
Technical Debt Reduction using Search Based Automated
Refactoring

Mohan, M., Greer, D., & McMullan, P. (2016). Technical Debt Reduction using Search Based Automated
Refactoring. Journal of Systems and Software, 120, 183-194. [11]. DOI: 10.1016/j.jss.2016.05.019

Published in:
Journal of Systems and Software

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/74404029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/technical-debt-reduction-using-search-based-automated-refactoring(1715ffd0-4ee3-401a-9444-1ac485d9caa6).html

Technical Debt Reduction using Search Based Automated Refactoring

Michael Mohan*, Des Greer, Paul McMullan
Department of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast
BT7 1NN, Northern Ireland, UK

Abstract

Software refactoring has been recognised as a valuable process during software development and is often aimed
at repaying technical debt. Technical debt arises when a software product has been built or amended without full
care for structure and extensibility. Refactoring is useful to keep technical debt low and if it can be automated
there are obvious efficiency benefits. Using a combination of automated refactoring techniques, software
metrics and metaheuristic searches, an automated refactoring tool can improve the structure of a software
system without affecting its functionality. In this paper, four different refactoring approaches are compared
using an automated software refactoring tool. Weighted sums of metrics are used to form different fitness
functions that drive the search process towards certain aspects of software quality. Metrics are combined to
measure coupling, abstraction and inheritance and a fourth fitness function is proposed to measure reduction in
technical debt. The 4 functions are compared against each other using 3 different searches on 6 different open
source programs. Four out of the 6 programs show a larger improvement in the technical debt function after the
search based refactoring process. The results show that the technical debt function is useful for assessing
improvement in quality.

Keywords: search based software engineering, automated refactoring, refactoring tools, technical debt, software metrics,
simulated annealing

1. Introduction

Search based software engineering is an area that
tries to apply search heuristics to solve complex
problems in software development. It has been used
to help resolve problems in software design, project
management, software release planning, model
verification and software testing (Harman et al.,
2012a). Search based techniques can be used to
provide automated assistance in areas of software
management to save resources on a development
project. ∗

The term ‘Technical Debt’ (TD) refers to a
metaphor and has been defined as “the trading of
long-term software quality in favour of short-term
expediency” (Brown et al., 2010). In other words
TD occurs where long-term software quality, and
therefore ease of maintainability, is temporarily
sacrificed with the expectation that it will be
improved in the near future. The sacrifice may be
in terms of design and could be due to not having
enough knowledge of the problem being solved or
just an urgent need to make and demonstrate
progress. In any case, debt accumulates interest and
it becomes more expensive to repay with time.

∗ Corresponding author.
 E-mail address: mmohan03@qub.ac.uk (M. Mohan).

With time it becomes harder to add functionality
due to structural issues becoming more critical and
the occurrence of defects becomes more likely. To
improve the long term efficiency of a project and to
lower its operational risk, the TD can be kept to a
minimum by making regular repayments, meaning
refactorings. The negative side of this is that time
spent on refactoring will in turn decrease the
amount of time used to add functionality to
software. Therefore, any approach that makes this
easier or even automatic is likely to be financially
beneficial.

Search Based Software Maintenance (SBSM) uses
search based software algorithms to tackle this
problem. By applying automated refactoring
techniques that modify the structure of a software
program without affecting the functionality, this
process can be applied without the direct
involvement of the programmer, allowing time to
concentrate on other aspects of the project. SBSM
treats the maintenance of a software system as a
combinatorial optimisation problem. The software
code represents the search space of the problem and
the refactorings can be applied across this search
space to explore possible solutions. As there would
be too many possible changes to software program
to permit an exhaustive search of the software

space, metaheuristic search techniques can be used
to seek out the most optimal solutions.

The search techniques can analyse a software
program using some measure of quality to improve
the structure or decrease the TD in the program.
Using a set of software metrics, the search can then
work towards an optimal solution in a more
realistic time frame. In this paper it is shown how
automated refactoring techniques, metaheuristic
search approaches and software metrics can be
used together to reduce TD. The automated aspect
of the process allows a search to converge towards
an optimal state over numerous iterations. It also
allows the programmer to focus on other issues,
freeing up a large proportion of time and reducing
maintenance effort.

An issue present with this approach is that software
development is not a straightforward process.
There is a lot of uncertainty involved. In order to
increase the maintainability of the software there
needs to be a measure with which to compare.
However software quality is not easy to measure.
There can be various different properties to balance
in the structure of a program and there may be
conflicting interests. Furthermore, depending on
certain factors (such as the type of program being
developed or the programming language used), the
important aspects of a program may be different.
With object oriented programming, considerable
effort has been made to establish important
properties in a well-structured program (Martin,
2000). Metrics have been introduced to measure
aspects of program structure and behaviour, but
finding a balance between the different aspects can
become difficult when there are contradictions
between them. Likewise, it may be uncertain which
aspects of a software program design should be
prioritised.

The goal of this paper is to investigate the
effectiveness of using TD to direct automatic
refactoring. We wish to know if TD can be used
effectively as a fitness function for search based
automatic refactoring. To address this, using
Basili’s Goal Question Metric approach (Basili et
al., 1994), we derive the following question:

RQ1: How does a fitness function for Technical
Debt compare with some other commonly used
design quality metrics?

