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Abstract
Aims/hypothesis Intra-retinal extravasation and modification
of LDL have been implicated in diabetic retinopathy:
autophagy may mediate these effects.
Methods Immunohistochemistry was used to detect
autophagy marker LC3B in human and murine diabetic and
non-diabetic retinas. Cultured human retinal capillary
pericytes (HRCPs) were treated with in vitro-modified
heavily-oxidised glycated LDL (HOG-LDL) vs native LDL
(N-LDL) with or without autophagy modulators: green
fluorescent protein–LC3 transfection; small interfering
RNAs against Beclin-1, c-Jun NH(2)-terminal kinase (JNK)
and C/EBP-homologous protein (CHOP); autophagy inhibitor
3-MA (5 mmol/l) and/or caspase inhibitor Z-VAD-fmk
(100 μmol/l). Autophagy, cell viability, oxidative stress,
endoplasmic reticulum stress, JNK activation, apoptosis and
CHOP expression were assessed by western blots, CCK-8
assay and TUNEL assay. Finally, HOG-LDL vs N-LDL were
injected intravitreally to STZ-induced diabetic vs control rats

(yielding 50 and 200 mg protein/l intravitreal concentration)
and, after 7 days, retinas were analysed for ER stress,
autophagy and apoptosis.
Results Intra-retinal autophagy (LC3B staining) was
increased in diabetic vs non-diabetic humans and mice. In
HRCPs, 50 mg/l HOG-LDL elicited autophagy without
altering cell viability, and inhibition of autophagy decreased
survival. At 100–200 mg/l, HOG-LDL caused significant cell
death, and inhibition of either autophagy or apoptosis
improved survival. Further, 25–200 mg/l HOG-LDL
dose-dependently induced oxidative and ER stress. JNK
activation was implicated in autophagy but not in apoptosis.
In diabetic rat retina, 50 mg/l intravitreal HOG-LDL elicited
autophagy and ER stress but not apoptosis; 200 mg/l elicited
greater ER stress and apoptosis.
Conclusions Autophagy has a dual role in diabetic retinopa-
thy: under mild stress (50 mg/l HOG-LDL) it is protective;
under more severe stress (200 mg/l HOG-LDL) it promotes
cell death.
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CHOP C/EBP-homologous protein
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eIF2α Eukaryotic initiation factor 2α
ER Endoplasmic reticulum
GFP Green fluorescent protein
GRP78 Glucose-regulated protein
HOG-LDL Highly oxidised glycated LDL
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HRCP Human retinal capillary pericyte
JNK c-Jun NH(2)-terminal kinase
N-LDL Native LDL
PARP Poly ADP ribose polymerase
PERK Protein kinase R‑like endoplasmic

reticulum kinase
RPE Retinal pigment epithelium
ROS Reactive oxygen species
siRNA Small interfering RNA
STZ Streptozotocin
UPR Unfolded protein response
VEGF Vascular endothelial growth factor
WT Wild-type

Introduction

Diabetic retinopathy remains a major cause of visual
impairment in the working-age population [1]. Pericytes are
critical in maintaining retinal vascular integrity [2]; their loss
is considered an initiating event of diabetic retinopathy [3–6]
but the mechanisms of pericyte loss are poorly understood,
hindering development of effective therapies.

Autophagy, a catabolic process by which cells degrade and
recycle their own constituents through a lysosomal
mechanism, acts as a cellular sensor of intra- and extracellular
stresses [7, 8]. In diabetes, misfolded proteins accumulate in
the endoplasmic reticulum (ER) leading to ER stress. ER
stress activates the unfolded protein response (UPR), restoring
protein homeostasis and promoting cell survival. Autophagy
is an alternative pathway to the UPR. Rapamycin, an inducer
of autophagy, inhibits angiogenic sprouting and vascular
endothelial growth factor (VEGF) production in a co-culture
model of retinal pigment epithelial (RPE) and endothelial cells
[9–11], and in diabetic rats it suppresses retinal oxidative
stress and VEGF expression [10] and prevents age-related
retinopathy [11]. Targeting autophagy may therefore have
therapeutic potential; however, in certain circumstances,
autophagy may activate apoptotic death [12], and depending
on context, stress-induced autophagymay promote survival or
death of a given cell species [13].

