
Runtime Support for Adaptive Power Capping on Heterogeneous
SoCs

Wu, Y., Nikolopoulos, D. S., & Woods, R. (2016). Runtime Support for Adaptive Power Capping on
Heterogeneous SoCs. In Proceedings of International Conference on Embedded Computer Systems:
Architecture, Modeling and Simulation (SAMOS XVI). Institute of Electrical and Electronics Engineers Inc..

Published in:
Proceedings of International Conference on Embedded Computer Systems: Architecture, Modeling and
Simulation (SAMOS XVI)

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
 © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74404244?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/runtime-support-for-adaptive-power-capping-on-heterogeneous-socs(ce58ea15-c11a-450f-baa7-a3227aff1db9).html

Runtime Support for Adaptive Power Capping on
Heterogeneous SoCs

Yun Wu
School of Electrical, Electronic

and Computer Science
Queen’s University Belfast
Belfast, United Kingdom
Email: yun.wu@qub.ac.uk

Dimitrios S. Nikolopoulos
School of Electrical, Electronic

and Computer Science
Queen’s University Belfast
Belfast, United Kingdom

Email: d.nikolopoulos@qub.ac.uk

Roger Woods
School of Electrical, Electronic

and Computer Science
Queen’s University Belfast
Belfast, United Kingdom

Email: r.woods@qub.ac.uk

Abstract—Power capping is a fundamental method for re-
ducing the energy consumption of a wide range of modern
computing environments, ranging from mobile embedded sys-
tems to datacentres. Unfortunately, maximising performance and
system efficiency under static power caps remains challenging,
while maximising performance under dynamic power caps has
been largely unexplored. We present an adaptive power capping
method that reduces the power consumption and maximizes the
performance of heterogeneous SoCs for mobile and server plat-
forms. Our technique combines power capping with coordinated
DVFS, data partitioning and core allocations on a heterogeneous
SoC with ARM processors and FPGA resources. We design our
framework as a run-time system based on OpenMP and OpenCL
to utilise the heterogeneous resources. We evaluate it through
five data-parallel benchmarks on the Xilinx SoC which allows
fully voltage and frequency control. Our experiments show a
significant performance boost of 30% under dynamic power caps
with concurrent execution on ARM and FPGA, compared to a
naive separate approach.

Index Terms—OpenCL; ARM; FPGA; Power Capping; DVFS;
Streaming; Data Partition

I. INTRODUCTION

Energy consumption is the most significant limitation of
modern servers for high-performance and cloud computing.
Despite advances in heterogeneous systems architecture and
programming support, effective management of the limited
power and energy resources available to servers remains a
key challenge [21]. Recently, the server market witnesses an
increased penetration of embedded heterogeneous SoCs as
server substrates. Such solutions are becoming attractive in
both industry and academic settings [11]. For example, ARM-
based SoCs with Field-Programmable Gate Array (FPGA)
logic have shown significant advantages in power consumption
and efficiency in executing highly parallel computation [14].
Other examples of the efficient use of heterogeneous SoCs in
server setups are the ZCluster [18] and Zedwulf [19], which
improves performance over similar clusters based solely on
either ARM CPUs or FPGA enabling elasticity to trade power
with performance. Compared to commodity servers, these SoC
solutions improve energy-efficiency out of the box. However,
optimal use of the limited power resources of these SoCs
requires significant involvement from software, which is the
problem that we investigate in this paper.

By restricting the peak power consumption of a compute
node, power capping is a fundamental technique to achieve
better energy efficiency on servers [17]. Largely based on
Dynamic Voltage-Frequency Scaling (DVFS), power capping
has been widely adopted for homogeneous systems [17] [8]
while recent work on heterogeneous systems with CPUs and
GPGPUs system has shown good potential from power cap-
ping on such systems without compromising performance [16].
For a fixed, static power cap set on a system, performance
can be maximised by controlling the application degree of
parallelism [7], controlling voltage & frequency, or optimising
the sharing of hardware resources [12]. Our own earlier
work [25] has demonstrated performance optimisation under
fixed power caps hybrid ARM/FPGA SoCs. Unfortunately,
static power capping is insufficient as it fails to capture
workload variation that enable elastic allocation and allocation
of resources for minimising energy consumption. Furthermore,
prior work on power capping for heterogeneous platforms
assumed workload allocations that leveraged a single type
of computational resources (e.g. ARM or FPGA), instead of
dynamic partitioning and simultaneous execution of workload
tasks on all heterogeneous resources.

In this work, we propose a new adaptive power capping
technique for OpenCL kernels on heterogeneous SoC-based
servers based on ARM and FPGA accelerators. By using
OpenMP as a higher-level abstraction for orchestrating the par-
titioning and concurrent execution of OpenCL kernels between
hard cores and reconfigurable accelerators, we combine DVFS,
thread control and data partitioning, to maximise performance
under an adaptive constraint. Specifically, this paper makes the
following contributions:

1) A run-time system of both hardware and software
framework with concurrent OpenCL streaming execution
model for hybrid ARM/FPGA SoCs.

2) An adaptive power capping method at run-time based
on combination of DVFS, data partitioning and resource
allocation.

3) An experimental campaign of adaptive power capped
performance optimisation with five applications on a
commercial Xilinx Zynq platform, showing up to 30%

performance improvement under a dynamic power cap,
also scaled proportionally to the power cap.

The rest of this paper is organised as follows. Section II in-
vestigates related works. The proposed hardware and software
frameworks are introduced in Section III. Our adaptive power
capping method is introduced in Section IV, along with our
method for power measurement and modeling. We present the
implementation and experimental evaluation of our works in
Section V. Section VI summaries our findings.

II. BACKGROUND

High performance computing clusters and datacentres are
using increasingly more embedded systems components and
software methods to reduce their power draw and cooling
costs [6], [15]. Unfortunately, common techniques to reduce
power draw, such as power scaling of hardware components,
power capping and duty cycling come at a performance
cost [22].