To consider this we can look at deriving a TD
metric and comparing it against metrics based on
levels of abstraction, coupling and inheritance, all
of which are well established as design quality
factors (Bansiya and Davis, 2002). These properties
have been chosen to represent individual quality
indicators as they can represent a range of different

aspects of software measurement. Table 1 gives a
short description of each property and how it is
calculated. The details of the calculations used to
represent each property are given in Table 6.
Inheritance will be a good indication of whether the
design is inefficient and whether the classes are
related and extended properly. Inheritance is
concerned with measuring how the objects in a
project are organised hierarchically, so class level
metrics are used to represent it. The measure
incorporates interface implementation and use of
abstract classes, and so a high measure is
considered desirable. Coupling can be used to
derive how the extent to which the objects in a
software system depend on each other, generally
expected to be as low as possible. Abstraction will
indicate the amount of changes needed between
specific objects in order to implement new
additions to the system. Again, a high value here is
considered better. As previous work in the area has
investigated abstraction (O’Keeffe and Ó Cinnéide,
2003), (Mitchell and Mancoridis, 2002), coupling
(Veerappa and Harrison, 2013), (Murgia et al.,
2012) and inheritance (O’Keeffe and Ó Cinnéide,
2007), there is some support for the position that
these are useful properties to use for a comparative
study against an approach for tackling TD.

Table 1. Individual Quality Properties

Property Context
Abstraction How easy it is for a software system

to be extended and built upon.
Estimated based on number of
abstract classes present and the
number of interfaces present and
implemented.

Coupling A measure of the dependencies
between classes based on counts of
usage of class, attributes and
parameters by other classes.

Inheritance A measure of the class structure of a
project in terms of counts of
interface implementations and of
descendants and ancestors.

To further the investigation, an experiment has
been conducted using the refactoring tool A-CMA
(Koc et al., 2012) to assess the effectiveness of
three sets of metrics that measure these object
oriented properties and compare them against a
proposed set of metrics to measure TD. A weighted
sum is used to combine the metrics into an overall
score to improve. Thus the following hypothesis
and null hypothesis are to be tested:

H1: Technical Debt can be reduced significantly
using search based automatic refactoring.

H1_0: There is no effect on Technical Debt after
search based automatic refactoring.

A further question investigated is:

RQ2: How does a simulated annealing search
perform compared to hill climbing and a random
search in a search based automated refactoring
approach to address Technical Debt?

Again the same metrics can be used i.e. TD
reduction, abstraction gain, coupling reduction,
inheritance gain but also execution time. From this
we can postulate as follows:

H2: Simulated annealing performs better than hill
climbing/random search for search based automatic
refactoring to reduce Technical Debt.

H2_0: There is no significant difference in the
effectiveness between simulated annealing and hill
climbing/random search for search based automatic
refactoring to reduce Technical Debt.

The remainder of the paper will be structured as
follows. Section 2 details the automated refactoring
tool used and the different components available in
the tool. Section 3 outlines the experiment
conducted and the metric functions measured.
Section 4 then details the outcome of the
experiment and analysis of the results. Section 5
identifies threats to validity in the experiment.
Section 6 outlines related work in the area of
SBSM. Finally, conclusions are made in Section 7
and possible directions for future work are
discussed in Section 8.

2. Refactoring Tool

A-CMA is an automated refactoring tool developed
by Koc et al. (2012) that refactors Java programs
using Java bytecode as input. An advantage of this
tool over many others is that it has many options
for refactoring as well as metrics available and it is
highly configurable. The tool has the option to
create and select different configurations of metrics
and refactoring actions. This can be selected on the
application and allows different metrics and actions
to be enabled. It also gives the option to apply
different weights to the metrics. This allows the
user to construct different metric combinations that
can be used on a task. An overall metric score is
derived using a weighted sum of each enabled
metric. A popular approach in recent literature is to
use a multi-objective pareto approach to derive an
overall metric score although this approach is non-
deterministic. A weighted sum allows for some
metrics to be given more influence than others, in
order to reflect their importance. The metrics have
the ability to be specified as maximized or

minimized. Maximized metrics are metrics where
an increase in value causes an improvement and
minimized metrics are metrics where a decrease in
value causes an improvement. The overall quality
gain of a task can be derived by finding out how
much the overall score has reduced. Metric details
are loaded in from an xml file and
maximized/minimized metrics can be specified
here.

Before the experiment was conducted, some
changes were made to the existing tool for the
purposes of this paper1. Extra initial parameters
were included for the hill climbing and simulated
annealing searches, in order to allow more control
when configuring a search task (the option was
given to input a starting temperature for simulated
annealing and to indicate first ascent or steepest
ascent hill climbing). Increased control was given
over the configuration of tasks and improved data
output was configured including quality gain and
average values. This allowed for the tasks to be
loaded into the program and run one after the other
with all available parameters configured and all
available data captured. The ability to incorporate
maximized (those for whom an increase is
desirable) metrics was also implemented, allowing
maximized and minimized (those for whom a
decrease is desirable) metrics to be combined into
an overall weighted sum. Finally, more control was
given to the configurations used to create different
fitness functions, with the ability to enable/disable
specific metrics.

2.1 Metaheuristic Search

The tool has the ability to run 5 different searches
with 10 different variations but for the purposes of
this paper only 3 are used. Initially a random search
is run to provide a benchmark against which the
other searches can compare. A random search
simply applies refactoring actions at random and
measures the score after each iteration. The only
input option available for this search is to specify
the number of iterations needed. After the specified
number have completed, the best score is taken as
the final result. The 2 heuristic searches, hill
climbing and simulated annealing, were chosen as
they are used commonly in the research and
therefore can be compared against other work in
the area e.g. (O’Keeffe and Ó Cinnéide, 2008), and
because they are relatively easy to implement and
modify for the purposes of the experiment.