Diabetic retinopathy is generally viewed as a consequence
of hyperglycaemia, but in previous studies we showed that
extravasated modified LDL also plays a critical role [14–24].
The effects of extravasated lipoproteins in atherosclerosis are
well-established [25]; we have demonstrated analogous
effects in the retina once the blood–retinal barrier (BRB)
integrity is compromised, or bypassed, as in an animal model
we described recently [26]. Initial leakage may be mild and
transient but, as extravasated LDL accumulates, vicious cycles
of damage may be established. While oxidised lipoprotein-
induced autophagy is implicated in atherogenesis [27], little
is known regarding the retina. Previously, we showed that in

human retinal capillary pericytes (HRCPs) and retinal pigment
epithelium (RPE), ER stress that had been induced by highly
oxidised glycated human LDL is mitigated by the UPR, but
that in the presence of continued severe stresses ER
homeostasis could not be preserved, resulting in apoptosis
[22, 23]. In this study, we aim to determine the underlying
mechanisms whereby autophagy and apoptosis contribute to
pericyte death.

Methods

Ethics The study was approved by the Institutional Review
Board at the University of Oklahoma Health Sciences Centre
(OUHSC) and the Ethics Committee at the Queen’s
University of Belfast, and was conducted according to the
principles of the Declaration of Helsinki. Animal experiments
were approved by the Institutional Animal Care and Use
Committee at the Medical University of South Carolina and
by the Queen’s University Belfast Ethical Review Committee
for Animal Research. All the animal experiments were
randomised and blind to group assignment and outcome
assessment.

Immunohistochemistry of human retinas Human retinas
were obtained post-mortem from the National Disease
Research Interchange (NDRI; Philadelphia, PA, USA) as
described [23, 24]. Retinas were from age-matched
individuals categorised as follows: non-diabetic, diabetic
without clinical diabetic retinopathy; diabetic with retinopathy
(n = 3 o r 4 pe r g roup ) . The an t i body used fo r
immuno-histochemical detection of autophagy marker LC3B
(catalogue No. 3868, 1:100 dilution; Cell Signaling
Technology, Danvers, MA, USA) was also used in western
blots (below): according to the manufacturer, it recognises
human and murine LC3BI and LC3BII, and may exhibit some
cross-reactivity with LC3A. Absence of non-specific tissue
binding by secondary antibodies was confirmed. See
Methods in electronic supplementary material (ESM) for de-
tails of retinal sample preparation and immunohistochemistry.

LDL preparation, modification and characterisation
Lipoproteins were prepared as described [23, 28]. Briefly,
native LDL (N-LDL) was prepared by sequential
ultracentrifugation of freshly pooled plasma from healthy hu-
man volunteers. Highly oxidised glycated LDL (HOG-LDL)
was prepared by glycating N-LDL, then oxidising with CuCl2.
See ESM Methods for details.

Genetically modified mouse model of hyperlipidaemia
Genetically modified C57B16 male mice (Genentech, South
San Francisco, CA, USA) with double knockout of the genes
encoding the LDL receptor (Ldlr−/−) and apolipoprotein B
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mRNA-editing catalytic polypeptide (converts ApoB100 to
ApoB48) (Apobec1−/−) were used to model hypercholestero-
laemia (vs wild-type [WT] controls) [29]. When mice reached
7 weeks of age, diabetes was induced by streptozotocin (STZ) as
described [30], yielding groups with and without diabetes and
with and without hypercholesterolaemia. All mice were main-
tained under a 12 h light–12 h dark cycle (07:00–19:00 hours)
and constant temperature (25°C) throughout the study, with food
and water given ad libitum. Retinas were studied 40 weeks after
diabetes induction: see ESMMethods for details.