Heterogeneous SoCs used in embedded systems have gained
traction as building components of high performance comput-
ing systems [11]. Research on the use of ARM processors
in cloud datacentres has demonstrated significant advantages
in energy efficiency compared to other architectures [24].
Low-power ARM processors achieve better energy efficiency
than well provisioned Intel processors designed for the server
market [24] [20].

Systems based on FPGAs have also achieved higher energy
efficiency than both general-purpose CPUs and Graphics Pro-
cessing Units (GPUs) [23], in a range of applications where
algorithms can both tolerate and leverage variable precision.
The integration of FPGA fabrics with general purpose pro-
cessors and the advent of high-level parallel programming
languages as hardware synthesis tools have also improved
substantially the programmability of systems with FPGAs.
As an example, the Xilinx Zynq platform boasts an ARM
processor for running Linux and common software stacks
and Programmable Logic (PL) for acceleration. The platform
supports data transmission through the AMBA AXI bus into
the FPGA fabric [26]. This allows for efficient and workload-
specific designs of accelerator-enabled servers and mobile
systems [9]. Clusters of hybrid ARM-FPGA SoCs using ARM
processors as a data transfer controller for distributed FPGA
processing such as the ZCluster, are also beginning to emerge
and demonstrate superior performance than homogeneous
clusters for data-intensive applications by elasticity, e.g. based
on Hadoop [18]. Zedwulf is another SoC cluster which allows
exploration of the performance-power trade-off for sparse
graph applications [19].

Power capping is a common and widely used power man-
agement method by maintaining the peak power consump-
tion under a hard bound and allocating power capacity for
either single components or entire platforms according to
dynamic workload characteristics [10]. It can improve energy
efficiency and reduce cost of ownership if system software
is aware of and can achieve high performance under power

constraints [17]. By adapting the power capping at the run-
time, the adaptive power capping can deal with various power
cap responsive to the system variation [13]. In homogeneous
nodes and clusters, DVFS has been well investigated and
established as a method to maintain power caps and improve
energy-efficiency [17] [8]. Recent work on heterogeneous
CPU-GPGPU systems has demonstrated power capping is
viable on heterogeneous platforms via workload allocation be-
tween processors of different architectures [16]. Other adaptive
techniques that maximize the performance under power caps
include core allocation via thread packing or scheduling [7]
and hardware resource management on multi-core processors
in homogeneous systems [12]. Figure 1 shows the taxonomy
of existing adaptive power capping techniques.

Adaptive Power Capping

Thread Reduction/
Packing DVFSResource

Limitation/Sharing

Homogeneous Heterogeneous

Task
Mapping

Fig. 1: Taxonomy of Adaptive Power Capping Techniques

Power capping on heterogeneous ARM-FPGA SoCs was
also studied in our earlier work [25], where we used task
mapping and DVFS either exclusively on ARM processors or
exclusively on the FPGA. Our prior work did not exploit the
possibility of power capping adapting kernel distribution with
data partition and concurrent execution across ARM/FPGA
components. Such a distribution would seemingly be feasi-
ble in software with parallel programming languages such
as OpenCL. However, despite the release of toolkits from
Xilinx and Altera to support OpenCL on PCI-e based FPGAs,
these toolkits are designed based on Hardware Description
Language (HDL) compiler and do not support any run-time
power management [4] [27]. In this work we design and
implement a new adaptive run-time systems which enables
performance optimisation under power caps, via distributing
data and kernel execution between hard cores and FPGAs.

III. HARDWARE AND SOFTWARE DEPLOYMENT

We propose both new hardware and new software infras-
tructure to achieve performance optimisation under adaptive
power caps on heterogeneous SoCs. Our framework comprises
streaming accelerators of OpenCL kernels on the Xilinx Zynq
PL, OpenCL device drivers and DVFS firmware for power
management on both the Processing System (PS), ARM proc,
and PL. By further combining OpenCL and OpenMP, we
can achieve coordinated execution across all computational
resources of the Zynq at run-time.

A. Hardware Deployment

Figure 2 shows the proposed hardware infrastructure of
power capping using the streaming accelerators on PL.

PS

ARM

L1

On-Chip
Memory

L2

DRAM
Controller

D
D
R3
 M
e
m
o
r
y

PL

D
M
A

ARM

L1

IIC
Peripherals

HP

C
o
mp

u
te

Un

i
t

C
om

p
ut

e

Un

i
t

...

...

GP

SDIO

Fig. 2: Power Capping Hardware Infrastructure

On the PS side, the AXI Master General Port (MGP) is
configured for writing data from the PS to the PL side,
while the AXI Slave interface (High-Performance Port (HP))
is configured for transmitting data from the PL to the PS side.
The I2C peripheral I/O is configured to enable PS side PMBus
access while the SD peripheral I/O is configured to allow
Linux booting and data preservation through an SD card.

On the PL side, accelerators with multiple processing units
(PU) are generated for different application kernels. This is
achieved by generating multiple instances of OpenCL kernels
with a streaming FIFO interface through the Vivado 2014.3
toolset. We generate varying numbers of PUs for each kernel,
which is configured to execute on the PL through the OpenCL
device driver. More specifically, we produce kernel versions
with varying input block sizes for streaming data (e.g. 16, 64
and 256 bytes) and with varying data partitioning between the
PS and the PL memories, under the constraint that these meet
the power cap.

