
Detecting obfuscated malware using reduced opcode set and
optimised runtime trace

O'Kane, P., Sezer, S., & McLaughlin, K. (2016). Detecting obfuscated malware using reduced opcode set and
optimised runtime trace. Security Informatics, 5(2). DOI: 10.1186/s13388-016-0027-2

Published in:
Security Informatics

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 O’kane et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were
made.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/detecting-obfuscated-malware-using-reduced-opcode-set-and-optimised-runtime-trace(755b589c-a657-4425-a563-f7428db2f18e).html

O’kane et al. Secur Inform (2016) 5:2
DOI 10.1186/s13388-016-0027-2

RESEARCH

Detecting obfuscated malware using
reduced opcode set and optimised runtime
trace
Philip O’kane*, Sakir Sezer and Kieran McLaughlin

Abstract

The research presented, investigates the optimal set of operational codes (opcodes) that create a robust indicator of
malicious software (malware) and also determines a program’s execution duration for accurate classification of benign
and malicious software. The features extracted from the dataset are opcode density histograms, extracted during
the program execution. The classifier used is a support vector machine and is configured to select those features to
produce the optimal classification of malware over different program run lengths. The findings demonstrate that
malware can be detected using dynamic analysis with relatively few opcodes.

Keywords: Component, Packers, Polymorphism, Metamorphism malware, Obfuscation, Dynamic analysis, Machine
learning, SVM

© 2016 O’kane et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
The malware industry has evolved into a well-organized
$Billion marketplace operated by well-funded, multi-
player syndicates that have invested large sums of money
into malicious technologies, capable of evading tradi-
tional detection systems. To combat these advancements
in malware, new detection approaches that mitigate the
obfuscation methods employed by malware need to be
found. A detection strategy that analyzes malicious activ-
ity on the host environment at run-time can foil malware
attempts to evade detection. The proposed approach is
the detection of malware using a support vector machine
(SVM) on the feature (opcode density histograms)
extracted during program execution. The experiments
use feature filtering and feature selection to investigate all
the Intel opcodes recorded during program execution.

While the full spectrum of opcodes is recorded, fea-
ture filtering is applied to narrow the search scope of the
feature selection algorithm, which is applied across dif-
ferent program run-lengths. This research confirms that

malware can be detected during the early phases of exe-
cution, possibly prior to any malicious activity.

“System overview” section describes the experimental
framework and “Test platform” section details the test
platform used to capture the program traces. “Dataset
creation” section explains the dataset creation and is fol-
lowed in “Opcode pre-filter” section with a description of
the filtering method used. “Support vector machine” sec-
tion introduces an SVM and describes the feature selec-
tion process. The results and observations are reviewed
in “Discussion” section. Finally, “Conclusion” section
concludes with a summary of the findings.

Related work
This research is an investigation into malware detection
using N-gram analysis and is an extension of the work
presented in [1]. However, a summary of the related
research is given here to aid the discussion within this
paper. Typical analysis approaches involve Control Flow
Graphs (CFG), State Machines (modelling behaviour),
analysing stack operations, taint analysis, API calls and
N-gram analysis.

Code obfuscation is a popular weapon used by mal-
ware writers to evade detection [2]. Code obfuscation
modifies the program code to produces a new version

Open Access

*Correspondence: p.okane@qub.ac.uk
Centre for Secure Information Technologies, Queen’s University Belfast,
Belfast, Northern Ireland, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13388-016-0027-2&domain=pdf

Page 2 of 12O’kane et al. Secur Inform (2016) 5:2

with the same functionality but with different Portable
Executable (PE) file contents that are not known by the
antivirus scanner. Obfuscation techniques such as pack-
ing are used by malware authors as well as legitimate
software developers to compress and encrypt the PE.
However, a second technique polymorphism [2] is used
by malware. Polymorphic malware uses encryption to
change the body of the malware which is governed by a
decryption key that is changed each time the malware is
executed creating a new permutation of the malware on
each new infection. Eskandari et al. [3] propose to use
program graph mining techniques for detecting poly-
morphic malware. However, these works employing sub-
graph matching to classify and detect malware. These
API based methods are easily subverted by changing API
call sequence or adding extra API calls that have no effect
except to disrupt the call-graph.

Sung et al. [4] proposed an anomaly based detection
using API call sequences to detect unknown and poly-
morphic malware using an Euclidian distance measure-
ment between API sequences alignment of different call
sequences. This API sequence alignment proposed by
Sung approach is effectively a signature based approach
since it ignores the frequency of the API calls.

Tian et al. [5] explored a method for classifying Trojan
malware and demonstrated that function length plays a
significant role in classifying malware and if combined
with other features could result in an improvement in
malware classification. Unfortunately, these techniques
are easily subverted with the addition of innocuous API
calls. Sami et al. [6] also propose a method of detecting
malware based on mining API calls statically gathered
from the Import Address Tables (IAT) of PE files.

Lakhotia et al. [7] investigated stack operations as a
means to detect obfuscated function calls. His method
modelled stack operation based on push, pop and rets
opcodes. However, his approach failed to detect obfusca-
tion when the stack is manipulated using other opcodes.