The first of the 2 heuristic searches used is a hill
climbing algorithm. This is a local search that finds

1 The original tool can be found at
https://github.com/eknkc/a-cma and the updated version
at https://github.com/mmohan01/a-cma

a local optimum solution by comparing
neighbouring changes in the solution space (Räihä,
2009). Numerous variations of this search can be
chosen in the tool. Firstly, one can choose to either
select first ascent hill climbing or steepest ascent.
First ascent will find the first neighbour with an
improved score and use it for the next iteration.
Steepest ascent compares each available neighbour
to find the option with the greatest improvement.
This can result in a better search and more
optimum values found but can take longer than first
ascent. Also, the search can be selected as a
multiple starting algorithm or a single start. A
multiple start hill climbing algorithm will begin the
search again at a different point in the solution
space after an optimum solution is found, giving
the possibility to find a better optimum at a
different point in the program. The amount of
restarts can be specified as well as the depth away
from the current solution at which the next starting
point is to be found. The A-CMA tool also gives
the ability to specify the maximum amount of
iterations, at which point the search will terminate
if it has not already found the optimum solution.

The other search used was simulated annealing.
This is similar in practice to hill climbing, although
it allows the ability to accept a solution of worse
quality in order to escape local optima. Like hill
climbing, it will begin at a random point in the
solution space, and apply a refactoring to the
solution. The difference is that, when the score for
the new solution is calculated, a worse solution
may be kept. This is determined by the start
“temperature” of the search. The search is named
due to being a simulation of the cooling process in
metallurgical annealing. The particles in the metal
will begin at a high temperature and move about
rapidly, inspecting different states. As the
temperature of the metal cools, the particles will
begin to settle after exploring the different energy
states. This allows the metal to become stronger
when it finally cools to a solid. Likewise, the
simulated annealing search gives the freedom to
“explore” different options in the solution space
early on in the search, even accepting a certain
probability of worse solutions. As the temperature
cools, this probability gradually decreases until the
solution only accepts better neighbours, essentially
becoming identical to the hill climbing algorithm.
The value of the starting temperature will
determine how rapidly the search “cools” and thus
how much freedom the search will have to accept
worse quality solutions. With a higher initial
temperature the probability will be higher but will
drop more rapidly. 2 initial parameters can be set
for the annealing algorithm, the starting
temperature and amount of iterations in the search.

2.2 Refactoring Actions

Table 2. Field Level Refactorings

Increase Field
Security

Increases the security level
of a field by one level
(between private, package,
protected and public)

Decrease Field
Security

Decreases the security level
of a field by one level

Move Down Field Moves a field from the
current class to a sub class

Move Up Field Moves a field from the
current class to its immediate
super class

Remove Field Removes a field from the
class

Table 3. Method Level Refactorings

Increase Method
Security

Increases the security level
of a method by one level

Decrease Method
Security

Decreases the security level
of a method by one level

Move Down
Method

Moves a method from the
current class to a sub class

Move Up Method Moves a method from the
current class to its immediate
super class

Move Method Moves a method from the
current class to one of its
parameter types

Instantiate Method Moves a static method from
the current class to one of its
parameter types

Freeze Method Sets a method as static
Remove Method Removes an unused method

from the class
Inline Method Sets the body of a method

inside the caller (as long as
there is only one caller) and
removes the method

Table 4. Class Level Refactorings

Introduce Factory Creates a new factory method
for a class constructor and
replaces any references to the
constructor with calls to the
new method, implementing the
factory method design pattern

Make Class
Abstract

Makes a class into an abstract
class (as long as it hasn’t been
instantiated elsewhere in the
program)

Make Class Final Makes a non-final class final
Make Class Non-
Final

Makes a final class non-final

Remove Class Removes an empty class from
the program

Remove Interface Removes an empty interface
from the program

The A-CMA tool contains 20 available refactoring
options to apply on the field, method and class
level of a Java program. To apply these
refactorings automatically, the available objects are
found for each refactoring by excluding objects that
are ineligible (for example if a class is already
abstract the “Make Class Abstract” refactoring
won’t be applicable). Once the initial list of
available objects has been acquired for each
refactoring, they can be chosen and applied
stochastically in order with the search algorithm
used. The available refactorings are listed and
described in Tables 2-4. Many of these refactorings
implement refactoring options proposed by Fowler
in his book (Fowler, 2002) and on his website
(Fowler, 2015).

2.3 Software Metrics

There are 24 metrics available in the A-CMA tool
but in the scope of this paper only 17 are used. The
metrics used along with description for each one
are given in Table 5.

Table 5. Software Metrics Used in Experiment

Identifier Description
numField The amount of fields per class
numOps Number of methods per class
numCls Number of classes in a package
numInterf Number of interfaces in a package
iFImpl Number of interfaces implemented

by a class
abstractness The ratio of abstract class to

classes in a package
avrgField
Visibility

Average amount of field visibility
per class (where field visibility is
represented by Private:0,
Package:1, Protected:2, Public:3)

nesting The nesting level per class
NOC Number of children per class
numDesc Number of descendants per class
numAnc Number of ancestors per class
iC_Attr Number of attributes in a class

using another class or interfaces as
type

eC_Attr Number of external uses of a class
as attribute type

iC_Par Number of parameters in class
methods using another class or
interface as type

eC_Par Number of external uses of class as
parameter type in method

Dep_In Number of elements that depend
on a class

Dep_Out Number of elements depended on
by a class

3. Experimental Design

The experiment aims to compare four different
fitness functions that each uses a combination of
available metrics to represent some measureable
property of software design. In order to compare
these fitness functions, each function is given a set
of weights for each metric that must add to 1
overall. This way the amount of metrics used in
each function will not interfere and the functions
will be normalized for comparison against each
other. In order to create an overall score from the
fitness functions, the direction of improvement of
each software metric must be taken into
consideration (whether increase in the value causes
an improvement or a decrease in the value causes
an improvement). Of the 17 metrics used, 10 have
been determined to be minimized metrics and the
other 7 have been determined to be maximized
metrics. The positive/negative aspect of the metrics
did not need to be taken into consideration when
aggregating the weights to 1.