Our work aims at more efficient power management tech-
niques on hybrid processor/FPGA platforms. We do not ex-
haustively optimize application design on the FPGA. We
use the generic floating-point OpenCL kernel for generating
accelerators on the Zynq PL through the Xilinx Vivado HLS.
This process achieves satisfactory quality for small scale
hardware accelerator design. Figure 3 illustrates an example
of the automatic accelerator code generating process for the
Xilinx Vivado HLS: 1) Assuming the input and output are
divided for n PUs, the OpenCL kernel is transformed into
C code with streaming pragma; 2) Multiple instance of C
code with streaming pragma is combined into one for generate
multiple PUs inside the accelerator.

The generated Hardware Description Language (HDL) from
HLS is packed into an IP block for the Vivado synthesis tool.
By connecting the AXI DMA to the accelerator, it is mapped
to a fixed address which allows the PS to drive the computation
by writing data to AXI slave FIFO and reading data from the
AXI master FIFO through HP back to the ARM processor. The
Vivado script helps automate the process at compile-time for
each benchmark with a variable number of PUs and streaming
data size, e.g. input size LEN1 and output size LEN2 shown

in Figure 3, where the OpenCL kernel is transformed into
the input C code for Vivado HLS with pragma of streaming
interface and multiple accelerators are instantiated.

#pragma OPENCL EXTENSION ...
__kernel void func(

global const *a,
global const *b,
...){

 int ind = get_global_id(0);
 …
}

void func(
float data_in[LEN1/n],
float data_out[LEN2/n]
){

#pragma HLS INTERFACE axis register port=data_out
#pragma HLS INTERFACE axis register port=data_in
 …
}

void func(
float data_in[LEN1],
float data_out[LEN2]
){

#pragma HLS INTERFACE axis register port=data_out
#pragma HLS INTERFACE axis register port=data_in

...
for(i=0;i<LEN1/n;i++){

data_in_1[i] = data_in[i*n];
…
data_in_n[i] = data_in[i*n+n-1];

}
void func_1 (data_in_1, data_out_1);
...
void func_n (data_in_n, data_out_n);
...
for(i=0;i<LEN2/n;i++){

data_out[i*n] = data_out_1[i];
…
data_out[i*n+n-1] = data_out_n[i];

}
}

Fig. 3: Streaming Accelerator Code Generation Example

We note that all the generated accelerators are processed
at compile-time which produces bit files for the PL config-
uration. These bit files are saved on an SD card with an
identity of kernel name and input data size, for later run-
time reconfiguration based on data partitioning choices made
by our framework. The resource utilization data and clock
performance from Table II to VI are also recorded as plain
text which is read at run-time for power and energy estimation
of the PL.

B. Software Deployment

The proposed software infrastructure includes coordinated
execution of OpenCL workgroups across the SoC and power
management for improving performance under power caps.

1) Coordinated OpenCL Execution: We use OpenCL to
support coordinated parallel execution across the PS and
PL resources of the Zynq. We use the open-source PoCL
library [3] and OpenMP library [2] constructs to orchestrate
the distribution of OpenCL workgroups between the PS and
the PL. We specifically use OpenMP to parallelize the kernel
queuing loop for each OpenCL device in the platform. Figure 4
shows the execution model combining OpenCL and OpenMP
on the Zynq based SoC.

OpenMP

PoCL
Kernel

PS PL

Fig. 4: Coordinated Execution Model

In the PoCL implementation, we use multi-threading on the
PS side to implement naive OpenCL while using a loadable

OpenCL device driver based on PoCL for the streaming accel-
erator on the PL, including the HP and DMA interfacing. With
this device driver, the kernel I/O arguments are aggregated
into a serial data stream to send or receive from the PL
accelerator as an OpenCL buffer before or after the kernel
queuing. Figure 5 illustrates the device driver for OpenCL
buffering and execution on streaming accelerators.

STREAM
FPGA

ACCELERATOR

P
U
1

P
U
2

P
U
n

...

OpenCL Write
Buffer

OpenCL Read
Buffer

OpenCL
Execution

Input 1

Input 2

Input n

...

Onput 1

Onput 2

Onput m

Fig. 5: OpenCL Execution on Streaming Accelerator

Notice that since there is no real kernel instruction generated
for PL, the corresponding kernel compilation at run-time is a
NULL function. As PL streaming accelerator is synthesized
from Xilinx Vivado HLS, the stream data FIFO is utilized
as I/O memory interface. Hence, the OpenCL memory is
allocated on main Double Data Rate SDRAM (DDR) memory,
where the generic OpenCL memory allocation function works
for the PL.

With OpenCL support available on both the PS and the PL,
multiple kernel workgroups can be concurrently queued on all
computational components of the Zynq using OpenMP loops.
We also use OpenMP critical sections to protect the OpenCL
buffer from concurrent writers from both the PS and the PL.

2) Power and Performance Management: To simultane-
ously scale the power and performance on the PS and the PL,
we built a custom Linux kernel to allow more than the nominal
frequency tuning steps of the Zynq platform, specifically set
to ten steps as [112, 134, 149, 167, 191, 223, 267, 334, 445, 667
] Mhz. This is achieved by searching and recording all
voltage and frequency setting values of the Zynq SoC between
the maximum and minimum nominal frequencies. We add a
PMBus driver to record power samples from the PS through
the sysfs interface. We have also developed an I2C scaling
interface for both the PS and the PL, to enable voltage tuning
ranging from 0.86 to 1.00 V olt with fine-grain 0.02 V olt
intervals. By choosing a different I2C page address of power
rail, we can control DVFS of both the PS and the PL on the
PS side.

To support power modeling of computational kernels for
the purpose of power capping, we also obtain detailed hard-
ware event rates for OpenCL kernel execution, including
cycle/instruction rates and cache and memory accesses and
misses at run-time. We achieve this by enabling the ARM
coprocessor register 15 [5] from userspace and configuring

cp15 inline assembly in the Linux kernel as a loadable
kernel module. This module is loaded at the beginning of
a profiling session and unloaded at the end of a profiling
session. Performance information is obtained by the inline
assembly code via accessing the ARM Performance Monitor
Unit (PMU). The code for this is inserted into the OpenCL
kernel at run-time in order to profile both kernel scheduling
(queuing, data transfers) and kernel execution performance.
By combining power estimation and performance profiling at
run-time, we directly deduce energy consumption.