Bilar [8] demonstrated using static analysis that Win-
dows PE files contain different opcode distributions for
obfuscated and non-obfuscated code. Bilar’s findings
showed that opcodes such as adc, add, inc, ja, and sub
could be used to detect malware.

In other research, Bilar [9] used statically generated
CFG to show that a difference in program flow control
structure exists between benign and malicious programs.
Bilar concluded that malware has a simpler program flow
structure, less interaction, fewer branches and less func-
tionality than benign software.

More recent, research carried out by Agrawal et al.
[10] also demonstrated a difference in the program flow
control of malicious and benign software. Agrawal used

an abstracted CFG that considered only the external
artefacts of the program and used an ‘edit distance’ to
compare the CFGs of programs. His findings show a dif-
ference in the flow control structure between benign and
malicious programs.

N-gram analysis is the examination of sequences of
bytes that can be used to detect malware. Using a machine
learning algorithm, Santos et al. [11] demonstrated that
N-gram analysis could be used to detect malware.

Santos et al. [12] perform static analysis on PE files to
examine the similarity between malware families and
the differences between benign and malicious software.
Analysis with N-gram (N = 1) showed considerable simi-
larity between families of malware, but no significant dif-
ference between benign and malicious software could be
established. In a later paper, Santos et al. evaluated sev-
eral machine learning algorithms [13] and showed that
malware detection is possible using opcodes. Anderson
et al. [14] combine both static and dynamic features in
a multiple kernel learning framework to find a weighted
combination of the data sources that produced an effec-
tive classification.

Shabtai et al. [15] used static analysis to evaluate the
influence of N-gram sizes (N = 1–6) to detect malware
using several classifiers and concluded that N = 2 per-
formed best. Moskovitch et al. [16] also used N-gram
analysis to investigate malware detection using opcodes
and his findings concurred with Shabtai. Song et al. [17]
explored the effects of polymorphism and confirmed that
signature detection is easily evaded using polymorphism
and is potentially on the brink of failure.

Due to the weakness in static analysis and the increase
of obfuscated malware, it is difficult to ensure that all
the code is thoroughly inspected. With the increas-
ing amount of obfuscated malware being deployed, this
research focuses on dynamic analysis (program run-time
traces). Other dynamic analysis approaches use API calls
to classify malware, which can easily be obfuscated by
malware writers. Therefore, these experiments seek to
identify run-time features (below the API calls) that can
be used to identify malware. For this reason, the research
investigates opcode density histograms obtained during
program run-time as a means to identify malware.

System overview
The goal of this research, is two-fold (1) find a set of
opcodes that are good indicators of malware and (2)
determine how long the program needs to run in order to
obtain an accurate classification. Figure 1 shows an over-
view of the experimental approach and to assist under-
standing, each section is labeled with a corresponding
section heading used throughout this paper.

Page 3 of 12O’kane et al. Secur Inform (2016) 5:2

 • ‘Test Platform’: The program samples are executed
within the controlled environment to create program
run-time traces.

 • ‘Dataset Creation’: Each program trace is parsed and
sliced into 14 different program run-lengths, creating
14 unique datasets defined by the number of opcodes
executed.

 • ‘Pre-Filtering’: A filter is applied to reduce the num-
ber of opcodes (features) that the SVM needs to pro-
cess; thereby reducing the computational overhead
during the SVM training phase.

 • ‘SVM Model Selection’: is a process of selecting
hyper-parameters (regularisation and kernel param-
eters) to achieve good out-of-sample generalisation.

Test platform
A native environment would provide the best platform in
terms of the least tell-tale signs of a test environment and
thereby mitigate any attempts by the malware to detect
the test environment and exit early. However, other con-
siderations need to be taken into account, such as ease of
running the malware trace analysis.

A virtual platform is selected (QEMU-KVM), as the
hypervisor provides isolation of the guest platform (Win-
dows 7 OS test environment) from the underlying host
OS and incorporates a backup and recovery tool that
simplifies the removal of infected files. In addition to
the virtual platform, a debugger is used to record the
run-time behaviour of the programs under investiga-
tion. A plethora of debugging tools exist, with popular
choices for malware analysis being IDA Pro, Ollydbg and
WinDbg32 [18].

The Ollydbg debugger is chosen to record the pro-
gram traces as it utilizes the StrongOD plug-in, which
conceals the debugger’s presence from the malware.
When a debugger loads a program, the environment set-
ting are changed, which enables the debugger to control

the loaded program. Malware uses techniques to detect
debuggers and avoid being analysed. StrongOD mitigates
many of the anti-analysis techniques employed by mal-
ware and for an in-depth discussion on these techniques
see work by [19, 20].

Dataset creation
Operational codes (Opcodes) are referred to as assembly
language or machine language instructions and are CPU
operations. They are usually represented by assembly lan-
guage mnemonics.

Before realising the classifier, the raw data is distilled
into a set of meaningful information that is used to train
the classifier to predict unknown malicious and benign
software samples. As discussed in the related work sec-
tion, the features are constructed from program trace (p)
and is represented as a set of instructions (I) and where n
is the number of instructions:

An instruction consists of an opcode and operands.
Opcodes, by themselves, are significant [8] and, there-
fore, only the opcodes are harvested with the operand
being reduntant.