Diabetes induction and LDL intravitreal injection in rats
Diabetes was induced by STZ in adult (8–10 weeks) male
Sprague–Dawley rats weighing 280–330 g. After 8 weeks,
human HOG-LDL or N-LDL (5 μl, 0.5 or 2.0 g protein/l in
PBS, to yield 50 or 200 mg/l final intravitreal concentration),
or PBS alone, was injected intravitreally. After 7 days, retinas
were harvested for western blot. The rats were maintained
under a 12 h light–12 h dark cycle (07:00–19:00 hours) and
constant temperature (25°C) throughout the study, with food
and water given ad libitum. See ESM Methods for details.

HRCP cell cultureHRCPs (Cambrex,Walkersville,MD, USA)
were cultured in EBM-2 medium. Cells (passages 3–9) at 85%
confluence were treated with either N-LDL or HOG-LDL as
indicated. Where appropriate, cells were pre-treated with pharma-
cological reagents prior to lipoprotein exposure. See ESM
Methods for details.

Cell viability assay HRCPs were studied in 96-well plates
(1×104 cells/well). Cell viability was measured using a cell
counting assay (CCK-8; Dojindo Molecular Technologies,
Rockville, MD, USA), per the manufacturer’s protocol.

Western blottingHuman retinas or pericyteswere homogenised
with a complete lysis buffer (Roche, Indianapolis, IN, USA).
Protein concentrationswere determined by theBCAprotein assay
(Pierce, Rockford, IL, USA). Protein (30 μg) was resolved by
SDS-PAGE and then blotted with antibodies against autophagy-
related homologue 5 (ATG-5), Beclin-1, LC3B (detects both
LC3B-I and LC3B-II; some cross-reactivity with LC3A),
phosphorylated c-Jun NH(2)-terminal kinase (p-JNK), total
JNK, cleaved poly ADP ribose polymerase (PARP), activated
caspase-3, C/EBP-homologous protein (CHOP), β-actin
(1:3000) (all from Cell Signaling Technology); and
phosphorylated‑protein kinase R‑like ER kinase (p‑PERK),
78 kDa glucose-regulated protein (GRP78) and phosphorylated
eukaryotic initiation factor 2α (eIF2α) (all from Abcam,
Cambridge, MA, USA). All antibodies were diluted 1:1000
unless indicated otherwise. Antibody to β-actin was used as a
loading control. All cell culture experiments were repeated three
times independently and quantified by densitometry.

TUNEL assay for apoptosisHRCPs were seeded and grown
to 85% confluence on glass coverslips, and treated as
indicated. Apoptosis was assessed (in situ cell death detection
kit; Roche, Indianapolis, IN, USA) as per manufacturer’s
instructions. Immunofluorescence was visualised under a
fluorescence microscope (Nikon, Tokyo, Japan).

Measurement of intracellular reactive oxygen species
Reactive oxygen species (ROS) were measured with
chloromethyl derivative of H2DCFDA (CM-H2DCFDA)
(Life Technologies, Invitrogen, Carlsbad, CA, USA) as pre-
viously described [24]. Briefly, cells were seeded in 96-well
plates (1×104 cells/well).When they reached 80% confluence,
cells were washed and incubated with 20 μmol/l DCFDA at
37°C for 20 min, then exposed to experimental conditions.
Fluorescence was measured at an excitation wavelength of
495 nm and an emission wavelength of 525 nm (VICTOR3
microplate reader; PerkinElmer, Waltham, MA, USA).

Data analyses Data are expressed as means±SD. Statistical
significance was determined by Student’s t test or one-way
ANOVA followed by post hoc Dunnett’s test as appropriate
(Prism 5 software; Graphpad, La Jolla, CA, USA). A p value
of≤0.05 was considered significant.

Results

Autophagy in human diabetic retina LC3B immunohisto-
chemistry was performed in retinas from individuals with type
2 diabetes with and without diabetic retinopathy, and from
non-diabetic individuals. In diabetic retinas, punctate staining
(indicating autophagosomes) was observed in the ganglion
cell layer and inner nuclear layer, but in non-diabetic retinas,
punctate staining was absent (Fig. 1a). Retinal protein lysates
were analysed (western blotting) for LC3B and two other
autophagy markers, ATG-5 and Beclin-1. LC3B and ATG-5
were higher in diabetic vs non-diabetic individuals, but
retinopathy status had no effect; Beclin-1 levels tended to be
higher in diabetic retinas (Fig. 1b). Overall, autophagy was
increased in the diabetic retina; the similarity between those
with and without retinopathy may reflect pre-clinical injury in
people who appear disease-free.