IV. ADAPTIVE POWER CAPPING

A. Overview
We model power and energy consumption of the system

and propose a process to adapt the power cap at runtime by
modifying the partitioning of data between the PS and PL,
while also dynamically reconfiguring the PL to tune its buffer
size and PU number. Figure 6 illustrates our adaptive power
capping run-time system for the Zynq SoC.

OpenCL
Arguments

Power Capping
Arguments

PMU Profiling

 OpenCL Run-
Time Profiling

OpenCL Kernel
Profiling

Cap & Part

Data
Partitioning

Resource
Allocation

Energy
Estimation

Power
Estimation

Co
m

pi
le

-T
im

e
Da

ta
ba

se

Execution
OpenCL

Execution DVFS

Output Data

Fig. 6: Adaptive Power Capping Run-Time

The run-time involves three major steps. First, the OpenCL
operational power on both PS and PL are estimated before
workload execution based on compile-time power modeling
and run-time PMU profiling. To reduce the PMU profiling
overhead at run-time, the kernel is only executed once and the
real-time performance is estimated based on the kernel execu-
tion rate calculated and OpenCL workgroup size. Following
this step, we estimate the power consumption of a kernel on the
PS or a PL with a varying number of PUs, and select a DVFS
operating point for both the PS and PL that keeps overall
power under the cap. By configuring the hardware resources

of the PL, we evaluate alternative data partitioning between
PS and PL, to achieve the best performance under the power
cap. Finally, both PS and PL are scaled at the desired DVFS
operating points while the desired distribution between the PS
and PL is achieved via the OpenCL Application Programming
Interface (API) of our developed framework.

B. Power Estimation

Power estimation is necessary for evaluating the impact
of DVFS and data partitioning on power consumption. We
propose a trained power model at compile-time and deployed
using additional run-time information to estimate the power
consumption. This is achieved through both compile-time and
run-time profiling where the linear regression is adopted to
generate the model.

Five benchmarks with different data size as well as different
PU number are adopted as the workload for both PS and
PL. At compile-time, we use linear regression to obtain a
simple model for run-time average power estimation. Figure 7
illustrates the compile-time power profiling flow.

PS

Instruction
Profiling

System
profiling

DVFS

Linear Regression Modeling

PL

Static
Profiling

Dynamic
profiling

DVFS

Fig. 7: Compile-Time Power Profiling and Modeling

We estimate PS power (P
ps

) as the sum of Operating
system (OS) power consumption (P

os

) and workload power
consumption (P

workload

) with input from system profiling and
instruction profiling, shown in Figure 7. The OS power is
modeled when no workload runs in the system, while the
workload power is modeled by running different workloads
with variation in their instruction mixes. Equation 1 and
Equation 2 depict the both modeling formulas.

P
os

= 154.23 + 571.48 · v2
ps

�510.95 · v
ps

+ 0.173 · v2
ps

· f
ps

(1)

P
workload

= � · v2 · f · IPC
+(P

alu

· r
alu

+ P
fpu

· r
fpu

+P
neon

· r
neon

+ P
mem

· r
mem

)

(2)

where P
alu

,P
fpu

,P
neon

,P
mem

correspond to the power con-
sumption of different instruction types, IPC is instructions per
cycle, and r

alu

,r
fpu

,r
neon

,r
mem

are ratios of each instruction
type to the total number of instructions, which are calculated
through PMU profiling for both kernel queuing and kernel
execution.

Instruction power for ALU, FPU, NEON, and memory
hierarchy is obtained from Equation 3.

P
inst

= ↵ · v2
ps

· f
ps

+ � · v
ps

(3)

where v
ps

is the voltage in V , f
ps

is the frequency in MHz
and corresponding ↵ and � for different instruction types are
given in Table I

TABLE I: Instruction Power Model Polynomials

Resource ↵ �
alu 0.149 0.270

FPU 0.112 -2.740
neon 0.135 -3.840

Memory 0.718 4.900

We estimate PL power consumption as a sum of idle
power and dynamic power, obtained from static profiling
and dynamic profiling respectively (Figure 7). We use linear
regression of the synthesized information, e.g. resource uti-
lization and clocking rate, as shown in Equation 4

P
pl

= v2
pl

· (f
pl

) · ('1 · rbram + '2 · rlut + '3 · rdsp)
+v

pl

· (f
pl

) · (�1 · rbram + �2 · rlut + �3 · rdsp)
+P

idle

(4)
where r

bram

, r
lut

, and r
dsp

are the resource utilization ratios
of block ram, look-up-table and DSP48e. The polynomials
'1�3 and �1�3 are for dynamic power estimation related to
specific design at run-time. P

idle

, as shown in Equation 5, is
the PL idle power consumption when the accelerator is not
activated by data streaming:

P
idle

= �1 · rbram + �2 · rlut + �3 · rdsp + 26.598 (5)

where �1�3 are polynomials of various resource utilization to
estimate P

idle

at run-time.
At run-time we obtain PMU information of both the

OpenCL API and kernel executions for the polynomials in
power model (Equation 2) built at compile-time. We adopt the
simple fitting of Equation 4 by reading a saved PL resource
utilization value. Through estimating the average power for
both PS and PL at run-time for OpenCL kernels the energy
consumption is obtained by integrating power and execution
time.

C. Adaptive Capping
We execute the OpenCL kernel using data-level parallelism

by partitioning the kernel between PS and PL. The term data
size indicates the streaming data block size used to transfer
data between PS and PL while the number of PUs indicates
the number of instantiated computational units used for the
part of the kernel executed on the PL.