The program can, therefore, be defined as a set of
ordered opcodes o:

Program slicing is used to investigate the effects of dif-
ferent program run lengths. Therefore, os is defined as a
set of ordered opcodes within a program execution:

where m is the length of the program slice, 1k, 2k, 4k …
8192k opcodes.

(1)p = I1, I2, . . . In

(2)p = o1, o2, . . . on

(3)os ⊆ p

(4)os = o1, o2 . . . om

Program
Trace

Prune
Opcodes

Program
Slicer

SVM 1Eigen Filter 1Opcode statistical
Parsing 1

Program
Samples

Test Platform

SVM 2Eigen Filter 2Opcode statistical
Parsing 2

SVM nEigen Filter nOpcode statistical
Parsing n

D
et

ec
tio

n
R

at
e

Program Length

Results

Dataset Creation Pre-Filtering SVM Model
Selection Discussion

Fig. 1 Experiment overview

Page 4 of 12O’kane et al. Secur Inform (2016) 5:2

The opcode density histograms are constructed using
the following steps:

 • The program traces are created by recording the run-
time opcodes that are executed when a program is
run;

 • The opcode densities for each program trace are cal-
culated using the parser described below.

The dataset is created by expressing the features as a
set of opcodes density, extracted from the runtime traces
of Windows PE files. The dataset consists of 300 benign
Windows PE files taken from the ‘Windows Program Files’
directory, and 350 malware files (Windows PE) down-
loaded from Vxheaven [21]. The datasets are constructed
from different program run lengths, creating 14 distinct
datasets. This new datasets are created by cropping the
trace files into lengths based on the number of opcodes
(1k-opcodes, 2k-opcodes etc.) prior to constructing a den-
sity histogram for each cropped trace file. The dataset crea-
tion starts by cropping the original dataset into 1k opcodes,
and a density histogram is created, and is repeated for 2k,
4k, 8k, 16k,… 4096k and 8192k opcodes in length.

Opcode pre‑filter
The computational effort associated with N-gram analy-
sis is often referred to as the ‘Curse of dimensionality’
and was first coined by Bellman in 1961 to describe the
exponential increase in computational effort associ-
ated with adding extra dimensions to a domain space.
Using an SVM to examine all the opcode permutations
over the complete opcode range creates a computational
problem due to the high number of feature permutations
produced.

The increased effort for each additional feature added
is calculated using the following Eq. (5)

where n = total number of features in the dataset;
r = number of features within the group of features
under consideration.

To reduce the computational effort, the area of search
is restricted to those features that contain the most infor-
mation. This is achieved by applying a filtering process
that ranks features according to the information that
they contain and that is likely to be useful to the SVM
[22]. Each feature is assigned an importance value using
eigenvectors, thereby ranking the feature’s usefulness as a
means of classification.

Principal Component Analysis (PCA) is a transforma-
tion of the covariance matrix, and it is defined in (6) as
per [23]:

(5)number of permutations =
n!

(n− r)!r!

where C = Covariance matrix of PCA transformation;
X = dataset value; X = dataset mean; n and m = data
length.

PCA compresses the data by mapping it into subspace
(feature space) and creating a set of new variables. These
new variables (feature space) that define the original data
are called principal components (PCs), and retain all of
the original information in the data. The new variables
(PCs) are ordered by their contribution (usefulness/
eigenvalue) to the total information.

The filter consists of two phases: Firstly, PCA is used
to determine the most significant PCs, i.e. the number of
PCs that contain 99.5 % of the data variance. PCA calcu-
lated that 8 PC values embodied 99.5 % of the total vari-
ance i.e. Eq. (10) n = 8. Secondly, the ranking value (R)
is used to identify those opcodes that contain significant
information (variance) and is calculated by multiplying
the significant eigenvector column with the respective
eigenvalues and then summing each row:

where R = Sum of the matrix variance; V = eigenvector;
d = Eigenvalue scalar; n = 8; most significant values that
represent 99.5 % of the variance within the data.

Figure 2 shows the ranking of features using (10), with
the Y axis showing the ranking of the features, the X
axis listing the features (opcodes) and the Z axis show-
ing the different program run lengths. It can be seen
that the top 20 ranked features vary with the program
run length.

However, high ranking features such as rep, mov, add,
etc. remain consistently high over the different program
run lengths and the lowest ranking features such as lea,
loopd, etc. remain consistently low over the different pro-
gram run lengths. Considering the mid-ranking features,
it can be seen that significant variations occur with differ-
ent program run lengths.

Splitting these features into their opcode categories:
arithmetic (sub, dec); logic (xor); and flow control (je, jb,
jmp, pop, nop and call) infers that the program struc-
ture (flow control) changes with different program run
lengths. Therefore, in the following experiment, the filter
is run for each program run length to ensure the opti-
mum feature selection.

