that Cl, | and Br are transformed
to organohalogens during peat decomposition, amtharefore retained.
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Figure 10 clr biplots of Figure 7, distinguishingtween outliers and regular samples as classifigéorobust PCA.

4.4. About zeroes and values below the detection limit

The application of log-ratio methods suffer frorfuadamental problem when the data set has
values below the detection limit (BDLs). Numerigaljuite often these BDLs are replaced by
zero or by a small value: this practice does noplymany problem for the raw and
standardized approaches, but the logarithm of Ber@o, thus intractable. Conceptually, the
log-ratio methodology is based on assuming thatréevant changes within the data set
occur in terms of orders of magnitude (and not biscdute terms). Replacement by small
numbers becomes extremely dangerous then, as tiadilrty induced by the replaced values
can be larger than the variability from the parttlod data set that has been observed. The
formal treatment of zeroes in log-ratio methoda f&eld of ongoing research, and it will not
be discussed here. Interested readers can refédattin-Fernandez, Barcel6-Vidal and
Pawlowsky-Glahn (2003), Palarea-Albadalejo, MaRérmandez and Gémez-Garcia (2007),
van den Boogaart and Tolosana-Delgado (2013, Clor Palarea-Albaladejo and Martin-
Fernandez (2015). From a practical point of view,the sake of an exploratory analysis, the
following rule can be considered. For each elemétite number of zeros and BDLs is large
(say, around 50% of the sample or more), then grabably wiser to simply remove that
variable; on the other hand, if the proportion of BDLsS is smal, thisese values can be
replacedby the detection limit itself (van den Boogaart, Tolosana-Delgado and Bren,)2011
the resulting replaced sample should be prefetgntiaalysed with robust methods. No hard
threshold can be given on what is a “small propaitiof BDLs: practice, caution and



common sense are always required when dealingreqifaced data sets, no matter whether it
is one single lost value or half of the data set.

5. Conclusions

The biplot, a data-driven graphical representatibthe whole variability of a data set onto
two dimensions, has been shown to be a powerfubeadpry tool to understand the factors
controlling the variability in a data set. Suchlbtp are constructed on the basis of a PCA
(principal component analysis), either using the data, or else standardized or centered
logratio (clr)-transformed data sets. Raw datapome to both proportionality effects and
boundary effects, and should be utterly avoidean@irdized data are only prone to boundary
effects, while clr data are free from these digtgreffects. Furthermore, insights from this
study suggest that clr biplots and standardizebbtsivill be often quite similar, although clr
biplots convey more information about the differsptead of the variables considered and
can be used to select simple, powerful scattermois ternary diagrams for exploratory
analysis. In any case, both robust and classictiads could be used and results compared.

In the case study presented here, analysing cisfivaned data delivered far more powerful
insights than analysing raw or standardized datae Tobust PC1l can be taken as a
lithological index, describing the contrast betwé#ologies of mafic affinity (rich in Ca, Fe,
Ti, Mg, Ni, Co, Cr; basalts, gabbro and certain siliciclastic materials) and those of felsic
affinity (rich in Si, K, Na, Al, Rb, Zr, La, Cs, Ba; all other lithologies). Unsurprisingly, this
represents the most important control on the geuaa variability of the soils of the data set
if the influence of peat is removed. Following gtsis from both the classical and robust clr
PCA, the influence of peat might be quantifiablethg %Br within the subcomposition (Br,
Rb, Ni). Finally, it was found that a robust an@yis quite capable of detecting and filtering
out the samples from peat-covered areas (among sdingples not from peat areas), as peat-
affected samples are considered outliers by clusbimethods.
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* weget and interpret a multivariate exploratory analysis for ageochemical survey

» wecompare classica and robust covariances of raw, standardized and log-ratio data
* log-ratio robust principal component (rPC) analysis offers the most insights

» background rock geochemistry controls rPC1, simplified as|logratios Na/Ca or Rb/Ni
* pesat coverageisrelated to rPC2, to Br/(Br+Ni+Rb) and to the robustness weights