For a given peak power level, P
cap

, set by the system
designer or administrator, our run-time adapts DVFS settings
to data partitioning between PS and PL and to the choice of
different numbers of PUs on the PL. Equation 6 shows the
formulated adaptive power capping problem using non-linear
programming.
8
<

:

P
ps

(F
ps

, V
ps

, IPC
ps

, D
ps

) + P
pl

(F
pl

, V
pl

, R,D
pl

) P
cap

minP
ps

· T
ps

+ P
pl

· T
pl

minmax(T
ps

, T
pl

)

(6)

where P
ps

and P
pl

are power model functions for the PS and
PL, D is the input data partition size corresponding to the
implemented resource allocation on the PL, F is frequency,
V is voltage, IPC is the instructions per cycle, R is the
PL resource utilization described in Section III, T is the
executing time calculated by cycle over frequency and P

cap

is
the capping threshold.

Algorithm 1 describes the entire adaptive power capping
process after run-time PMU profiling. |SIZE| is the cardi-
nality of the set of all data size options. We do not support
arbitrary data partitioning due to the explosive synthesis time
for PL implementation. We support a fixed set of data buffer
size opions instead. INST and CY C are the instruction and
cycle count of both PS and PL execution as recorded by
the PMU. By involving the APMonitor Optimization Suite
(APM) [1], the Cap & Part algorithm behaves as follows:

Algorithm 1: Cap & Part
Data: SIZE, P

ps

, P
pl

, INST , CY C, R, V , F ,
P
cap

, D
ps

, D
pl

Result: PT , V F
1 begin
2 PT � ;, V F � ;, T � ;
3 for j 1 to |SIZE| do
4 D

pl

 SIZE
5 for i 1 to |D

pl

| do
6 D

ps

(i) � SIZE
j

�D
pl

(i)
7 if D

ps

(i) � 0 then
8 (vf , flag) = APM(P

ps

, P
pl

, INST ,
CY C, R, V , F , D

ps

(i), D
pl

(i), P
cap

)
9 if flag is true then

10 pf
ps

= D
ps

(i)/(CY C
ps

⇤ f
ps

),
f
ps

2 vf
11 pf

pl

= D
pl

(i)/(CY C
pl

⇤ f
pl

),
f
pl

2 vf
12 pf = min {pf

ps

, pf
pl

}
13 PF = PF [pf
14 PT = PT [{D

ps

(i), D
pl

(i)}
15 V F = V F [vf
16 end
17 end
18 end
19 end
20 ind = max (PF)

21 PT = PT
ind

, V F = V F
ind

22 end

By involving the APMonitor Optimization Suite (APM) [1],
the Cap & Part algorithm behave as:

1) Firstly, three empty sets, PF , V F and PT , are created
to record performance, DVFS operating point and data
partition. The SIZE is assigned to D

pl

and each time
the D

ps

(i) is obtained by subtracting D
pl

(i) from the
current overall data size SIZE

j

, which enables ergodic
of all partitioning combinations between PS and PL.

The data partition is based on OpenCL workgroup as
shown Figure 8, where x, y, z represents the size of
each workgroup dimension and the partitioned size is of
subscript

PS

and
PL

. We support one dimension dynamic
partition at the moment.

...

... ...

z

x

y

{xPS, xPL}
{yPS, yPL}
{zPS, zPL}{p

PS
, p

PL
}

OpenCL Workgroup

Fig. 8: OpenCL Workgroup Partitioning

2) The operating point of PS and PL for a given data
partitioning is written into a nonlinear programming
model file. An APM modeling template for APM solver
is created which consists of:

• Parameters section with coefficients in Equation 1-5.
• Variables section with the range of voltage, frequency

and data size.
• Equation section with objective function in Equa-

tion 6.
Having updated the model parameter with the input of
function APM(•), we call the APM solver at run-time
to produce a flag of solver success and DVFS options vf
for the PS and the PL.

3) If the flag indicates successful solution, the data parti-
tioning is recorded to set PT as well as DVFS options.
The performance pf is calculated by partitioned data per
cycle and recorded in set PF .

4) Finally, after going through all the data partition com-
binations, the performance of all the candidates in PF
is compared and the index of maximum performance is
used to select the corresponding data partition in PT and
DVFS operating point in V F .

V. EXPERIMENTS

We use five benchmark kernels as use cases to demonstrate
our approach: Binomial Tree Vector computation (BT), FIR
Filter (FF), Image Convolution (IC), Sparse Matrix-Vector
Multiplication (SPMV), and Square Matrix Multiplication
(MM). For BT the data size is the vector length; for FIR
and IM it is the pixel number where each pixel is of size
7; for MM and SPMV it is the matrix size. We use a different
number of PUs on the PL to process the same amount of data
in parallel. The number of PUs for a given processing data size
leads to varying resource utilization, performance and power
consumptions on the PL. We used the XC7Z020 CLG484 -
1 AP SoC on Zynq 702 evaluation board with hardware and
software details listed in Section III. We set power caps to the
sum of both PS and PL power ranging from 300 to 600 mW
with 100 mW intervals. The voltage is tuned between 0.86 V
and 1.00 V with 0.02 V intervals.

A. Accelerator Implementation
Tables II-VI illustrate the resource utilization and perfor-

mance of various applications kernels on the PL. Using our
software support, the number of PUs and the streaming data
block size are adapted to the power cap at run-time.