Support vector machine
SVMs are classifiers that rely heavily on the optimal
selection of hyper-parameters. A poor choice of values

(6)Cij =
1

n− 1

n
∑

m=1

(

Xim − X̄i

)(

Xjm − X̄j

)

(7)Rk =

n
∑

k=1

V · dk

Page 5 of 12O’kane et al. Secur Inform (2016) 5:2

for a hyper-parameter can lead to poor performance in
terms of overly complex hypothesis that leads to poor
out-of-sample generalisation. The task of searching for
optimal hyper-parameters, with respect to the perfor-
mance measures (validation), is the called ‘SVM Model
Selection’.

The model selection process is categorised into:

 • Kernel selection;
 • Parameter grid search;
 • Feature selection.

Herbrich et al. [24] demonstrated that, without nor-
malisation, large values can lead to over-fitting and
thereby reducing the out-of-sample generalisation. Nor-
malisation can be performed in either the ‘input space’ or
the ‘feature space’.

Input Space normalisation is carried out on the input
features (x) and is defined as:

Feature space normalisation is applied to the kernel
rather than to the input vectors. Consider a kernel func-
tion K(x, y) which represents a dot-product in the feature
space. Normalisation in the feature space requires a new
kernel function definition [25]:

where R is a unit hypersphere.
Input space normalisation, as defined in (11), is imple-

mented in the experiments presented in this paper.

(8)x̄ =
x

�x�
∈ R

(9)k̄
(

x, y
)

=
k
(

x, y
)

√

k(x, x)k
(

y, y
)

∈ R

An SVM maximizes the precision of the model by
transposing the data into a feature space (high dimen-
sional) where a hyper-plane separates the new features
into their respective classes. This increases the class
separation and is illustrated by way of an example, two
opcodes pop and ret are used as they demonstrate the
characteristics of kernel mapping. Figure 3 shows a plot
of pop and ret features and how there mapping into fea-
ture space increases class separation.

The selection of an appropriate Kernel is key to the suc-
cess of any machine learning algorithm. A linear kernel
generally performs better at generalising the training
phase into good test results where the data can be lin-
early separated. However, as shown in Fig. 5, the data is
not linearly separated. Therefore, an RBF kernel (a non-
linear decision plane) is used as it yields a greater accu-
racy than a linear kernel, as illustrated in Figs. 5 and 6.

The correct adjustment of the RBF kernel parameters
significantly affects the performance of the SVM’s ability
to classify correctly, and poorly adjusted parameters can
lead to either overfitting or underfitting. There are two
parameters—C and λ. C is used to adjust the trade-off
between bias and variance errors and λ determines the
width of the decision boundary in feature space.

Two grid searches are performed to find the values of
λ and C that produce an optimal SVM configuration.
The first search is a coarse grain search, ranging from
λ = 1 e−5 to 1 e5 and C = 0–10. This is followed by a fine
grain search (increments of 0.1) over a reduced range
(λ = ±10, C = 0–3). The optimal performance was estab-
lished with λ = 1 and C = 0.8.

Before continuing with the experiments, the results
need to be placed in context. The measure of malware
detection is based on:

Fe
at

ur
e

Ra
nk

in
g

Highest

Lowest

Pr
og

ra
m

 R
un

 Le
ng

th

Opcode Features

Y

X

Z

Fig. 2 Features ranked by eigenvalues

Page 6 of 12O’kane et al. Secur Inform (2016) 5:2

Detection accuracy is defined in (10) and is the correct
classification of True Positive (TP) and True Negative
(TN).

False positive (FP) is when a benign file is mistakenly
classified as a malicious file and is defined in (11).

This is also known as a false alarm and can have a sig-
nificant impact on malware detection systems. For exam-
ple, if an antivirus program is configured to delete or
quarantine infected files, a false positive can render a sys-
tem or application unusable.

False negative (FN) is when a malicious file is mistak-
enly classified as benign and is defined in (12).

This occurs when an anti-virus security product fails
to detect an instance of malware. This can be due to a
zero-day attack or malware using obfuscation techniques
to evade detection [2]. The impact of this security threat
depends on whether the detection method is the last line
of defence in the overall malware detection system.

False positives present a major problem, in that net-
works and host machines, can be taken out of service by
the protective actions, as a consequent of alarms, such
as quarantining or deleting a critical file. However, this
paper focuses on end-point detection where false nega-
tives present a security threat. Therefore, this research
focuses on the minimisation of FN rate along with the
detection accuracy.

(10)Detection Accuracy =
TP + TN

TP + TN + FP + FN

(11)False Positive =
FP

TP + FP

(12)False Negative =
FN

TN + FN

In order to address the problem of FN rates, the opti-
misation function considers the FN rates by measuring
the distance between the detection accuracy and the FN
rate as described in (13). Steers the search by selecting
those features that maximise OPTvalue.

where D is a scalar used to adjust the sensitivity of the FN
rate.