Autophagy in diabetic and hypercholesterolaemic mouse
retina LC3B staining was significantly higher in the two
diabetic groups vs the non-diabetic group, with hyperlipidae-
mic diabetic mice showing the greatest intensity, localised
predominantly in the ganglion cell and inner nuclear layers
(ESM Fig. 1). Again, retinal autophagy was increased in the
presence of diabetes, and more so in the added presence of
long-standing hypercholesterolaemia.
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HOG-LDL induces autophagy in pericytes To determine
whether modified LDL elicits autophagy in vitro, cultured
HRCPs were transfected with a green fluorescent protein
(GFP)-labelled LC3 plasmid, then exposed to HOG-LDL vs N-
LDL.HOG-LDL elicited a punctate intracellular GFP–LC3B dis-
tribution, characteristic of autophagy [31], which was not ob-
served in response toN-LDL (Fig. 2a andESMFig. 2). The effect
was further enhanced by chloroquine (CQ), an autophagosome–
lysosome fusion blocker [32], confirming that HOG-LDL en-
hances autophagic flux. In concert, western blots of HRCP lysates
showed increased levels of LC3BII (the lipidated form present in
autophagosomes) in response to HOG-LDL vs N-LDL, and a
further increase in response to HOG-LDL+CQ (Fig. 2b).
HOG-LDL increased protein expression of ATG-5, Beclin-1
and LC3BII in a dose-dependent manner over the concentration
range 0–50 mg/l, but caused no further increase at concentrations
from 50 to 200 mg/L (Fig. 2c). Concentrations>200 mg/l were
not tested due to cellular toxicity.

JNK mediates HOG-LDL-induced ER stress and auto-
phagy Jun amino-terminal kinases have been implicated in
stress-induced autophagy [33, 34]. In cultured HRCPs, HOG-
LDL vs N-LDL significantly increased JNK phosphorylation

(Fig. 2d), to an extent equivalent to that induced by
tunicamycin, an ER stress inducer. This response was
obliterated by pre-treatment with sodium phenylbutyrate, an
ER stress inhibitor, confirming that JNK mediates HOG-LDL-
induced ER stress in pericytes.

To determine the role of JNK in autophagy, JNK phospho-
rylation inhibitor SP60012 was employed. JNK pathway
inhibition was confirmed by western blot (ESM Fig. 3a).
SP60012 pre-treatment attenuated HOG-LDL-induced
autophagy, as demonstrated by decreased expression of
LC3BII, ATG-5 and Beclin-1 (Fig. 2e). JNK knockdown
using small interfering RNA (siRNA) had a similar effect,
reducing both phosphorylated and total JNK (ESM Fig. 3b)
as well as HOG-LDL-induced autophagy (Fig. 2f). The data
support an essential role for JNK activation in the mediation of
HOG-LDL-induced autophagy in HRCPs.

