
NanoStreams: Codesigned Microservers for Edge Analytics in
Real Time

Georgakoudis, G., Gillan, C., Hassan, A., Minhas, U., Tzenakis, G., Spence, I., ... Pattison, C. (2016).
NanoStreams: Codesigned Microservers for Edge Analytics in Real Time. In Proceedings: 2016 International
Conference on Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS XVI) .

Published in:
Proceedings: 2016 International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS XVI)

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/nanostreams-codesigned-microservers-for-edge-analytics-in-real-time(47e9e2e3-2f5e-4d75-ad86-6af8e08cbb75).html


NanoStreams: Codesigned Microservers for
Edge Analytics in Real Time

Giorgis Georgakoudis, Charles Gillan, Ahmad Hassan,
Umar Minhas, Ivor Spence, George Tzenakis,

Hans Vandierendonck, Roger Woods, Dimitrios S. Nikolopoulos
School of EEECS, Queen’s University Belfast Belfast, UK BT9 6AY

Murali Shyamsundar
The Centre for Infection and Immunity

School of Medicine, Dentistry and Biomedical Sciences
Queen’s University Belfast, Belfast, UK BT9 7BL

Paul Barber,
Matthew Russell
Analytics Engines

Belfast, UK, BT9 5DJ

Angelos Bilas,
Stelios Kaloutsakis

Institute of Computer Science, FORTH
Heraklion, Greece, GR–70013

Heiner Giefers, Peter Staar,
Costas Bekas

IBM Research Zurich
Rüschlikon, Switzerland CH-8803

Neil Horlock
Credit Suisse

One Cabot Square
London, UK, E14 4QJ

Richard Faloon,
Colin Pattison

Neueda
Belfast, UK, BT12 5GH

Abstract—NanoStreams explores the design, implementation,
and system software stack of micro-servers aimed at processing
data in-situ and in real time. These micro-servers can serve the
emerging Edge computing ecosystem, namely the provisioning
of advanced computational, storage, and networking capability
near data sources to achieve both low latency event processing
and high throughput analytical processing, before considering
off-loading some of this processing to high-capacity datacentres.
NanoStreams explores a scale-out micro-server architecture that
can achieve equivalent QoS to that of conventional rack-mounted
servers for high-capacity datacentres, but with dramatically
reduced form factors and power consumption. To this end,
NanoStreams introduces novel solutions in programmable & con-
figurable hardware accelerators, as well as the system software
stack used to access, share, and program those accelerators.
Our NanoStreams micro-server prototype has demonstrated 5.5×
higher energy-efficiency than a standard Xeon Server. Simula-
tions of the microserver’s memory system extended to leverage
hybrid DDR/NVM main memory indicated 5× higher energy-
efficiency than a conventional DDR-based system.

I. INTRODUCTION

Instant access to data and real-time data analytics have
the potential catalyse knowledge acquisition, discovery, and
responsiveness. Unfortunately, accessing and processing data
with low latency and high bandwidth pushes the computa-
tional, storage, and networking resources available in high-
capacity datacentres to their extremes, due to massive de-
mand [1]. An important change in the computing ecosystem
that can help alleviate the pressure of data volume and velocity
from high-capacity datacentres is to process data at or near
their sources, the so called ‘Edges’ of the Internet.

NanoStreams is a European Seventh Framework Programme
research project that explores the design, implementation and
software stack of lean micro-servers that can ingest and
process data in-situ at the edges of the network, with real-
time guarantees. The project’s vision is to achieve energy-
efficient processing of concurrent data streams at or near the
data sources, thus reducing the latency and energy footprint
of real-time data analytics. The project explores a scale-out
micro-server architecture to achieve QoS equivalent to that
of more conventional rack-mounted servers for high-capacity

datacentres, but with dramatically reduced form factors and
power consumption. A distinguishing aspect of NanoStreams
is that it builds real-silicon prototypes for field deployment.
For example, NanoStreams has already demonstrated a suc-
cessful deployment of a micro-server at the Belfast Royal
Victoria Hospital, in collaboration with the NHS and the local
Health Trust, to monitor and analyse ICU respiratory data in
real-time.

By placing more computational, storage and networking
power near data sources, NanoStreams aims to achieve the
low latency targets of modern analytics, off-load the brunt of
data processing from warehouse scale datacentres, and enable
emerging applications such as real-time video analytics, smart
cities, grids and buildings, and 5G mobile data analytics. To
achieve the aspirations of the project, NanoStreams adopts a
hardware-software co-design approach that is common in the
embedded systems domain, combined with an HPC system
software stack [2]. NanoStreams innovates in multiple areas
of the emerging micro-server ecosystem, by proposing:

• A new Analytics-on-Chip (AoC) architecture that en-
hances the computational capacity of micro-servers with
configurable accelerators; the accelerators are based on
the nanocore (Section II), a configurable tiny core for
FPGAs that is directly programmable in C [3].