TABLE II: Binomial Tree Vector Addition Resource Utiliza-
tion

Number Size LUT BRAM DSP48 Clock (MHz)

1
16 2662 (5.00%) 6 (2.14%) 25 (11.36%) 150.51
64 2687 (5.05%) 6 (2.14%) 25 (11.36%) 164.47
256 2723 (5.11%) 6 (2.14%) 25 (11.36%) 124.95

4
16 10727 (20.16%) 24 (8.57%) 100 (45.45%) 164.47
64 10769 (8.57%) 24 (8.57%) 100 (45.45%) 169.29
256 10827 (20.35%) 36 (12.86%) 100 (45.45%) 144.51

8
16 21053 (39.57) 40 (14.29%) 200 (90.9%) 167.17
64 21128 (39.71%) 44 (8.57%) 200 (90.9%) 175.93
256 21215 (39.88%) 72 (12.86%) 200 (90.9%) 170.5

TABLE III: FIR Filter Resource Utilization
Number Size LUT BRAM DSP48 Clock (MHz)

1
16 7893 (14.84%) 2 (0.72%) 9 (4.09%) 170.91
64 7924 (14.89%) 5 (1.78%) 9 (4.09%) 170.09
256 7955 (14.95%) 18 (6.43%) 9 (4.09%) 151.54

2
16 15667 (29.45%) 3 (1.07%) 18 (8.18%) 169.58
64 15702 (29.52%) 9 (3.21%) 18 (8.18%) 166.78
256 16151 (20.35%) 36 (12.86%) 18 (8.18%) 145.45

4
16 31340 (58.91%) 5 (1.79%) 36 (16.36%) 165.26
64 31386 (58.99%) 18 (6.43%) 36 (16.36%) 168.43
256 32261 (60.64%) 72 (25.71%) 36 (16.36%) 151.63

TABLE IV: Image Convolution Resource Utilization
Number Size LUT BRAM DSP48 Clock

1
16 1213 (2.28%) 1 (0.35%) 3 (1.36%) 164.66
80 1204 (14.89%) 4 (1.42%) 3 (1.36%) 147.28

4
16 4599 (8.64%) 7 (2.5%) 12 (5.45%) 176.03
80 4641 (8.72%) 11 (3.93%) 12 (5.45%) 169.06

16
16 18448 (34.67%) 17 (6.07%) 48 (21.81%) 171.29
80 18643 (35.04%) 41 (14.64%) 48 (21.81%) 157.41

TABLE V: Sparse Matrix Vector Resource Utilization
Number Size LUT BRAM DSP48 Clock(MHz)

1
16 3251 (6.11%) 6 (2.14%) 14 (6.36%) 163.37
64 3670 (6.89%) 8 (2.85%) 14 (6.36%) 167.67
256 5079 (9.55%) 8 (2.85%) 14 (6.36%) 140.47

4
16 11645 (21.89%) 6 (2.14%) 56 (25.45%) 169.41
64 11637 (21.87%) 8 (2.85%) 56 (25.45%) 169.18
256 12045 (22.64%) 8 (2.85%) 56 (25.45%) 143.27

8
16 23745 (44.63%) 10 (3.57%) 112 (50.9%) 142.17
64 23877 (44.88%) 10 (3.57%) 112 (50.9%) 143.67
256 24297 (45.67%) 10 (3.57%) 112 (50.9%) 128.07

TABLE VI: Matrix Multiplication Resource Utilization
Number Size LUT BRAM DSP48 Clock (MHz)

1
4 1223 (2.29%) 1 (0.35%) 3 (1.36%) 168.52

16 1107 (2.08%) 3 (1.07%) 3 (1.36%) 166.25
64 2689 (5.05%) 9 (3.93%) 3 (1.36%) 142.49

4
4 2493 (4.68%) 1 (0.36%) 12 (5.45%) 146.18

16 2892 (5.43%) 3 (1.07%) 12 (5.45%) 152.49
64 9016 (16.94%) 11 (3.93%) 12 (5.45%) 126.79

8
16 5524 (10.38%) 3 (1.07%) 24 (10.9%) 143.08
64 7243 (13.61%) 9 (3.21%) 24 (10.9%) 121.59

The floating-point implementation of all five benchmarks
maintains relatively high performance with a clock rate of
around 150 MHz. The overall resource utilization, ranging
from 2� 45% of LUTs, 1� 25% of BRAM and 1� 90% of
DSP, covers the variety of PL usages which is relatively robust
for either power estimation and performance/power trade-off

options. Ideally, arbitrary input data sizes should be supported
on the PL and the PS. However, due to the limitation of time
consuming synthesis, we only support up to three different
input data sizes and PU number for each benchmark and these
are used in this analysis to verify our adaptive power capping
technique.

B. Power Estimation
We record the estimated power and compare it with the

real-time physical power measurement. The power model is
calculated for each combination of voltage and frequency,
using also information from profiling. The real-time physical
measurement is recorded separately with the PMU profiling
process for both the PS and the PL throughout kernel ex-
ecution. By checking the distribution of mean square error
between estimated average power and the real-time physical
measurement, Figure 9a shows the overall verification of PS
power model for the five benchmarks with different data sizes
while Figure 9b shows the overall verification of PL power
model for the five benchmarks with both various data sizes
and PU number.

-30 -20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

(a) PS

-40 -20 0 20 40
0

0.2

0.4

0.6

0.8

1

(b) PL

Fig. 9: Overall Power Model Verification

Figure 10 and Figure 11 show the comparison of estimated
power with physical measurement for individual benchmarks.

The mean square error between estimated average power
and real-time physical measurement fits the normal distribu-
tion. Through over 40 scenarios for the tested five benchmarks
with different data sizes and PU numbers, we achieve less than
7% estimation error for the PS and no more than 15% error
for the PL. We note that for the entire system we achieve less
than 5% average power estimation error. Nevertheless, we use
additional slack of 10% to cap the peak power and defend
from errors in average power estimation at run-time.