A dual role for autophagy in HOG-LDL-induced pericyte
death HOG-LDL caused dose-dependent toxicity to cultured
HRCPs: no death occurred up to 50 mg/l, but viability
decreased progressively from 50 mg/l to 300 mg/l (Fig. 3a).
To understand the relative involvement of autophagy and
apoptosis, we employed 3-methyladenine (3-MA), a specific
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Immunohistochemistry for LC3B
in human retinal sections: non-
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without clinical retinopathy (DM)
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was used to visualise the nuclei.
Scale bar, 20 μm. GCL, ganglion
cell layer; INL, inner nuclear
layer; ONL, outer nuclear layer.
Punctate staining of LC3B
(green) was present in both
groups of diabetic retinas but was
minimal in non-diabetic retinas.
There was no obvious difference
between the two diabetic groups.
(b) Western blots for ATG-5
(white bars), Beclin-1 (grey bars)
and LC3B (black bars) were
performed on total retinal protein
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inhibitor of phosphoinositide 3-kinase and the initial phase of
autophagy, and Z-VAD-fmk, a caspase inhibitor. As shown in
Fig. 3b, at a non-toxic HOG-LDL concentration of 50 mg/l,
3-MA triggered pericyte death, which was prevented by the
apoptosis inhibitor Z-VAD. This suggests a pro-survival role
for autophagy under mild, sub-lethal stress (50 mg/l HOG-
LDL). However, at a higher HOG-LDL concentration
(200 mg/l), 3-MA attenuated cell death, adding to the rescuing
effect of Z-VAD (Fig. 3b). As 3-MAmay not provide specific
inhibition of autophagy, siRNA against Beclin-1 was also
used: Beclin-1 knockdown decreased pericyte viability after
exposure to 50 mg/l HOG-LDL but enhanced it after exposure
to 200 mg/l HOG-LDL (Fig. 3c). The data suggest that under
severe cellular stresses, autophagy shifts from a protective to
an injurious role. This observation was further supported by
western blotting analysis and TUNEL assay (Fig. 3d–f).

HOG-LDL induced apoptosis at concentrations of 100 and
200 mg/l, demonstrated by increased levels of cleaved
PARP, activated caspase 3 and TUNEL-positive apoptotic
cells at 200 mg/l but not at 50 mg/l. However, inhibition of
autophagy by 3-MA and CQ induced apoptosis at a HOG-
LDL concentration of 50 mg/l but had no effect at 200 mg/l,
indicating the protective role of autophagy at mild but not at
severe levels of HOG-LDL-induced stress (Fig. 3d–f and
ESM Fig. 4a).

Comparison of the dose–response relationships for HOG-
LDL-induced oxidative stress, ER stress, JNK activation
and CHOP expression To elucidate underlying signalling
pathways and mechanisms, we compared dose–response rela-
tionships of oxidative stress (ROS), ER stress (chaperone:
GRP78; sensors: p-PERK, p-eIF2α), JNK activation and
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CHOP expression in cultured HRCPs exposed to HOG-LDL.
HOG-LDL increased levels of ROS, GRP78, p-PERK and p-
eIF2α dose-dependently (25–200 mg/l) (Fig. 4a, b). JNK acti-
vation increased over the 25–50 mg/l HOG-LDL range, then
remained constant up to 200mg/l (Fig. 4c), similar to autophagy
(Fig. 2c). HOG-LDL did not increase CHOP expression until its
concentration reached 100mg/l (Fig. 4d), consistent with effects
on apoptosis (Fig. 3d). Together, the data suggest that low-dose
HOG-LDL (up to 50 mg/ml) induces mild oxidative and ER
stress, triggering a protective action of autophagy via JNK; at
higher concentrations (100–200 mg/l), HOG-LDL further in-
creases stresses leading to autophagic and apoptotic death.

CHOP, not JNK, is responsible for HOG-LDL-induced
apoptosis Both CHOP and JNK have been implicated in ER
stress-induced apoptosis [35]. To determine their relative roles
in HOG-LDL-induced apoptosis, we employed siRNA
against CHOP (si-CHOP) or JNK (si-JNK), then measured
apoptosis (TUNEL assay, western blots). si-CHOP signifi-
cantly reduced TUNEL-positive staining (Fig. 5a, ESM

Fig. 4b), cleaved PARP and activated caspase-3 (Fig. 5b),
indicating a role for CHOP in apoptosis. However, in
pericytes exposed to 50 mg/l HOG-LDL, si-JNK increased
protein levels of CHOP, cleaved PARP and activated
caspase-3 (Fig. 5c), responses that promote apoptosis. In con-
trast, in the presence of 200 mg/l HOG-LDL, si-JNK had no
effect. This is consistent with JNK knockdown inhibiting au-
tophagy, thus blocking the protective effects of autophagy at
lower levels of cell stress. Finally, we showed that si-CHOP
did not change expression of p-JNK or LC3BII in pericytes
exposed to HOG-LDL at 50 or 200 mg/l (Fig. 5d), indicating
that autophagy induced by HOG-LDL, in contrast to apopto-
sis, was CHOP-independent.