The goal is to minimise the value of the metric
function being inspected in order to improve the
symptoms of the property being represented. The
evaluation function is given in equation 1, where
there are n that make up the fitness function, wm is
the weight of the metric and vm is the value of the
metric. The value d is a binary constant that
represents effect of the metric, where an increase is
signified by -1 and a decrease is signified by 1.

 Minimize � 𝑑𝑑[𝑤𝑤𝑚𝑚𝑣𝑣𝑚𝑚] (1)
𝑛𝑛

𝑚𝑚=0

The weights of all the metrics in the function must
add to 1 as shown in equation 2:

 �𝑤𝑤𝑚𝑚 = 1 (2)
𝑛𝑛

𝑚𝑚=0

Three fitness functions were created from the
metrics to represent important quality properties of
object oriented programs (abstraction, coupling and
inheritance), and then a fourth was created to
represent TD in the system. In order to choose the
relevant metrics and the relative weights to
represent the TD score, the SOLID principles of
object oriented design (Martin, 2000), as well as
the QMOOD metric suite of Bansiya and Davis
(2002) were used as a basis in which to represent
bad software construction. All available refactoring
actions were enabled for the 4 fitness functions to
give the maximum potential for change. Table 6
gives details about each fitness function compared
along with weights used and whether the metric
was maximized or minimized (denoted by ‘+’/‘-’).

Table 6. Metric Details for Each Fitness Function (see Table 5 for Metric Descriptions)

Software
Property Metric Components and Weights

Technical
Debt

-0.1*numFields - 0.1*avrgFieldVisibility - 0.1*numOps - 0.06*nesting + 0.1*abstractness
+ 0.1*numCls + 0.1*numInterf + 0.1*iFImpl + 0.06*NOC + 0.06*numDesc - 0.06*Dep_In
- 0.06*Dep_Out

Coupling -0.125*iC_Attr - 0.125*eC_Attr - 0.125*iC_Par - 0.125*eC_Par - 0.25*Dep_In - 0.25*Dep_Out
Inheritance 0.25*iFImpl + 0.25*NOC + 0.25*numDesc + 0.25*numAnc
Abstraction 0.33*abstractness + 0.33*numInterf + 0.33*iFImpl

Of the available software metrics, the most
applicable were chosen to represent components of
the 3 software properties. Metrics were already
grouped together as coupling and inheritance
metrics in the A-CMA tool, so these were the
metrics used to represent the coupling and
inheritance properties. The abstraction property
was made up of the three metrics determined to be
related to abstraction due to them measuring
properties of interfaces present in the software. In
most cases, the weights were kept level between
the metrics used in each fitness function. For the
coupling function, the Dep_In and Dep_Out
metrics were given priority over the others as they
contained aspects of the other coupling metrics
used as part of their calculations.

Table 7. Java Programs Used In Experiment

Name Classes KLOC
(Approx.)

Initial
Refactorings

Available
JSON 8 2 167
JFlex 78 9 1094
Apache-
XmlRpc

89 4 712

Mango 91 3 598
Beaver 95 6 801
JHotDraw 240 18 3297

For the TD function, the 12 metrics intuitively
considered to be most relevant were chosen.
Initially the metrics were prioritised into 4 different
groups. In order to normalise the weights and allow
the metrics to accumulate to 1, these were reduced
to 2 different weights; 0.06 to represent the bottom
2 categories and 0.1 to represent the top 2. The
nesting, NOC and numDesc metrics were given
less priority due to their more descriptive nature
compared to the other metrics. In a software
system, more nesting more descendants and less
classes in a package may not particularly be a bad
thing, whereas less classes overall may result in
classes with too many responsibilities and the
appearance of more code smells. The
Dep_In/Dep_Out metrics were deemed less
importance as, while dependencies should be
minimised between classes, they may be required

in certain cases. In all cases metrics and weights
chosen were speculative and based on intuition. In
some cases directions of improvement also had to
be chosen.