Table VII shows the overhead of power monitoring and
DVFS at nominal frequency, 666 MHz, on the PS. This over-
head would be higher as frequency is scaled down. Table VIII

TABLE VII: Power Monitor and DVFS Overhead

Power Monitor (µs) Voltage Scaling (ms) Frequency Scaling (ms)
Time 51.0 0.64 5.70

shows the overhead of obtaining PMU information for power
estimation at nominal frequency. The overheads include both
OpenCL API and kernel execution on PS or PL. On the PS
the kernel is executed once while for the PL the kernel is
executed as many times as needed for processing all input

-30 -20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

(a) BT

-30 -20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

(b) FIR

-30 -20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

(c) IM

-30 -20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

(d) MM

-30 -20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

1.2

(e) SPMV

Fig. 10: PS Power Model Verification

-40 -20 0 20 40
0

0.2

0.4

0.6

0.8

1

(a) BT

-40 -20 0 20 40
0

0.2

0.4

0.6

0.8

1

(b) FIR

-40 -20 0 20 40
0

0.2

0.4

0.6

0.8

1

(c) IM

-40 -20 0 20 40
0

0.2

0.4

0.6

0.8

1

(d) MM

-40 -20 0 20 40
0

0.2

0.4

0.6

0.8

1

(e) SPMV

Fig. 11: PL Power Model Verification

data. The result indicates significant overhead of OpenCL API
when data streaming to the PL is used, both for run-time PMU
profiling and the execution stage.

TABLE VIII: Run-Time PMU Overhead

Benchmark Size PS (ms) PL (ms)

Time

BT
16 0.41 47.16
64 0.43 135.53

256 0.45 337.94

FIR
16 6.42 63.53
64 6.43 175.47

256 6.41 433.24

IM 16 0.25 64.07
80 0.25 219.38

MM
4 4.6 11.79
16 4.54 188.64
64 4.8 542.12

SPMV
4 0.39 1.47
16 0.40 5.145
64 0.50 18.0075

C. Adaptive Power Capping
We enforce caps on the sum of PS and PL power through

DVFS and different data partitionings between the PS and
PL, as shown in Figure 6. Table IX-XII illustrate the capped
power and performance of five benchmarks using the proposed
approach.

The ’Size’ column indicates the input data size, where
single value is the input data size of PS only, whilst the
two added values PSsize + PLsize represent concurrent
kernel execution between the PS and the PL for a given
data partitioning. The recorded DVFS operating points of
the Zynq 702 evaluation board are shown in ’PS’ and ’PL’
columns. The selected device (PS or PL) for kernel execution
is indicated by the annotation ⇤. The performance column
records the calculated normalized ratio of comparison between
the computation times with adaptive power capping and the
execution time on the PS only without DVFS.

We make the following observations on adaptive power
capping results:

TABLE IX: Power Capping Parameter with 300 mW Cap

Benchmark Size PS PL PU No. Performance
SPMV 256 (267 0.86)⇤ (29 0.86) 1 0.40
MM 64 (267 0.86)⇤ (166 0.90) 1 0.40
IM 80 (194 0.86)⇤ (33 0.86) 16 0.29
FIR 256 (267 0.88)⇤ (30 0.86) 1 0.67
BT 256 (267 0.88)⇤ (24 0.86) 1 0.67

TABLE X: Power Capping Parameter with 400 mW Cap

Benchmark Size PS PL PU No. Performance
SPMV 256 (444 0.88)⇤ (25 0.86) 1 0.67
MM 48+16 (667 0.86)⇤ (166 0.90)⇤ 1 1
IM 80 (333 0.90)⇤ (33 0.86) 16 0.5
FIR 256 (666 0.86)⇤ (30 0.86) 1 1
BT 192+64 (444 0.86)⇤ (65 0.88)⇤ 1 0.89

TABLE XI: Power Capping Parameter with 500 mW Cap

Benchmark Size PS PL PU No. Performance
SPMV 256 (667 0.90)⇤ (25 0.86) 8 1
MM 48+16 (667 0.88)⇤ (168 0.90)⇤ 1 1.33
IM 48+16 (444 0.86)⇤ (171 0.86)⇤ 16 0.83
FIR 192+64 (667 0.86)⇤ (136 0.88)⇤ 1 1.33
BT 48+16 (667 0.86)⇤ (150 0.88)⇤ 1 1.33

TABLE XII: Power Capping Parameter with 600 mW Cap

Benchmark Size PS PL PU No. Performance
SPMV 48+16 (667 0.90)⇤ (169 0.90)⇤ 4 1.33
MM 48+16 (667 0.96)⇤ (168 0.92)⇤ 1 1.33
IM 48+16 (667 0.86)⇤ (154 0.86)⇤ 16 1.25
FIR 48+16 (667 0.94)⇤ (170 0.86)⇤ 1 1.33
BT 192+64 (667 0.94)⇤ (164 0.86)⇤ 1 1.33

1) Co-processing is adopted with data partitioning between
PS and PL given enough power budget beyond 500 mW .
In this case performance goes up by a factor of 1.33⇥
compared to execution on the PS only without DVFS.

2) PS only execution is mostly chosen with capping thresh-

old under 500 mW and PL is tuned with minimum
voltage and frequency. By disassembling and debugging
our run-time, we found that the OpenCL API and in
particular the command queue mechanism dominates the
overhead and calls for further optimizations.

3) A small PU number on the PL is chosen for coordinated
execution due to the significant power increment related
to resource utilization. More optimized fixed-point PL
implementation could improve this situation by reducing
resource utilization and precision, which can also be the
factor of point 2).

4) Larger data block sizes are chosen for most of the cases.
The data streaming is invoked through micro-code of AXI
DMA from PS. Therefore, a reduced number of data
transmissions reduces the overhead.