Extravascular HOG-LDL dose-dependently induced ER
stress, autophagy and apoptosis in diabetic rat retinas To
define responses in vivo, we evaluated retinas of diabetic rats,
in which human N-LDL or HOG-LDL had been injected
7 days previously into the vitreous, to simulate chronic expo-
sure to extravasated, modified LDL in human diabetic
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retinopathy, as recently described in a mouse model [26]. Two
intravitreal concentrations, 50 and 200 mg/l, were used to in-
duce different degrees of retinal stress. Intravitreal HOG-LDL,
but not N-LDL, induced ER stress, autophagy and apoptosis
(Fig. 6). ER stress sensors (p-PERK, p-eIF2a) increased in a
dose-dependent manner (Fig. 6a), whereas p-JNK and autoph-
agy markers were increased to a similar extent at both doses
(Fig. 6b, c). Apoptosis (CHOP, activated caspase 3) was ob-
served only at 200 mg/l HOG-LDL (Fig. 6d). These findings
are in agreement with the cell culture studies.

Discussion

Therapies targeting autophagy are of increasing interest and
may be effective in retinal disease [9–11] but little is known
regarding diabetic retinopathy. In the current study, we
showed for the first time that autophagy markers (by immu-
nohistochemistry and western blot) were increased in human
retinas in the presence of diabetes, with or without concomi-
tant retinopathy, and that in cell culture, exposure of pericytes
to modified lipoproteins stimulated autophagy. These findings
are consistent with our overall hypothesis that ectopic
(extravasated) modified lipoproteins, when present in the
diabetic retina, mediate responses (some defensive, some
injurious) even before clinical diabetic retinopathy is evident
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[21, 23]. More interesting, our in vitro and in vivo data both
suggest that autophagy may play a dual role: protecting
against cell death under moderate stress, but contributing to
it under severe stress (Fig. 7).

To maintain normal cellular function, autophagy may be
upregulated in response to environmental stress. In the retina,
all cell types rely on one or more aspects of autophagy to
maintain structure and/or function [36]. Retinal autophagy
was first observed (in rats) by Remé et al in 1977 [37], occur-
ring primarily in the outer retina, where later it was shown to
exhibit circadian variation [38]. More recently, Piano et al
demonstrated upregulation of autophagy in retinal rods as an
early feature of diabetic retinopathy (i.e. after 4–12 weeks
diabetes) in STZ-induced diabetic mice [39]. In general, cel-
lular homeostasis relies on regulated interplay between basal
and stress-induced autophagic pathways [40]. Previously we
showed that both extravasated modified lipoproteins and
markers of ER stress were present in human diabetic retinas
in proportion to the severity of retinopathy [23]. In the present
study, the retinal findings from humans and genetically hyper-
cholesterolaemic mice, with and without diabetes, are gene-
rally consistent with the findings described above: intra-retinal
formation of autophagosomes (punctate LC3 staining) was
increased by diabetes and further increased (in mice) by

prolonged hypercholesterolaemia. In a new diabetic rat model
using intravitreal LDL injection, we found additional suppor-
tive evidence: exposure of the retina to HOG-LDL but not
N-LDL stimulated an autophagic response. Taken together,
the data are consistent with autophagy being implicated
in lipoprotein-mediated retinal injury and, specifically,
from the cell culture work, in pericyte injury in diabetic
retinopathy.