• A novel bare-metal Ethernet networking infrastructure,
the nanowire (Section III), which achieves low latency
access and sharing of accelerators without affecting the
host processor architecture [4].

• A scalable streaming programming model (Section IV-A)
embedded within domain-specific sequential program-
ming environments, such as database environments and
graph processing tools [2].

• Non-volatile memory technology for the micro-servers
that is accessible directly as ‘main memory’ (Sec-
tion IV-B) [5].

• Workload-specific optimisation using the concept of iso-
quality of service (iso-QoS), applied to three use cases
from the healthcare, capital markets, and business analyt-



ics sectors (Section V) [6], [7].
• A range of new methods to fairly compare the effi-

ciency of server architectures (Section VI) and scale
these architectures on demand to meet workload QoS
requirements [6], [7].

NanoStreams advances the state of the art in micro-servers
in several ways by: (a) adding application-specific but pro-
grammable hardware accelerators to micro-servers, as opposed
to existing solutions that use elaborate hardware design flows
and target a single algorithm [8]; (b) providing general purpose
low latency networking to access accelerators in the datacentre,
as opposed to custom fabrics [9]; (c) effectively integrating
streaming and accelerator-aware programming models into
domain specific software stacks, moving one step ahead of
ongoing efforts to unify heterogeneous programming mod-
els [10]; (d) significantly improving server energy-efficiency
of micro-servers via on demand and QoS-aware scale-out and
acceleration [6], [7].

The NanoStreams micro-server prototype has demon-
strated 5.5× higher energy-efficiency than a standard Xeon
Server (Section VI). Simulations of the NanoStreams hy-
brid DDR/NVM memory system indicate 5× higher energy-
efficiency than a conventional DDR-based system.

II. NANOCORES: PROGRAMMABLE ENERGY-EFFICIENT
ACCELERATION

The NanoStreams Analytics-on-Chip (AoC) architecture
targets low latency stream processing of compute intensive
tasks. It is an amalgam of low-power RISC processors for the
embedded systems domains and nanocores, a new class of
programmable compute units. The AoC processor is a hetero-
geneous SoC that reduces latency in processing of streaming
operators issued to the micro-server with the latency-optimised
RISC cores, while improving analytical processing throughput
on compute and data intensive tasks with the nanocores. The
AoC architecture is currently implemented on Xilinx Zynq-
7000 family which offers SoC integration of a dual-core
general purpose ARM Cortex A9 based processing system
(PS) and 28 nm Field Programmable Gate Array (FPGA)
programmable logic (PL). This level of integration reduces
the communication latency between RISC cores and nanocores
and enables efficient on-chip parallelisation of analytical tasks.

A. Nanocores

Nanocores are a new class of programmable and config-
urable processors. The single core is designed to allow easy
integration with a number of other nanocores, which may
not necessarily have the same feature set, to form a multi-
core platform. The multi-core platform improves analytical
processing throughput by exposing the parallel computational
capabilities of the underlying hardware to the software domain
and is sufficiently flexible to allow the acceleration of a wide
range of applications.

Our nanocore prototype supports 32-bit and 64-bit fixed
point arithmetic. This configuration has been selected to
demonstrate a key benefit over existing 32-bit only FPGA

soft-core microprocessors (e.g. Xilinx Microblaze and Altera
Nios II) and to utilise the fixed point DSP capability of the
current generation of FPGAs. Besides word size, the nanocore
instruction set is also customisable at build time. The default
instruction set is Turing complete and additional application-
specific instructions can be added as required to provide
improved performance. The key aspect of the approach is to
optimise the underlying FPGA hardware to allow the creation
of a light core which operates substantially faster than existing
FPGA-based cores.

Fig. 1. Nanocore Block Diagram

1) Memory Hierarchy: The block diagram of a single
nanocore is given in Fig. 1. In order to minimise latency, the
input and output memories are configured as first-in-first-out
buffers (FIFOs). There are 16 registers (R0-R15) within each
processor. Each core has an area of read/write addressable
memory for storing intermediate calculation results and use
as a stack (the scratch memory). This ensures that each core
is capable of relatively complex behaviour and enables the
core to support operations where data has to be spilled out of
the internal registers.