Table 8. Java Program Execution Times

Name Time Taken
JSON 0h 3m 13s
JFlex 2h 6m 38s
Apache-XmlRpc 1h 23m 43s
Mango 1h 1m 29s
Beaver 1h 25m 4s
JHotDraw 49h 28m 4s
Total 55h 28m 11s

Each fitness function was compared using 3
different searches. The random search was used as
a benchmark with 5,000 iterations. Steepest ascent
hill climbing was chosen for the experiment with
30 restarts at a depth of 5 neighbours (chosen based
on published comparisons between different hill
climbing parameters (Koc et al., 2012)). The third
search used was low temperature simulated
annealing (as low temperatures have been found to
be more effective by O’Keeffe and Ó Cinnéide
(2008)) with 5,000 iterations and with the starting
temperature set to 1.5. Each search was conducted
10 times using the 4 fitness functions with average
values calculated. The input programs for the
experiment consisted of 6 open source Java
projects: JSON, a Java library for data exchange
format; JFlex, a lexical analyzer generator; Apache-
XmlRpc, an XML-based remote procedure call
library; Mango, a collections library; Beaver, a
parser generator and JHotDraw, a GUI framework
for drawing editors. These programs were chosen
as they have all been used in previous SBSM
studies and so there is an increased ability to
compare the results and also because they promote
different software structures. Details about the
programs are given in Table 7. The total number of
runs of the experiment came to
10*3(searches)*4(functions)* 6(benchmarks) for a
total of 720 runs. The experiment was carried out
on a PC with a 3.40GHz Intel Core i7-3770
processor and 8GB of RAM.

Figure 1. Overall Mean Quality Gain for Each Fitness Function per Search Type

Figure 2. Mean Quality Gain of Each Fitness Function using Simulated Annealing

4 Results

The time taken to complete the tasks for each
program is given in Table 8. Clearly here the
JHotDraw program caused a bottleneck in
execution time and this is most likely due to its size
compared to the other projects (containing more
than double the amount of classes than the other
projects). For instance, JHotDraw contains roughly
18,000 lines of code compared against roughly
9,000 for JFlex, the program with the next longest
execution time. It is reasonable to assume that as
the project increases, the search space for the
refactoring process will increase also giving a large
upswing in time taken even with the metaheuristic

searches available. This can lead to an increase in
time of order n2. Likewise an attempt to execute the
experiment on another open source Java program
resulted in 47 hours 40 minutes and 13 seconds
taken to run only 4 of the 12 tasks. It contained 408
classes, which seems to support this explanation.
These large execution times for certain tasks
suggest that a more efficient method is needed to
refactor larger programs.

Figure 1 shows the average quality gain across the
6 programs for each fitness function using each of
the 3 searches. The results show that simulated
annealing gives the highest relative quality
improvement, but they also show that the random
search outperforms hill climbing.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Random Search Hill Climbing Simulated Annealing

Fi
tn

es
s

Fu
nc

tio
n

Im
pr

ov
em

en
t

Abstraction Coupling Inheritance Technical Debt

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Abstraction Coupling Inheritance Technical Debt

Fi
tn

es
s

Fu
nc

tio
n

Im
pr

ov
em

en
t

JSON JFlex XmlRpc Mango Beaver JHotDraw

Figure 3. Mean Amount of Actions Applied to Each Fitness Function using Simulated Annealing

The TD quality gain values for each pair of
searches were compared using a two-tailed
Wilcoxon rank-sum test (for unpaired data sets)
with a 95% confidence level (α = 5%).

The simulated annealing results were analysed to
be statistically different when compared against the
random search and the hill climbing search across
every TD result. The random search results were
also found to be significantly different to the hill
climbing search. The random search
understandably has a larger range of values but the
better outcome it gives implies that the hill
climbing search was inefficient for the set of tasks.
Perhaps the input parameters were not optimal for
that search. The simulated annealing and hill
climbing searches failed to create any quality gain
using the inheritance function whereas the random
search yielded a small increase in quality. It is
assumed this is due to the freedom and volatility of
the random search to find different solutions, but
not necessarily to find optimal solutions.

Figure 2 inspects the simulated annealing results,
showing the average quality gain for each of the
fitness functions across each of the 6 benchmark
programs (this is the final overall metric score
minus the initial score, averaged over the 10 runs).
Of the three individual property fitness functions,
coupling seems to be the only one that had shown
any significant improvement. The abstraction tasks
show minimal improvement and the inheritance
tasks had no change at all. In fact, the only case
where the inheritance function had any change was
in the random search as shown in Figure 1. The TD
function was more effective in showing an
improvement. The initial and final metric scores for
the TD function were statistically analysed using a
two-tailed Wilcoxon signed-rank test (for paired

data sets) with a 95% confidence level (α = 5%).
The obtained results were statistically significant
when comparing every run of the TD function. The
lack of improvement in the abstraction and
inheritance functions implies that there is a lack of
volatility in the metrics used to compose these
functions.

Figure 3 shows the average amount of applied
actions for each of the simulated annealing tasks.
These results show a similar trend to the quality
gain results and the abstraction and inheritance
tasks are similarly devoid of applied refactoring
actions. This implies that the reason for the poor
quality gain results for those functions stems from
the lack of available actions, whereas the other
metrics are more volatile and that there are more
refactoring actions available to improve them.

Figure 4 gives the overall average applied actions
for each fitness function. This continues to show a
relationship between the amount of actions
available for each fitness function and the quality
gain values for the function shown in Figure 2.

Figure 4. Overall Mean Applied Actions using
Simulated Annealing

0

500

1000

1500

2000

2500

3000

3500

4000

Abstraction Coupling Inheritance Technical Debt

Am
ou

nt
 O

f R
ef

ac
to

rin
g

Ac
tio

ns

JSON JFlex XmlRpc Mango Beaver JHotDraw

0

500

1000

1500

2000

2500

Abstraction Coupling Inheritance Technical
Debt

Am
ou

nt
 O

f R
ef

ac
to

rin
g

Ac
tio

ns

Figure 5. Mean Quality Gain of Each Program using Simulated Annealing

It seems that the volatility of the metrics that make
up each function is important to allowing the
program to be refactored in any way. The harder
the metrics are to improve, the less chance the
program will be refactored.