From the present data, we propose that the interplay
between autophagy and apoptosis is critical for pericyte
survival. The balance between survival and death depends
on the level of stress—minor stress may be countered by
autophagy but severe stress leads to cell death. This concept
is in concert with the findings of Piano et al regarding effects
of early diabetic retinopathy on retinal neural cells [39]. In the
present work, the survival–death balance is seen in the
observed dose-dependent effects of HOG-LDL on pericyte
oxidative stress, ER stress, apoptosis and autophagy, with
consistent findings following intravitreal LDL injections in
rats, summarised in Fig. 7. HOG-LDL induced various
molecular responses that were dose-dependent over different
concentration ranges. Oxidative stress and ER stress were
dose-dependent up to 200 mg/l, autophagy up to 50 mg/l
and apoptosis from 50 mg/l to 200 mg/l. When cells
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experienced relatively mild stress (<50 mg/l), autophagy was
induced, promoting cell survival, but under more severe stress
(100 or 200 mg/l), autophagy was no longer protective but
instead contributed to disruption of cellular homeostasis and
death. Thus, pericytes utilise autophagy as a cytoprotective
mechanism unless, or until, a critical stress threshold is
exceeded. At that point, neither the UPR nor autophagy can
protect the cells; instead, apoptotic mechanisms are activated
and autophagy shifts from a protective to a lethal role. The
definition of 50 mg/l as the threshold for this shift is clearly
inexact, but nevertheless relevant in the retina where LDL is
normally excluded by the BRB: any degree of BRB leakage
would likely lead to accumulation and transition through this
value. The pathophysiological relevance of the concentrations
of HOG-LDL (0–200 mg/l) used in this study has been
described and justified previously [21, 23], and we believe
them to be relevant in vivo.

A dual role for autophagy has been proposed in other stu-
dies. In rheumatoid arthritis, autophagy in synovial fibroblasts
may promote cell survival or death, depending on the level of
stress [41]. In the liver, autophagy is essential for maintenance
of hepatocyte mitochondria and control of oxidative stress,
thus preventing carcinogenesis, but once hepatocarcinoma is
established, autophagy can promote the disease [42]. In dia-
betic retinopathy, apparently contradictory roles for autophagy
can inhibit or promote retinal vascular injury, depending on
context (e.g. severity of retinopathy, extent of LDL leakage,
extent of modification). In early retinopathy, when BRB
leakage is mild, the retina is exposed only to small quantities
of modified LDL [18] and autophagy may enhance cell
survival. As retinopathy progresses and BRB leakage and
lipoprotein leakage/modification become more severe, neither
UPR nor autophagy can maintain ER homeostasis and
autophagic death ensues. This dual action may complicate
the development of treatments for diabetic retinopathy that
aim to modulate autophagy.

The JNK pathway has been implicated in a range of cellular
stress responses [7, 33, 43]. In this study, we demonstrated
that JNK phosphorylation was essential to autophagy induced
by HOG-LDL and ER stress. This is consistent with data
implicating PERK–eIF2a and IRE1–JNK signalling pathways
in autophagy [7, 44, 45]. Apart from autophagy, JNK
activation is implicated in ER stress-induced apoptosis [46].
However, in the present study, we showed that JNK
‘knockdown’ did not affect HOG-LDL (200 mg/l)-induced
apoptosis, and enabled lower concentrations of HOG-LDL
(50 mg/l) to induce apoptosis. This suggests that JNK acti-
vation was not implicated in HOG-LDL-induced apoptosis,
but at low levels of stress it may promote autophagy and
thus protect cells against apoptosis. It remains unclear
whether or how activation of JNK through ER stress affects
upstream components of the autophagy pathway (e.g.
mechanistic target of rapamycin; mTOR) [47]. Further stud-
ies regarding the detailed pathway of HOG-LDL-induced
autophagy, including the relative roles of LC3B and
LC3A, which may not be clearly distinguished in the pres-
ent study, are needed: possibly, differential effects of the
two isoforms could be important.

In conclusion, we present further evidence that autopha-
gy is present in human diabetic retinas, and a role for
modified lipoproteins is supported by in vivo findings in
diabetic mouse and rat retina and by in vitro studies of
HRCPs. We show that ER stress-mediated autophagy may
play a dual role in pericyte loss induced by modified LDL.
At low levels of exposure autophagy has a pro-survival
effect, but as stresses become severe it promotes cell death.
This dual function has implications for the development of
any future autophagy-based therapies, which might only be
applicable early in disease evolution when intra-retinal
stresses remain mild.
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