2) Instruction Word: Nanocore operates on a 32-bit instruc-
tion word; whilst the Zynq block RAM allows to have 36 bit
instruction words, four bits are kept free for future or processor
internal use. The instruction set has been designed to allow the
core to execute four operations within a single clock cycle:
an input read, and output write, an always jump and either
a constant load or another instruction. The ability to perform
multiple operations within a single instruction should help to
reduce the number of instructions required for a tight loop and
increase throughput for stream processing.

3) Hardware Resources and Power Consumption: Table I
summarises the resources usage for one nanocore. The goal
of the project is to make the core as lightweight as possible
with the minimum instruction set required for the application
domain. The per-core power estimates quoted were observed
over a long period of time for various programs. These num-
bers are important for estimating the scale out performance of
nanocores on a larger device.

The current maximum frequencies of the cores is graphed
against number of cores for the 32 bit and 64 bit version of the
core in Figure 2. Note that these results have been obtained



TABLE I
RESOURCE UTILISATION BY SINGLE CORE

Resource 32-bit 64-bit
LUTs 1773 3144

Flip-flops 1426 1773
MemLUT 82 208

DSPs 3 8
BRAMs 2.5 4

Power/Core 184mW 377mW

Fig. 2. Maximum frequency with number of cores

using Vivado 2014.3.1s implementation defaults with a con-
straint of 312.5 MHz. Since most of these results exceed this
frequency it is likely that implementation stops optimisation
once this frequency is met. This would explain the drop in
frequency for the 32 bit nanocore with 2 cores.

4) Multicore Architecture: Our prototype supports only
Single Instruction Multiple Data (SIMD) type processing, with
each nanocore operating on a different burst of data and
returning a burst of results. Individual nanocores are operated
such that they themselves have no visibility of system data
flow. Hence, to maximise the run-time configurability of the
nanocore system, some additional elements are necessary in
the system architecture to control the input and output streams
of data. They also control multiplexing and demultiplexing of
data from or to different sources. We call them scatter and
gather modules (Fig. 3). All this is to support the NanoStreams
goal of operating seamlessly on streaming data and achieve
high throughput.

Fig. 3. Nanocore array architecture

The existing architecture can be configured at build time to
support a variable number of nanocores with different word
sizes and different instruction sets. The nanocore design will
also allow run-time configuration of inter-core data routing,
providing the capability for the AoC architecture to dynami-
cally adjust to workloads.

5) Programmability: The general purpose ARM core works
on low latency transactional processing tasks and offloads
analytical tasks to the accelerators. The exact distribution of
functionality can vary for different applications and can be
programmed accordingly using the NanoStreams high level
programming model. The ARM core also acts as master for
controlling the data-flow through the nanocore fabric, as well
as having the ability to program and reprogram the nanocores.

A library has been written to support communication and
control of nanocores via the ARM processor. This library pro-
vides functions such as initialisation, programming and control
of transfer of data to and from the multicore architecture.

A beta version of a C99-compliant compiler for nanocore
has been developed by ACE using the CoSy compiler devel-
opment system. Along with compiling C using the default 26
instruction set supported by nanocore, the compiler provides
support for the nanocore special instructions for high speed
input read and output write.

Finally, to support faster time-to-market, a development and
testing platform, hardware-in-loop (HIL), has been developed
using the above mentioned ARM-nanocore control and com-
munication library. HIL runs on the ARM core to stimulate
a real nanocore running in the FPGA portion of the chip.
The application interface for the tester allows the programmer
to access the nanocore’s data and control interfaces through
wrapper functions. These functions give a high level of access
by abstracting the hardware interface around the nanocore
and allow for significantly faster hardware verification in real-
time.

III. NANOWIRE: BARE METAL ETHERNET

Nanowire is our communication protocol among hosts and
accelerators. Besides efficiency, nanowire primarily aims to:

• Enable shared accelerators, e.g. at the node level or rack
level for cost reasons.

• Decouple accelerator from host/server technology cycle,
required for accelerators that evolve at a different pace
compared to servers.

Ethernet as an interconnect has dominated the datacentre, its
performance has been constantly scaling with technology, and
is used by all servers. For these reasons, we base nanowire on
raw Ethernet. Figure 4 provides an overview of the overall
architecture and design but also identifies the data paths
established between the host and accelerator nodes during an
end-to-end communication transaction. Next, we discuss the
main aspects of nanowire in more detail.

A. Nanowire Protocol

The main functions of the nanowire communication sub-
strate are: (1) A simple and convenient API to virtualise and
manage accelerators; (2) Reliable, high-throughput and low-
latency transfers; and (3) Minimal host-cpu overheads while
supporting high concurrency. Nanowire (Figure 4) is composed
of two abstractions: the Host-Accelerator Transport (HAT)
layer that handles networking aspects and the Task Issue



Fig. 4. Host-accelerator communication path in nanowire.