VI. CONCLUSIONS

We proposed a new power capping technique adapted to
data size scaling with resource allocation for heterogeneous
ARM/FPGA SoC based on OpenCL run-time with OpenMP
enabling power management using both ARM processor and
streaming accelerators on FPGA concurrently. By using a
compile-time profiling assisted, run-time estimated power con-
sumption, the combined DVFS with data partitioning between
ARM and FPGA is implemented to maximize the performance
under power caps using non-linear programming model. The
experimental results demonstrate up to 30% performance
improvement , from power cap of 500mW , compared to
ARM only based processing without any power management.
Therefore, we are confident that our run-time system improves
performance and reduces power consumption at the same time,
enabling better energy efficiency.

ACKNOWLEDGEMENT

This work was supported by EPSRC grants EP/L004232/1
(ENPOWER), EP/L000055/1 (ALEA) and EP/K017594/1
(GEMSCLAIM).

REFERENCES

[1] http://apmonitor.com/, accessed by January 2016.
[2] http://openmp.org/wp/, accessed by January 2016.
[3] http://pocl.sourceforge.net/, accessed by January 2016.
[4] Altera. Altera SDK for OpenCL Programming Guide. November 2015.
[5] ARM. ARM v7-M Architecture Reference Manual. www.arm.com, 2010.
[6] L. Barroso, J. Clidaras, and U. Hoelzle. The Datacenter as a Com-

puter:An Introduction to the Design of Warehouse-Scale Machines.
Morgan & Claypool, 2013.

[7] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda. Pack &
Cap: Adaptive DVFS and Thread Packing Under Power Caps. In
Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-44, pages 175–185, New York, NY, USA,
2011. ACM.

[8] H. David, E. Gorbatov, and U. R. Hanebutte. RAPL: Memory Power Es-
timation and Capping. In 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED), pages 189–194, August
2010.

[9] F. Eberli. Next Generation FPGAs and SOCs - How Embedded Systems
Can Profit. In 2013 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 610–613, June 2013.

[10] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for
a warehouse-sized computer. In Proceedings of the 34th Annual
International Symposium on Computer Architecture, ISCA ’07, pages
13–23, New York, NY, USA, 2007. ACM.

[11] R. Griessl, M. Peykanu, J. Hagemeyer, M. Porrmann, S. Krupop,
M. Berge, T. Kiesel, and W. Christmann. A Scalable Server Architecture
for Next-Generation Heterogeneous Compute Clusters. In 2014 12th
IEEE International Conference on Embedded and Ubiquitous Comput-
ing (EUC), pages 146–153, Aug 2014.

[12] C. Hankendi and A. Coskun. Adaptive Power and Resource Management
Techniques for Multi-threaded Workloads. In 2013 IEEE 27th Interna-
tional Parallel and Distributed Processing Symposium Workshops PhD
Forum (IPDPSW), pages 2302–2305, May 2013.

[13] C. Hankendi, S. Reda, and A. K. Coskun. vcap: Adaptive power capping
for virtualized servers. In Low Power Electronics and Design (ISLPED),
2013 IEEE International Symposium on, pages 415–420, Sept 2013.

[14] X. inc. [online]. In Available: www.xilinx.com, 2016.
[15] S. Kamil, J. Shalf, and E. Strohmaier. Power Efficiency in High

Performance Computing. In IEEE International Symposium on Parallel
and Distributed Processing, 2008. IPDPS 2008. , pages 1–8, April 2008.

[16] T. Komoda, S. Hayashi, and T. Nakada. Power Capping of CPU-
GPU Heterogeneous Systems through Coordinating DVFS and Task
Mapping. In 2013 IEEE 31st International Conference on Computer
Design (ICCD), pages 349–356, October 2013.

[17] C. Lefurgy, X. Wang, and M. Ware. Power Capping: a Prelude to Power
Shifting. Cluster Computing, 11(2):183–195, 2007.

[18] Z. Lin and P. Chow. ZCluster: A Zynq-based Hadoop Cluster. In 2013
International Conference on Field-Programmable Technology (FPT),
pages 450–453, Dec 2013.

[19] P. Moorthy and N. Kapre. Zedwulf: Power-Performance Tradeoffs of
a 32-Node Zynq SoC Cluster. In 2015 IEEE 23rd Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 68–75, May 2015.

[20] Z. Ou, B. Pang, Y. Deng, J. Nurminen, A. Yla-Jaaski, and P. Hui.
Energy- and Cost-Efficiency Analysis of ARM-Based Clusters. In
Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM
International Symposium on, pages 115–123, May 2012.

[21] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu.
No ”Power” Struggles: Coordinated Multi-level Power Management for
the Data Center. In Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XIII, pages 48–59, New York, NY, USA, 2008. ACM.

[22] G. L. Valentini, W. Lassonde, S. U. Khan, N. Min-Allah, S. A. Madani,
J. Li, L. Zhang, L. Wang, N. Ghani, J. Kolodziej, H. Li, A. Y. Zomaya,
C.-Z. Xu, P. Balaji, A. Vishnu, F. Pinel, J. E. Pecero, D. Kliazovich, and
P. Bouvry. An Overview of Energy Efficiency Techniques in Cluster
Computing Systems. Cluster Computing, 16(1):3–15, 2011.

[23] W. Vanderbauwhede and K. Benkrid. High-Performance Computing Us-
ing FPGAs. In TUCS Technical Report. Springer Publishing Company,
Incorporated, 2013.

[24] O. S. Winter, S. Lafond, and J. Lilius. Evaluation of the Energy
Efficiency of ARM Based Processors for Cloud Infrastructure. In TUCS
Technical Report, number 991, 2010.

[25] Y. Wu, J. Nunez-Yanez, R. Woods, and D. Nikolopoulos. Power
modelling and capping for heterogeneous ARM/FPGA SoCs. In 2014
International Conference on Field-Programmable Technology (FPT),
pages 231–234, Dec 2014.

[26] Xilinx. Zynq-7000 All Programmable SoC Overview. www.xilinx.com,
2013.

[27] Xilinx. SDAccel Development Environment User Guide. September
2015.