The challenge here is to choose a value of D that guides
the SVM to select features that lead to the desired behav-
iour i.e. maximise the detection accuracy while mini-
mising the FN rate. Setting D = 1 will direct the SVM
to maximise the distance between detection accuracy
and the FN rate. However, this may not yield the lowest
FN rate. Therefore, D has to be greater than 1 to penal-
ise the SVM for selecting non-minimal FN rates. A pilot
study is carried out to find the value of D that will pro-
duce the maximum detection accuracy that has a low FN
rate. It is not practical to investigate all values of D for all
the combinations of opcodes studied in this experiment.
Therefore, the cost function (13) is evaluated for D = 1,
1.5, 2 and 4. The results are shown in Fig. 4, where the
upper part of the graph shows the detection accuracies
for D = 1, 1.5, 2 and 4 against the program run lengths
and the lower part of the graph shows the FN rates for
D = 1, 1.5, 2 and 4 against the program run lengths. The
following observations can be made:

 • D = 1 produces a detection accuracy ranging from
72.3 to 90.8 % (average 85.1 %) and a FN rate ranging
from 0 to 10.79 % (average 5.4 %);

 • D = 1.5 produces a detection accuracy ranging from
70.8 to 90.8 % (average 84.4 %) and a FN rate ranging
from 0 to 9.25 % (average 4.96 %);

(13)OPTvalue = Detection Accuracy− D × FN Rate

* Benign

+Malware

Histogram Instances

O
pc

od
e

D
en

si
ty

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.01

0.02

0.03

0.45

0.35

0.3

0.2

0.25

0.15

0.1

0
0 50 100 150 200 250

0.05

0.4

0.04

0.05

0.06
RBF Kernel Mapping

Malware
Benign
Support Vectors

Feature space
mapping

Fig. 3 Opcode density for pop and ret mapped into feature space

Page 7 of 12O’kane et al. Secur Inform (2016) 5:2

 • D = 2 produces a detection accuracy ranging from
70.8 to 90.8 % (average 84.4 %) and a FN rate ranging
from 0 to 6.18 % (average 2.98 %);

 • D = 4 produces a detection accuracy ranging from
70.8 to 81.5 % (average 75.1 %) and a FN rate ranging
from 0 to 3.1 % (average 0.44 %).

Considering the average results; D = 1 and D = 1.5
yield very similar results with good detection accuracy
of 85.1 and 84.4 % respectively but D = 1 and D = 1.5
produce a high FN rate of 5 % approximately. D = 4,
produces an excellent FN rate of 0.44 %; however the cor-
responding detection accuracy is low at 75.1 %. D = 2
yields a compromise between D = 1.5 and D = 4 with a
detection accuracy of 84.4 % and a FN rate of 2.98 %.

The results show that a lower value of D achieves a
higher detection rate at the expense of the FN rate. A
greater value of D results in lower FN rate at the cost of
the detection rate. D = 2 delivers a low FN rate without
overly penalising the detection accuracy and is therefore
chosen as the steering function (13) for the remainder of
the experiments carried out in this paper.

The SVM feature search uses Eq. (13) with D = 2 and
scans all the combinations of opcodes. The search starts
with one opcode and examines each of the filtered
opcodes, testing for the largest value of (13). Next, the
search is repeated, examining all unique combinations of

two features and so forth, until all 20 opcode features are
used. Table 1 shows the results, with the maximum opti-
misation value shaded.

Note, the columns ‘1 to 20’ represents the number of
opcodes in each test, with the rows ‘1, 2, 4, 8,…, 8192’
represent the program run lengths in k-opcodes. The
optimisation value is shown against that number of
opcodes and program run length. I.e. the first row shows
the cost function value (measure of performance) for a
single opcode feature, with the maximum optimisation
value for each program, run length and the second row
shows the cost function values for two opcode features,
with the maximum optimisation value for each program
run length and so on. In Table 1, the maximum values are
identified with an underscore. It can be seen that a point
is reached, when adding more features results in a reduc-
tion of the maximum value; the assumption made is that
over-fitting is occurring. As already mentioned, the grid
search is guided by the performance metric in Eq. (13)
and is measured using tenfold cross-validation.

While an optimal detection rate is a vital characteris-
tic of any detection system, FP and FN rates need to be
considered. These experiments are aimed at end host
detection, and it can be argued that FN rates outweigh
the importance of FP rates. Therefore, the aim of our
approach is to convict all suspicious files and let further
malware analysis determine their true status.

0

4

8

12

16

20

Program Run Length (k-opcodes)

Fa
lse

 N
eg

a�
ve

 R
at

e
(%

)
De

te
c�

on
 A

cc
ur

ac
y

(%
)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

70

75

80

85

90

95

100

D=1

D=1.5

D=2

D=1

D=1.5

D=2

D=4

D=4

Fig. 4 Evaluation of the scalar D used in the cost function

Page 8 of 12O’kane et al. Secur Inform (2016) 5:2

In a final testing phase, bootstrapping is introduced
to ensure a robust measure of out-of-sample generalisa-
tion performance. The concern is that sample clustering
may result, as many of the malware samples belong to the
same malware family and often have similar file names.
The Parser used, reads files from the directory (in alpha-
betic order) and creates the density histograms, which
may result in clustering of malware samples that belong
to the same family. Therefore, randomly selecting test
samples prior to the SVM processing will ensure that the
validation data is random.

Bootstrapping is implemented in Matlab using the
built-in function ‘randperm’ to randomly split the data-
set into training and testing data. As shown in the script
below, the labels are first overwritten with ones to indi-
cate benign samples for training and zeros for malicious
training samples. The script then randomly overwrites
10 % of the benign and malicious files to test as shown in
the script below.