Protocol (TIP), a task queue layer that issues task requests
from the hosts and receive task results from the accelerators.

HAT provides the network tier of NanoStreams and offers
a common abstraction of the network level services and I/O
primitives to both the host and accelerator nodes. HAT code
runs on both sides of the interconnect and although the host
side makes use of the host OS services, on the accelerator side,
HAT will run on more diverse platforms. In our prototype the
accelerator side of HAT is implemented as custom firmware
directly on top of the A9 core in the Processing System (PS)
of the FPGA card.

HAT allows multiple hosts to share the same accelerator, it
supports variable size packets (up to the Ethernet MTU size),
and supports reliable transmission. Packets can be switched via
Ethernet switches, however, HAT provides the ability to further
customise the Ethernet header for efficiency, when switching
is not required.

Finally, HAT provides lightweight connection-less channels
as the lowest-level communication. A channel consists of a
point-to-point unidirectional queue of packet slots used for
communication between a source host node and a destination
accelerator node. Resources per channel (e.g. element size)
are chosen at creation time. Channels aim at providing a low-
overhead and low-latency communication path, while allowing
the system to tune resources and resource placement for each
channel.

On the host side, HAT implements channels based on user-
kernel shared memory to eliminate expensive system calls and
achieve low-latency, similar to the approach taken in [11]. This
approach has been examined in the past when designing low-
latency networks [12], [13], [14], [15] but eventually has not
been attractive due to the cost of selective spinning for fat
cores. The current trend towards thin and tightly packed micro-
servers makes this approach attractive.

TIP provides the runtime system with the ability to trans-
parently issue tasks to the accelerators without any knowledge
of the underlying network infrastructure or the accelerators

Fig. 5. Performance of kernel-based protocol implementation.

themselves. TIP implements a simple client-server protocol to
decouple analytics kernel invocation from execution: it utilises
HAT channels to enqueue kernel service requests to remote
accelerator nodes and retrieve completions/replies.

TIP uses a task descriptor to identify the service/kernel to be
executed on the remote accelerator node and the corresponding
completion notification and result. It supports both blocking
and non-blocking interfaces. The protocol is designed to
perform end-to-end flow-control and reliable transmission via
message retransmission whenever an error is detected. For
error detection, we use the checksum mechanism available in
Ethernet NICs.

B. Preliminary performance analysis

Figure 5 illustrates preliminary results for the current proto-
type of Nanowire. Round trip latency is about 33µs for the full
path, including the network links and NICs. About 11.5µs is
the cost of the protocol on the accelerator (ARM core), 15.6µs
is the host overhead (8.9µs in the issue path and 6.7µs in the
receive path), and about 6µs is spent on the network interfaces
and the wire.

We are currently working on adaptive interrupt and context
switch reduction techniques [16] via interrupt coalescing or
polling (NAPI) in the Ethernet driver and the NIC itself. Such
techniques are particularly effective when there are concurrent
tasks in the system. Additionally, we would like to evaluate
in more detail the impact of the shared structure between
user and kernel space on system performance and to examine
alternatives, as well as to use a custom path path in the Linux
kernel and avoid the use of the netdev interface, which imposes
overheads.

C. Summary

Nanowire provides an efficient, transparent, and flexible
transport between hosts and accelerators. It implements re-
liable, low-latency, high-throughput, and low-overhead com-
munication channels between the host runtime and shared,
application specific cores. We envision that nanowire will be



used to connect accelerators to hosts, both at the board and
the rack levels.

IV. NANOSTREAMS STREAMING PROGRAMMING MODEL

We focus our discussion on two key aspects of the NanoS-
treams programming model and runtime environment: Faith-
ful C langauge extensions for supporting hybrid analytical-
transactional applications on streaming data; and memory
management in heterogeneous, non-volatile memories, which
we consider as a viable and sustainable pathway to extend the
memory capacity of future micro-servers.

A. Programming Model

NanoStreams is proposing simple dataflow extensions to C
to support a streaming parallel programming model, where
tasks and the dataflow between them are explicitly identified
via code annotations. We apply minimalistic and faithful
extensions of the C language for explicit parallelisation and
seamless scaling, considering that the programming model is
deployed to support domain specific programming environ-
ments such as databases and graph processing tools, as op-
posed to general purpose parallel programming. This approach
also fills a vital gap in landscape of existing parallel high-
level languages, namely the lack of a very basic C language
extension giving the programmer full control over parallelism.