Figure 5 gives another view of the quality gain
results, this time highlighting the results for each
individual program and allowing a better
comparison of the coupling and TD values. Most of
the results favour the TD function over the others,
but in 2 cases, Mango and Beaver, the coupling
function shows higher gains than the TD function
by a significant amount. This could suggest that for
these 2 programs coupling was high and so
amenable to improvement therefore contributing
less to the TD calculation. The 2 programs that
show the most significant improvement of the TD
function over the coupling function are JSON and
Apache-XmlRpc. JSON is the smallest program
used so perhaps the minimal amount of classes
make it harder to reduce the coupling between them
as there is minimal coupling in the first place.

Figure 6. Overall Mean Quality Gain for Each Fitness
Function using Simulated Annealing

Likewise, Apache-XmlRpc contains almost no
improvement in coupling implying it too contains
little coupling between the classes. The largest
quality gain among all the programs was in Mango.

Figure 6 gives the overall average quality gain for
each fitness function. It confirms that the TD
function had a more significant improvement
among the programs than the other 3 fitness
functions that represented specific properties.
Figure 3 also shows that the TD function involved
significantly more refactorings than the other 3
functions.

Figures 7 and 8 show the average quality gain
values for each individual metric in the TD and
coupling fitness functions (across all 6
benchmarks), giving an idea of the volatility of
each metric and their influence on the overall
metric scores. In the TD function, only 5 of the 12
metrics show significant quality gain values with
the most influential being the numOps metric.
okokok

Figure 7. Mean Quality Gain for Each Metric of the
Coupling Function using Simulated Annealing

0.0

0.2

0.4

0.6

0.8

1.0

1.2

JSON JFlex XmlRpc Mango Beaver JHotDraw

Fi
tn

es
s

Fu
nc

tio
n

Im
pr

ov
em

en
t

Abstraction Coupling Inheritance Technical Debt

0.0

0.1

0.2

0.3

0.4

0.5

Abstraction Coupling Inheritance Technical
Debt

Fi
tn

es
s

Fu
nc

tio
n

Im
pr

ov
em

en
t

0.0

0.5

1.0

1.5

2.0

2.5

Dep_Out Dep_In iC_Attr iC_Par eC_Attr eC_Par

M
et

ric
 Im

pr
ov

em
en

t

Figure 8. Mean Quality Gain for Each Metric of the TD Function using Simulated Annealing

The numInterf, NOC and numDesc metrics showed
no quality gain, and the numCls metric decreased
in quality. Amongst the other metrics in the TD
function, Dep_In showed a decrease in quality for
the JFlex program and avrgFieldVisibility showed
a decrease for the Mango program. The quality
gain values for the coupling functions were smaller
in comparison to the TD function, although they
were more consistent across the metrics. Although
this function only contained 6 metrics, 4 out of the
6 contained significant improvements (a larger
proportion compared to the TD fitness function).

The Dep_Out and Dep_In metrics were amongst
the most improved (which was to be expected due
to them containing aspects of the other coupling
metrics used), although the parameter metrics
(iC_Par and eC_Par) were also influential. The
eC_Par metric showed the largest overall quality
gain of the coupling metrics, improving more than
even the Dep_In and Dep_Out metrics. Of the 6
metrics, the attribute metrics (iC_Attr and eC_Attr)
were affected the least, although none of the
metrics showed an average decrease in quality
(where the average represents the mean across 10
runs of each task) across any of the benchmarks as
some TD metrics did. The inheritance function
showed no improvement with any of the metrics
used across any of the benchmark programs. The
abstraction function, while only using 3 metrics,
showed quality improvements with just one of
those metrics. The abstractness metric showed a
small increase in quality whereas the iFImpl and
numInterf metrics showed no change across any of
the programs tested. The iFImpl metric similarly
showed no change when used in the inheritance
function and was the smallest of the improved
metrics in the TD function. numIterf showed no
change in the TD function either. The changes

shown by the individual metrics may provide a
good basis to influence how the weights should be
distributed among the fitness functions. The values
shown in figures 7 and 8 are not affected by metric
weights (this is applied when the metrics are
combined to derive the overall metric score).

5. Threats to Validity

5.1 Internal Validity

Internal validity focuses on the causal effect of the
independent variables on the dependant variables.
The stochastic nature of the search techniques can
prove a threat to the validity of the experiment, as
each run will provide different results. This has
been addressed by running each of the tasks 10
times and using average values to compare against
each other. The choice of parameter settings used
by the search techniques can also provide a threat
to validity due to the option of using poor input
settings. This has been addressed by using input
parameters deemed to be most effective from
previous studies in the research area.

5.2 External Validity

External validity is concerned with how well the
results and conclusions can be generalized. In this
study, the experiment was performed on 6 different
real world open-source systems belonging to
different domains and with different sizes and
complexities. However the experiment and the
capabilities of the refactoring tool used are
restricted to Java programs, therefore we cannot
assert that our results can be generalized to other
applications or to other programming languages.
Indeed, the results showed different degrees of

0.0

0.5

1.0

1.5

2.0

2.5

De
p_

O
ut

nu
m

O
ps

iF
Im

pl

De
p_

In

ne
st

in
g

nu
m

Cl
s

nu
m

Fi
el

ds

ab
st

ra
ct

ne
ss

nu
m

In
te

rf

N
O

C

av
rg

Fi
el

dV
isi

bi
lit

y

nu
m

De
sc

M
et

ric
 Im

pr
ov

em
en

t

variation between the metric functions with
different source programs. For example, Mango
and Beaver, a collections library and parser
generator respectively, showed higher quality gains
with coupling than with TD. Conversely, JSON and
Apache-XmlRpc (a library for data exchange
format and a library for remote procedure calls)
showed the greatest TD improvements compared
against coupling. Although the sample systems
studied are very different, further replications of
this study are necessary to confirm the
generalization of the findings.