%Matlab script – Randomised Cross-validation
%Randomly select test data
% first set all the data samples to training data
inputDataBenignType(:) = ones; # Benign training samples
inputDataMalwareType(:) = zeros; # Malicious training samples

% randomly selects benign samples for testing
n = size(inputDataBenignType);
k=n(2)/10;
index = randperm(n(2),int8(k));
inputDataBenignType(index) = 3; #Benign testing samples

%Randomly select malware sample for testing
clear index;
n = size(inputDataMalwareType);
k=n(2)/10;
index = randperm(n(2),int8(k));
inputDataMalwareType(index) = 2;#Malicious testing samples

The premise of Bootstrapping is that, in the absence of
the true distribution, a conclusion about the distribution
can be drawn from the samples obtained. Parke et al. [26]
suggest that 200 iterations are sufficient to obtain a mean
and standard deviation value of statistical importance.

As previously mentioned, the optimisation value is
used to find a set of features that yield the optimum com-
bination of detection accuracy and FN rate (as shown in
Table 1). Figure 5 shows the detection accuracy and the
FN rates for the different program run lengths derived
from the maximum optimisation values (Table 1). The
results shown in Fig. 5 are validated using 200 itera-
tions of the Bootstrapping method. Figure 5 shows that
medium program run lengths produce the best detec-
tion accuracy coupled with the lowest FN rates. However,
good detection rates are achieved for short program run
lengths but detection rates need to be considered in con-
junction with the corresponding FN rate.

While there is no universally defined valued that speci-
fies a ‘good detection’ system; the values obtained in
these experiments need to be placed in context. Curt-
singer et al. [27], defined 0.003 % FN as an ‘extremely low
false negative system’ and Dahl [28] classified a system
with < 5 % FN as a ‘reasonably low’ false negative rate. Ye
et al. [29] examined several detection methods and found
that FN rates varied significantly with different classifiers
such as Naive Nayes with 10.4 % FN; SVM with 1.8 % FN;
Decision Tree (J48) with 2.2 % FN; Intelligent Malware
Detection System (IMDS) with 1.6 % FN.

While our approach fails to satisfy the criteria of
‘extremely low’ FN, it does meet the criteria for a ‘reason-
ably low’ FN rate for the program run lengths of 1k and
above 8k.

Table 1 Program run length versus %optimisation value

Page 9 of 12O’kane et al. Secur Inform (2016) 5:2

Figure 6 shows the detection accuracies (DR) and the
false negative rates (FN) plotted against the number of
features used for classification. Figure 6 is constructed
by taking an average of the detection accuracies and false
negative rates across the program run lengths (as indi-
cated by the maximum optimisation values shown in
Table 1) for feature groups (1–20). This shows the rela-
tionship between the number of features and the detec-
tion accuracy and false negative rates. It can be seen
that both the detection accuracy and false negative rate
improves with an increasing number of features (up to 13
features), and degrades and becomes more inconsistent
(greater variance) thereafter.

It can be seen (Fig. 6), that adding more features does
not always improve the results. The performance of both
the detection accuracy and the FN rate peaks at 13 fea-
tures (average), above which the performance degrades.
This degradation is pervasive in all the program run
lengths. It is believed that this is likely due to over-fitting
caused by too much variance being introduced by the
additional features. Again, the smallest variance occurs
with 13 features (average).

Discussion
The research presented, investigated the use of run-time
opcode traces to discriminate between malicious and

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Detec�on Accuracy (DAc)

False Nega�ve Rate (FN)

Program Run Length (k-Opcodes)

D
et

ec
tio

n
A

cc
ur

ac
y

an
d

Fa
ls

e
N

eg
at

iv
e

R
at

e
(%

)

Fig. 5 Detection accuracy and FN rate versus program run length

%
 D

et
ec

tio
n

A
cc

ur
ac

y

Number of Features

50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

%
 F

al
se

 N
eg

at
iv

e
R

at
e

Number of Features

Minimum variation

Minimum variation

Fig. 6 Detection accuracy and FN versus number of features

Page 10 of 12O’kane et al. Secur Inform (2016) 5:2

benign software. Table 2 summarizes the results in terms
of performance (Detection, false negative and false posi-
tive rates) versus program run lengths with the corre-
sponding opcode features.

The performance rates are listed in the right-hand
column (taken from Table 1) and correspond to differ-
ent program run lengths as indicated in the left-most
columns i.e. 1k-opcodes, 2k-opcodes, 4k-opcodes,
8k-opcodes, etc. The central columns list the opcodes
used to achieve these results.

Encryption-based malware often use the xor (opcode) to
perform their encryption and decryption. Table 2 shows
that xor frequently appears in the shorter program run
lengths. This frequent appearance of xor is expected as the
unpacking/decrypting occurs at the start of a program.
An exception is that the 4k-opcodes length program does
not use xor to classify benign and malicious software.

Figure 7 presents opcode categories in terms of their
ability to detect malware, which is constructed from the
information presented in Table 2. Figure 7 is calculated
for each category and then normalised using the total
area of all the categories. The results show that the flow

control category is the most effective at 59 % followed by
Logic and Arithmetic at 31 %. This implies that a program
structure (Flow Control) is the most significant indicator
of benign and malicious software followed by the logic
and arithmetic components of the program, which con-
curs with Bilar [8, 9] findings.