Stream parallel programming deconstructs a program into
multiple kernels linked together via their input and output
streams into a graph representing an algorithm. Kernels at
each level of the graph may execute independently. Data
driven applications with fairly regular computation tend to
be a good fit for this programming model. Underpinning its
programming model, the project provides a common runtime
environment, the nanoruntime, suitable for elastic scaling of
core provisioning and control of load balancing and data
access locality between threads.

The key to exploiting the existing C language lies in having
fully referentially transparent code omitting use of pointers,
global variables and variable aliasing through function calls.
Full use of the type system addresses issues of data locality,
bandwidth, and memory hierarchy. Furthermore, by abandon-
ing the monolithic single memory space, we can employ more
appropriate and efficient memory management schemes.

We have applied our prototype implementation to our
financial and healthcare use cases (Section V). We have
implemented a library that enables the programmer to produce
a directed acyclic graph expressed in C which can be compiled
with gcc using pthreads to produce a running multi-threaded
binary.

B. Memory Management

Extending the memory capacity of micro-servers is chal-
lenging both because of grim DDR scaling projections and be-
cause micro-servers are fundamentally power and area limited.
We are exploring the use of non-volatile memory technologies
as a pathway to extend the memory capacity of micro-servers

with virtually no additional static power budget and controlled
performance cost.

The NanoStreams programming model exposes hybrid main
memory composed of conventional and Non-Volatile RAM
(NVM) directly to the programmer for data placement and
memory management. We are designing a system interface
where the DRAM and NVM chips are assigned distinct phys-
ical address regions. This complies with how BIOS reports
DIMMs and their physical address ranges to the operating
system. The operating system can then select to allocate virtual
memory pages on either type of memory, using either hints
from the user level or an automated kernel-level policy.

To enable user-level management of hybrid main mem-
ory we extend the C memory allocation functions (mma[,
malloc) to direct the allocation of memory to NVM or
DRAM. We intend to explore more structured and extended
interfaces such as numactl. Our modified memory allocation
functions implement a default allocation on NVM. We fur-
thermore extend the linker file format to provide two versions
of each data segment. For instance, for the ELF file format,
the segment .bss hotmem holds zero-initialised data that is
frequently accessed in main memory and are destined for
DRAM, while .bss holds cold data that can be stored in NVM
without performance penalty. The GCC annotation “attribute
((section(“bss hotmem”)))” specifies global variable place-
ment. We also provide an object migration function between
DRAM and NVM, where the programmer allocates a new
copy of an object on the opposite memory type and copy the
data.

From the OS perspective, allocating memory on a hybrid
memory system is similar to allocating memory in a non-
uniform memory architecture (NUMA). Every NUMA region
is split into a DRAM region and an NVM region. As such,
the OS and system libraries utilise the same memory allocation
algorithm for either type of memory. Moreover, virtual mem-
ory management and virtual address translation are the same
for DRAM and NVM and are unmodified in comparison to a
NUMA system.

Using the system support described here we have developed
an LLVM compiler framework to instrument programs in
order to profile the access patterns to all allocated objects,
and selectively place objects in NVM or DDR. A limitation
is that operating system implementations of NUMA-aware
page allocation and migration may contradict programmers
choice. For example, Linux will not keep track of the NUMA
preference of swapped out pages and may swap them in
in a NUMA partition that is not in the memory type and
region requested by the programmer. Moreover, there may
be conflicting constraints when mapping pages into multiple
virtual address spaces. These issues are subject of ongoing
study.

Our hybrid memory allocation and policies have resulted
in up to 5× reduction of energy consumption in the memory
systems compared to DDR-only or NVM-only designs, for
workloads emerging from column-oriented, key-value data
stores [5], [17].



V. USE CASES

This section outlines three commercial use cases of the
NanoStreams co-designed micro-server and software stack. s

A. Reconfigurable compute in a volatile market facing infras-
tructure

FPGAs have become a byword for compute acceleration in
financial services. However, their adoption is far from straight-
forward and many FPGA-based products have failed to make a
lasting impact. One of the most significant constraints to GPU
and FPGA adoption in Financial Services, and in particular in
the performance critical area of front office trading systems,
is the extended software development lifecycle [18].

The trading domain is a fast moving area where market
behaviour can change overnight, where new regulations can
be imposed with short notice and thus, where agility and
adaptability are important contributors to both the financial
and reputational risk exposure of the firm.

Bacon et al. [19] set out the problems faced with exposing
FPGA to conventional development techniques. In particular,
they highlight the observable trend towards tighter integration
of heterogeneous compute capability, firstly with GPU on
die and proposed FPGA on die, packages from Intel and
the proliferation of ARM cores integrated alongside gates
in commodity FPGA boards. Close integration in hardware
makes it clear that a universal way to use these that does
not require a different developer, with a different skill set is
essential.