5.3 Construct Validity

Construct validity refers to how well the concepts
and measurements are related to the experimental
design. The validity of the experiment is limited by
the fitness functions used, as they are experimental
approximations of the properties defined based on
previous research. Furthermore, the metrics used to
construct the fitness functions for this study may
not particularly indicate an improvement in the
software, and this warrants further investigation. In
order to address this threat, justifications for the
choice of metrics have been discussed along with a
description of the construction of the fitness
functions. Ideally in future work we would
synthesize the choice of inputs and weightings used
for our fitness function from expert opinion or
based on empirical research. The cost measures
used in the experiment can also indicate a lack of
validity. To assess the effectiveness of the 3 search
techniques, execution time was used to measure
and compare the cost.

5.4 Conclusion Validity

Conclusion validity looks at the degree to which a
conclusion can reasonably be drawn from the
results. A lack of a meaningful comparative
baseline can provide a threat by making it harder to
produce a conclusion from the results without the
relevant context. To address this, a random search
and a local hill climbing search are used to
compare against the metaheuristic simulated
annealing search, with the random search providing
the baseline to compare against. Furthermore, in
order to provide descriptive statistics of the results,
tasks have been repeated and mean values have
been used to compare against. Error bars have also
been provided in most cases to indicate the range of
values. Another possible threat may be provided by
the lack of a formal hypothesis in the experiment.
At the outset, 2 research questions have been
provided along with corresponding hypotheses in
order to aid in drawing a conclusion. To
accompany these, statistical tests have been used to
test the significance of the results gained. These
tests make no assumption that the data is normally

distributed and are suitable for ordinal data. As the
TD function is experimental and only indicates a
possible representation of the property of Technical
Debt, other metric combinations may give different
experimental results. A different TD function may
provide better or worse calculations if the
experiment was repeated and in this case, may
draw a different conclusion.

6. Related Work

Search based software engineering was introduced
as a term in 2001 (Harman and Jones, 2001).
Further research in the area was identified, as well
as open problems in 2007 (Harman, 2007). A
recent review of research work in software
engineering (Kumari et al., 2014) includes a short
review of the area of search based software
engineering and some of the work published in that
area. A review of search based software
engineering papers in Brazil gives useful statistics
of the impact of researchers from the country on
the area (Colanzi et al., 2013). More
comprehensive but less recent literature reviews of
search based software engineering provide a useful
background to the area (Harman et al., 2012a),
(Harman et al., 2012b), (Räihä, 2009). More
specific literature reviews addresses the impact of
the areas of project management (Ferrucci et al.,
2014) and testing (Harman and McMinn, 2010),
(McMinn, 2004).

There has been little research done to investigate
TD specifically. A review of the impact of TD on
software systems as well as methods to handle it
and the cost from different perspectives is given in
an article by Allman (2012). The properties of TD
have also been discussed elsewhere (Brown et al.,
2010), where a particular connection has been
noted between TD and maintenance activities.
Developers at Google have given their experience
of attempts to pay off TD in the form of build debt
(Morgenthaler et al., 2012). They use various
attempts to uncover and remove the debt in Google
code, which consists of millions of lines of code
much of which is monolithic.

6.1 Refactoring Tools

Various automated refactoring tools have been
proposed and used for research in SBSM. Many of
these tools are used to seek out and refactor “design
smells” in the code (Fowler, 2002). The
TrueRefactor tool (Griffith et al., 2011) uses this
method to detect and remove instances of large
classes, lazy classes, long methods, temporary
fields or instances of shotgun surgery. The
Wrangler tool (Li and Thompson, 2010) is used to
improve the modularity of programs by removing
code smells. Instead of using search based tactics to

find defects, the tool inspects a module graph and a
function call graph that it generates for the
program. Evolution Doctor (Di Penta, 2005) is
another defect removal tool that handles clones and
unused objects, removes circular dependencies and
reorganises source code files. Kirk et al. (2007)
presents a code smell detection tool that can be
used as a plug in for the Java IDE Eclipse. The tool
is used to detect god classes and data classes, but
cannot be used to resolve them. Trifu et al. (2004)
has created the Advanced Refactoring Wizard by
combining three pieces of software together to
handle each stage of the approach. They use
“correction strategies” to detect problems in the
code, analyse them and then to refactor them.
While this approach to maintaining software by
finding design smells is useful there can be some
restrictions. Many of these tools can address only a
limited number of defects and not all can resolve
the defects that are uncovered.

The tool used in this paper, A-CMA (Koc et al.,
2012), uses metaheuristic search techniques to
measure the code quality and to search for a better
solution. It has the advantage of numerous metrics
and refactoring abilities to aid with its purpose.
Another tool that uses this approach by proactively
improving the code instead of working to decrease
issues is Code-Imp (Moghadam and Ó Cinnéide,
2011). Like A-CMA, Code-Imp provides a
selection of refactorings and a number of software
metrics for use. Both tools are used to refactor Java
code, although C, C++, COBOL and Erlang are
supported by other tools. The FermaT tool
(Fatiregun et al., 2004) can use hill search or a
genetic algorithm to refactor code and contains a
selection of 20 refactorings available to use.