In summary, several observations can be made:

1. More is not always best; the optimum number of
features varies with the program run length, but
typically (average) 13 opcodes yield the best results.
As an example, the maximum detection accuracy
(83.4 %) for the 1k-opcode program run length is
achieved with 14 features. However, adding more
features decreases the detection accuracy, which is
typical of all the program run lengths.

2. Table 2 shows that xor is used as an indicator of mal-
ware for shorter program run lengths i,e 1k-opcdes to
126k-opcodes (excluding 4k-opcode). This is expected
behaviour as encrypted malware frequently uses xor
to perform its decryption and is normally exercised in
the early stages of the program execution.

 An exception, is the absence of xor in the 4k-opcode
length, which is not clearly understood beyond the
fact that the machine learning algorithm did not
chose it as an optimal feature for this program run
length i.e. other features performed better for this
particular program run length.

3. While FN is not ideal, many of the program run
lengths (excluding 2 and 4K-opcodes), are be con-
sidered to be a ‘reasonably low’ FN rate (FN < 5 %).
The relative short program run lengths of 2 and

Table 2 Optimum features for malware detection at selected run lengths (K‑opcodes)

Fig. 7 Breakdown of malware detection by opcode category

Page 11 of 12O’kane et al. Secur Inform (2016) 5:2

4k-opcodes have high FN rates of 8.47 and 13.49 %
respectively. The other program lengths present good
detection rates of 81–89 %, the FN rates between
1.58 and 5.87 %.

4. The maximum detection accuracy of 86.3 % with the
lowest FN rate (1.58 %) is obtained for a program
run length of 32k-opcodes. However, a program
run length of 1K-opcodes produces a good detec-
tion accuracy of 83.4 %, with a respectable FN rate of
4.2 %.

5. The bottom row (Occur) of Table 2 shows the number
of times a particular opcode was selected by the clas-
sifier (SVM) as an indicator of malware. For example,
opcode add was chosen 13 times out of 14 program
run lengths, whereas, opcode lods was only chosen
once for the 8k-opcode run length. What is clear, is
that the opcodes chosen (by the SVM) change rela-
tive to different program run lengths. Our observa-
tions show that shorter program run lengths rely on
‘logic and arithmetic’ and ‘flow control’, whereas the
longer program run lengths rely more on ‘flow con-
trol’ opcodes. This infers that the detection of longer
program run length relies on the complexity of the
call structure of a program. This is consistent with
Bilar [9] finding that showed malware having a less
complex call structure than non-malicious software.

Conclusion
The experimental work carried out in this research inves-
tigated the use of an SVM to detect malware. The fea-
tures used by the SVM were derived from program traces
obtained from program execution. The findings indicate
that encrypted malware can be detected using opcodes
obtained during program execution. The investigation
continued to establish an optimal program run-length
for malware detection. The dataset was constructed from
run-time opcodes and compiled into density histograms
and then filtered prior to SVM analysis. A feature selection
cost function was identified and used to steer the SVM for
optimal performance. The full spectrum of opcodes were
examined for information, and the search for the optimal
opcodes was quickly narrowed using an Eigenvector filter.

The findings show that malware detection is possible
for very short program run lengths of 1k-opcodes that
produce a detection rate of 83.41 % and a FN rate of
4.2 %. Using mid-range program run lengths also yields
a sound detection rate. However, their corresponding FN
rates deteriorate. The 1k-opcode characteristics provide
a basis to detect malware during run-time, potentially
before the program can complete its malicious activity,
i.e. during their unpacking and deciphering phase.

The research presented, provides an alternative mal-
ware detection approach that is capable of detecting

obfuscated malware and possible Zero-day attacks. With
a small group of features and short program run length, a
real world application could be implemented that detects
malware with minimal computation, enabling a practical
real world solution to detect obfuscated malware.

Authors’ contributions
We have read the ICMJE guidelines and can confirm that the authors PO, SS,
KM contributed intellectually to the material presented in this manuscript. All
authors read and approved the final manuscript.

Competing interests
We the authors of this paper confirm that we do not have any competing
financial, professional or personal interests that would influence the perfor-
mance or presentation of the work described in this manuscript.

Received: 14 July 2015 Accepted: 20 April 2016

References
 1. Okane P, Sakir S, McLaughlin K, Im EG (2014) Malware detection: program

run length against detection rate. IET Softw 8(1):42–51
 2. O’Kane P, Sezer S, McLaughlin K (2011) Obfuscation: the hidden malware.