NanoStreams embodies a number of key technological
innovations that seek to address these challenges. We use
the model of options pricing, a problem commonly solved
by highly parallel models, to demonstrate that a the combi-
nation of micro-server, networking and parallelisation tools of
NanoStreams can be harnessed seamlessly. Using the nanocore
abstraction we write code for common, high-level languages
that is executable both on CPUs and the the nanocore FPGA,
allowing reduced hardware and energy footprints without in-
creasing maintenance cost. NanoStreams further demonstrates
the allocation of tasks to compute resources by the runtime
controller, allowing a choice of execution platform to be made,
with the nanowire interconnect connecting the distributed
resources seamlessly.

B. Real-time Graph Analytics at Scale

Graph analytics is fast becoming a key Big Data workload.
Graph algorithms have revolutionised the way we interact
with the internet, powering for instance search services (e.g.
PageRank). Recently, more complicated algorithms that aim to
give a far deeper analysis of the underlying graph structures
and properties have been emerging. The main driving reason is
the use of complex Knowledge Graphs as objects to represent
knowledge and allow deep queries.

In all these cases the basic kernel relies on sparse matrix-
vector or sparse matrix-matrix multiplication. Although these
kernels are not new in traditional scientific computing, it is
the very characteristics of the new workloads that make the

sparse matrices exhibit very different sparsity characteristics
than those in engineering and scientific applications. These
lead to extremely irregular memory access patterns that do
not typically follow a clear application driven structure. This
drives the computational intensity to even lower levels than
traditional applications. Therefore, acceleration of particular
kernels on customised, low energy platforms is a very appeal-
ing path.

A general roadmap that we follow in NanoStreams targets
to compute a few characteristic features of the sparse matrices
and calibrate prediction models for energy and time to solu-
tion [20]. The lessons learned and models calibrated serve as
input for the co-design approach that NanoStreams follows to
customise the architecture and instruction set of the nanocores,
as well as scale resources on demand.

C. Real-time Computation in Diagnostic Medicine

Today a patient in ICU is surrounded by a large number of
monitoring devices recording the time variance of physiolog-
ical parameters, such as blood pressure or oxygen saturation.
The concept of correlating such readings and even feeding
these to a predictive mathematical model, is an active research
topic in clinical medicine. Earlier research [21] showed the
viability of physiological monitoring to detect sleep apnea in
neo-natal ICU. NanoStreams extends the concept of utilising
real time data to address the challenges of improving the
standard of care by using a rapidly responsive automated
surveillance system in an adult ICU.

Mechanical ventilation is a common and essential thera-
peutic intervention performed in critical care units throughout
the world, for respiratory and neuromuscular diseases, sep-
sis, shock, for airway protection, or for temporary support
after surgery. Epidemiological studies have shown that up to
2.8% of patients admitted to hospitals undergo mechanical
ventilation. Mechanical ventilation can only be performed in
critical care units which are a limited and expensive resource.
However, mechanical ventilation can worsen the injury in
previously damaged lungs [22] and can initiate injury in
normal lungs.

The NanoStreams medical use case encapsulates several
computational challenges because it seeks to provide a respon-
sive system that is scalable to incorporate multiple physiolog-
ical parameters and multiple patients. An in-memory database
provides a key mediation stage between the patient sensor
readings and the subsequent multistage analytical process-
ing. Performance criteria suggest that an in-memory database
implementation is a key component of the architecture. Fur-
thermore, in NanoStreams we seek to test the hypothesis of
whether microservers provide a suitable platform with which
to scale out the processing of this kind of medical data with
minimal computational infrastructure in the ICU.

VI. PUTTING IT ALL TOGETHER

Our fully working NanoStreams prototype integrates an
ARM-based microserver, the FPGA nanocores accelerator and
the nanowire communication layer. In its current instance, the



Fig. 6. Setup of the demo system

TABLE II
SUMMARY OF DEMO RESULTS

Power (W) QoS Topt (ms) Jopt (J)

NanoStreams 8.44 49% 5.60 0.047

Intel 58.5 77% 4.48 0.262

microserver is a Boston Viridis 2U rack box [23], hosting a
cluster of ARM nodes. Each ARM node consists of a quad-
core ARM A9 System-on-Chip (SoC) with a shared 4MB L2
cache, 4GB of DDR3 RAM, a 250GB SATA3 disk and a
Gigabit Ethernet interface. We are in the process of migrating
the microserver host to the Applied Micro XGene platform.

The nanocores prototype is implemented on a Zedboard
development kit [24] featuring the Xilinx Zynq ZC020 device
and an integrated Gigabit Ethernet interface. The Zynq device
includes a dual-core ARM processor for managing the FPGA
fabric and facilitating software development. The Viridis
microserver and the Zedboard accelerator connect directly
via their Gigabit Ethernet interfaces. For measuring energy
consumption, each machine equips a Wattsup Pro meter [25]
taking power measurements at the PSU level, with a sampling
frequency of 1 Hz. Additionally, we make use of on-board
IPMI power monitoring sensors with a sampling frequency of
4 Hz. A digital multimeter attached to an electrical interface
on the Zedboard is able to measure the whole board’s power
consumption with a sampling frequency of up to 25 Hz.

Each ARM node in the microserver runs Ubuntu Linux
12.04 LTS which provides a stable environment to develop
the application use cases. The server of the nanowire com-
munication layer runs as a bare metal daemon on the ARM
management cores of the Zedboard. The nanowire client is
implemented as an offloading library that transparently handles
communication with the server. An application running on the
Viridis ARM microserver compiles against the nanowire client
library to access the offloading API.

A. Demo and Initial Results

We demonstrate our integrated, fully working prototype
using the financial use case of option pricing. We emulate a

Fig. 7. Output of the monitoring visualisation tool

realistic application scenario by replaying a real-time trading
feed from the New York stock exchange over a multicast UDP
channel. The Viridis microserver, extended with the nanocore
accelerator, as well as an competing Intel server tap on this
channel to retrieve stock updates and price the same set of
options. Figure 6 shows an overview of the configuration
used. Moreover, each machine exports real-time power and
performance measurements to an external visualisation tool
(Figure 7) on the web accessible through HTTP.

In the context of option pricing, QoS is defined as the
ratio of options that have been priced before the next stock
update over the total number of options to be priced. We
use a single socket of an Intel Sandybridge as a baseline for
comparative analysis. On the Intel server, we measure power
at the processor socket level, including the attached DRAM,
by using IPMI and RAPL sensors. For the Viridis microserver
we measure power at the node level, including the ARM SoC
and DRAM. For the accelerator we measure the whole board’s
power consumption. The accumulated power of the Viridis
node and the accelerator board constitutes the total power of
the NanoStreams solution.

Table II summarises the results, which suggest that the
NanoStreams approach of co-designing microservers can
greatly improve energy efficiency. For a fraction of the power
consumption of Intel (7× less), NanoStreams achieves an
average QoS of 49% timely priced options to a QoS of 77% of
the Intel server. Including metrics of average Time per option
(Topt) and Joules per option (Jopt) pricing, NanoStreams
is roughly 20% slower than Intel when pricing an option
but it reduces energy by a factor of 5.5×. Note that the
energy reduction from NanoStreams is less than the power
reduction because of the slightly increased Topt prolonging
the computation. Nevertheless, in the financial use case, this
performance difference is readily recoverable by scaling out
NanoStreams with more nodes. However, we are investigating
more possibilities for better energy efficiency, including using
multiple accelerators, improving the architecture of nanocores,
using 64-bit ARM hosts with higher-energy efficiency than
the current A9 hosts, and further reducing the offloading
communication cost.



VII. CONCLUSION

NanoStreams has been successful in bringing together
best practices from embedded systems design and high-
performance computing. We have achieved higher energy-
efficiency for analytical tasks on data streams than state
of the art servers on real silicon prototypes, while making
tangible progress in the development and adoption of new
hardware technologies for the European microserver roadmap.
As an industry-focused project (five out of seven project
partners are companies, including three SMEs), NanoStreams
has successfully engaged stakeholders who wish to explore
new technologies for in-situ analytics without investing on
massive warehouse scale datacentres to meet their needs.

Reflecting on the project, we have also identified areas
where taking different directions could have achieved better
adoption potential: We have used two compiler infrastructures,
one based on ACE’s CoSy framework for easy compiler
generation and C programming of nanocores, and another
based on LLVM for memory access profiling. We believe that
unifying everything under a single compiler infrastructures,
preferably LLVM due to its prevalence, will significantly
broaden the user base. We also believe that there is sig-
nificant commercial opportunity for isolated components of
NanoStreams, including the nanocores and nanowire as core
datacentre components, and parts of the language technology
as a concurrency extension to the C standard.

Taking a workload-specific approach to sizing and optimis-
ing system scale might limit the scope of our results and
not cover more general solutions for Edge or high-capacity
datacentres. These limitations combined with an intention to
broaden the micro-server market potential in Europe have led
us to form a new Horizon2020 project, UniServer, which
since February 2016 explores general-purpose micro-servers
and system software that jointly cope with and exploit intrinsic
architectural variation to improve efficiency across a range of
Edge computing and IoT workloads.