IEEE Secur Privacy 9(5):41–47
 3. Eskandari M, Hashemi S (2012) A graph mining approach for detecting

unknown malwares. J Vis Lang Comput 23(3):154–162
 4. Sung A, Xu J, Chavez P, Mukkamala S, et al (2004) Static analyzer of vicious

executables (save). In: Proceedings of the 20th annual computer security
applications conference, 2004

 5. Tian R, Batten L, Islam R, et al (2009) An automated classification system
based on the strings of trojan and virus families. In: Proceedings of the
4rd international conference on malicious and unwanted software:
MALWARE, 2009, pp 23–30

 6. Sami A, Yadegari B, Rahimi H, et al (2010) Malware detection based on
mining API calls. In: Proceedings of the 2010 ACM symposium on applied
computing, 2010, pp 1020–1025

 7. Lakhotia A, Kumar EU, Venable M (2005) A method for detecting obfus-
cated calls in malicious binaries. IEEE Trans Softw Eng 31(11):955–968

 8. Bilar D (2007) Opcodes as predictor for malware. Int J Electron Secur Digit
Forensics 1(2):156–168

 9. Bilar D (2007) Callgraph properties of executables and generative mecha-
nisms. AI Communications, special issue on Network Analysis in Natural
Sciences and Engineering 20(4): 231–243

 10. Agrawal H (2011) Detection of global metamorphic malware variants
using control and data flow analysis. WIPO Patent No. 2011119940, 30
September 2011

 11. I Santos, YK Penya, J Devesa, PG Garcia (2009) N-grams-based file
signatures for malware detection. S3Lab, Deusto Technological
Foundation

 12. Santos I, Brezo F, Nieves J, Penya YK, Sanz B, Laorden C, Bringas PG (2010)
Opcode-sequence-based malware detection. In: Proceedings of the 2nd
international symposium on engineering secure software and systems
(ESSoS), Pisa (Italy), 3–4th February 2010, LNCS 5965, pp 35–43

 13. Santos I, Brezo F, Ugarte-Pedrero X, Bringas PG (2013) Opcode sequences
as representation of executables for data-mining-based unknown mal-
ware detection. Inf Sci 231:64–82

 14. Anderson B, Storlie C, Lane T (2012, October) Improving malware classifi-
cation: bridging the static/dynamic gap. In: Proceedings of the 5th ACM
workshop on Security and artificial intelligence, pp 3–14. ACM

 15. Shabtai A, Moskovitch R, Feher C, Dolev S, Elovici Y (2012) Detecting
unknown malicious code by applying classification techniques on
opcode patterns. Secur Inf 1(1):1–22

 16. Moskovitch R, Feher C, Tzachar N, Berger E, Gitelman M, Dolev S, Elovici
Y (2008) Unknown malcode detection using opcode representation. In:
Proceedings of the 1st European conference on intelligence and security
informatics (EuroISI08), 2008, pp 204–215

Page 12 of 12O’kane et al. Secur Inform (2016) 5:2

 17. Song Y, Locasto M, Stavro A (2007) On the infeasibility of modeling poly-
morphic shellcode. In: ACM CCS, 2007, pp 541–551

 18. Eilam E (2011) Reversing: secrets of reverse engineering. Wiley, New York
 19. Ferrie P (2011) The ultimate anti debugge reference. http://pferrie.host22.

com/papers/antidebug.pdf. Written May 2011, last accessed 11 October
2012

 20. Chen X, Andersen J, Mao ZM, Bailey M, Nazario J (2008) Towards an
understanding of anti-virtualization and anti-debugging behavior in
modern malware. In: ICDSN proceedings, 2008, pp 177–186

 21. Heaven VX (2013) Malware collection. http://vxheaven.org/vl.php. Last
accessed Oct 2013

 22. O’Kane P, Sezer S, McLaughlin K, Im EG (2013) SVM training phase reduc-
tion using dataset feature filtering for malware detection. IEEE Trans Inf
Forensics Secur 8(3):500–509

 23. Kantardzic M (2011) Data mining: concepts, models, methods, and algo-
rithms. Wiley, London. ISBN 0-471-22852-4

 24. Herbrich R, Graepel T (2002) A PAC-Bayesian margin bound for linear clas-
sifiers. IEEE Trans Inf Theory 48(12):3140–3150

 25. Graf ABA, Borer S (2001) Normalization in support vector machines., Pat-
tern RecognitionSpringer, Berlin, Heidelberg, pp 277–282

 26. Parke J, Holford NHG, Charles BG (1999) A procedure for generating boot-
strap samples for the validation of nonlinear mixed-effects population
models. Comput Methods Programs Biomed 59(1):19–29

 27. Curtsinger C, Livshits B, Zorn B, Seifert C (2011) Zozzle: low-overhead
mostly static javascript malware detection. In: Proceedings of the usenix
security symposium, Aug 2011

 28. Dahl G, Stokes JW, Deng L, Yu D (2013) Large-scale malware classification
using random projections and neural networks. Poster (MLSP-P5.4), May
ICASSP 2013, Vancouver Canada, IEEE Signal Processing Society, 2013

 29. Ye Y, Wang D, Li T, Ye D (2007) IMDS: intelligent malware detection system.
In: Proceedings of the 13th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM, 2007

http://pferrie.host22.com/papers/antidebug.pdf
http://pferrie.host22.com/papers/antidebug.pdf
http://vxheaven.org/vl.php

	Detecting obfuscated malware using reduced opcode set and optimised runtime trace
	Abstract
	Background
	Related work
	System overview
	Test platform
	Dataset creation
	Opcode pre-filter
	Support vector machine
	Discussion
	Conclusion
	Authors’ contributions
	References