ACKNOWLEDGEMENT

This research is partially supported by the European Com-
mission under Grant Agreement 610509.

REFERENCES

[1] A. Pentland, “The data-driven society,” Scientific American, vol. 309,
Oct. 2013.

[2] C. Gillan, D. S. Nikolopoulos, I. Spence, A. Bilas, and C. Bekas,
“Advancing the hardware and software stack for real-time analytics on
fast data streams,” in Proceedings of the IEEE 2014 eChallenges e-2014
Conference, Belfast, UK, Oct. 2014.

[3] F. Engel, R. Leupers, G. Ascheid, M. Ferger, and M. Beemster, “En-
hanced structural analysis for c code reconstruction from ir code,” ser.
SCOPES ’11, 2011.

[4] P. Gonzalez-Ferez and A. Bilas, “Tyche: An efficient ethernet-based
protocol for converged networked storage,” ser. MSST, June 2014.

[5] A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos, “Software-
managed energy-efficient hybrid dram/nvm main memory,” ser. Com-
puting Frontiers, May 2015.

[6] G. Georgakoudis, C. J. Gillan, A. Sayed, I. Spence, R. Faloon, and
D. S. Nikolopoulos, “Iso-quality of service: Fairly ranking servers for
real-time data analytics,” Parallel Processing Letters, 2015.

[7] ——, “Methods and metrics for fair server assessment under real-time
financial workloads,” Concurrency and Computation: Practice and
Experience, 2015.

[8] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. G. M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A reconfigurable
fabric for accelerating large-scale datacenter services,” ser. ISCA, 2014.

[9] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Pi-
corel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and B. Falsafi, “Scale-
out processors,” ser. ISCA, 2012.

[10] Y. Yan, P.-H. Lin, C. Liao, B. R. de Supinski, and D. J. Quinlan,
“Supporting multiple accelerators in high-level programming models,”
ser. PMAM ’15, 2015.

[11] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling with
exception-less system calls,” ser. OSDI, Berkeley, CA, USA, 2010.

[12] L. Rizzo, “netmap: A novel framework for fast packet i/o,” ser. USENIX
Security, Bellevue, WA, Aug. 2012.

[13] L. Deri, “ncap: wire-speed packet capture and transmission.” in
E2EMON, 2005.

[14] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “Ix: A protected dataplane operating system for high
throughput and low latency,” ser. OSDI, Broomfield, CO, Oct. 2014.

[15] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy, “Megapipe: A new
programming interface for scalable network i/o,” ser. OSDI, Hollywood,
CA, 2012.

[16] P. Gonzalez-Ferez and A. Bilas, “Reducing cpu and network overhead
for small i/o requests in network storage protocols over raw ethernet,”
ser. MSST, Santa Clara, CA, May 2015, pp. 1–12.

[17] A. Hassan, H. Vandierendonck, and D. S. Nikolopoulos, “Energy-
efficient in-memory data stores on hybrid memory hierarchies,” in Pro-
ceedings of the 11th International Workshop on Data Management on
New Hardware (DAMON), in conjunction with ACM SIGMOD/PODS
2015, Melbourne, Australia, Jun. 2015.

[18] M. O’Hara. Fpga and hardware accelerated trading, part four challenges
and constraints. [online].

[19] D. Bacon, R. Rabbah, and S. Shukla. Fpga programming for the masses.
[online].

[20] A. Malossi, Y. Ineichen, C. Bekas, A. Curioni, and E. Quintana-Orti,
“Performance and energy-aware characterization of the sparse matrix-
vector multiplication on multithreaded architectures,” ser. ICCPW Work-
shop, Sept 2014.

[21] M. Blount, M. Ebling, J. Eklund, A. James, C. McGregor, N. Percival,
K. Smith, and D. Sow, “Real-time analysis for intensive care: Develop-
ment and deployment of the artemis analytic system,” Engineering in
Medicine and Biology, vol. 29, 2010.

[22] V. Herasevich, M. Tsapenko, M. Kojicic, A. Ahmed, R. Kashyap,
C. Venkata, K. Shahjehan, S. Thakur, B. Pickering, J. Zhang, R. Hub-
mayr, and O. Gajic, “Limiting ventilator-induced lung injury through
individual electronic medical record surveillance,” Crit Care Med,
vol. 39, 2011.

[23] Boston Limited. Boston Viridis datasheet. [online].
[24] Avnet. Zedboard documentation. [online].
[25] Watts up? Product website. [online].