6.2 Metrics

In 2004 Harman and Clark (2004) proposed that
metrics should be used as fitness functions. In the
same year, Vivanco and Pizzi (2004) compared 64
different software metrics using a parallel genetic
algorithm. Among the top encoded genes are
method name length metrics, coupling metrics and
complexity metrics. Bakar et al. (2012) has
attempted to develop a metric model for selecting
the most suitable metrics to measure
maintainability. They analyse the CK metrics suite
(Chidamber and Kemerer, 1994). Likewise,
O’Keeffe and Ó Cinnéide (2006) use the QMOOD
metrics suite (Bansiya and Davis, 2002) to measure
the software behaviours of flexibility, reusability
and understandability in terms of metrics and
compare the effectiveness of each. They also
observe the effects of each individual metric in the
refactoring process across the 3 metric functions.
Of the 3 functions, reusability is found to be
unsuitable due to the introduction of a large number

of featureless classes, although evidence is
provided in favour of the flexibility function and in
strong favour of the use of the understandability
function.

Five different cohesion metrics are compared by Ó
Cinnéide et al. (2012) across 8 different real world
Java programs to measure their volatility. It is
found that they disagreed in 55% of the applied
refactorings, and in 38% of the cases metrics are in
direct conflict with each other. Two of the metrics
are then studied in more detail to determine where
the contradictions that cause conflicts occur in the
code. This is expanded on by Veerappa and
Harrison (2013) by comparing 4 de-facto standard
coupling metrics across 8 Java projects. They find
that coupling metrics are less likely to conflict with
each other, with only 7% of the changes directly
conflicting with each other, but with a 55% chance
that changes in one metric will have no effect on
another. They also observe that improving coupling
does not always directly improve cohesion.
Different design principles of object oriented
engineering have been proposed by Martin (2000),
as well as a number of design patterns. He
discusses symptoms of TD and introduces the
SOLID principles used to improve the architecture
of object oriented systems. No previous work is
known by the authors to attempt to create a metric
function to tackle TD.

7. Conclusions

In this paper we have conducted an experiment to
compare 4 different fitness functions with selected
weights and metrics. Three functions were chosen
to represent common properties of an object
oriented program and a fourth, novel function was
chosen to represent the TD in the program.
Previous work (O’Keeffe and Ó Cinnéide, 2006)
has compared different metric functions before,
although to the authors knowledge, there has been
no known attempt to create a fitness function
representing the TD of a software system. Three
different searches were used: random search, hill
climbing and simulated annealing, with simulated
annealing yielding the more significant results and
the hill climbing search failing to better the random
search. Six open source Java programs were used
as a basis for the refactoring process and the quality
gain for each was compared using the 4 fitness
functions. The results generated with the simulated
annealing search were analysed. Of the 3
behavioural functions, only coupling was found to
be useful with the other 2, abstraction and
inheritance, showing little to no improvement in the
results. Related literature (Veerappa and Harrison,
2013), (Vivanco and Pizzi, 2004) tends to suggest
that cohesion and coupling metrics are more
suitable for refactoring and the results may support

that coupling is a good behaviour to measure for
improved quality. Further inspection also showed
that while simulated annealing allows negative
movements throughout the initial stages of the
search, the amount of refactoring actions applied
for the 2 weaker functions mirrored their metric
results. Thus it was speculated that the metrics used
to compose those functions were not as volatile as
the ones used in the other two.

Generally, the TD function proved to generate a
larger proportional improvement in the Java
programs, although in 2 of the programs, the
average coupling value was better than the score
given by the TD function. It is possible that these
improved results were due to the properties of the
programs in question and those programs were
more coupled and thus had more opportunity for
improvement. Furthermore, as the TD function is
made up of significantly more metrics than the
other 3, perhaps this allows more freedom for the
search during the refactoring process and has a
positive effect on the results gained with the added
options available. The amount of applied
refactoring actions for each fitness function were
compared with the quality gain results, a fresh
insight used to gain more understanding of the
effect the different functions can have. This
comparison supported the idea that different
metrics may provide more available refactorings,
thus corresponding to a larger number of positive
changes. The influence of the individual metrics on
the fitness functions were explored, with the results
likewise indicating that some metrics were more
influential than others and more importantly, that
some were not influential at all.

To address the research questions proposed at the
outset of the paper, the Wilcoxon signed-rank test
was used to measure how significant the
differences were between the TD results (the
Wilcoxon signed-rank test is used to compare non-
parametric paired data sets) and the Wilcoxon rank-
sum test was used to measure how significant the
differences were between the search results (the
Wilcoxon rank-sum test compares unpaired data
sets). The quality gain given by the TD function
using simulated annealing was calculated to be
significant, rejecting the null hypothesis that there
would be no significant effect on TD after
refactoring. To test the null hypothesis of the
second research question, the quality gain values of
the TD function were compared across the 3 search
techniques. Simulated annealing was found to be
significantly different to the others, and the random
search was found to be significantly different to the
hill climbing search. The significance of the
simulated annealing results rejects the null
hypothesis of research question 2.

7.1 Actionable Conclusions

The actionable findings to be taken from these
results are as follows. The simulated annealing
optimisation performs better than a local hill
climbing search or a random search in the task of
removing TD in a Java program through automated
refactoring. Using a fitness function to represent
the TD of a program, the programs have been show
to give a better improvement in metric values
compared against fitness functions that only aim to
measure specific properties of the software
(coupling, inheritance, abstraction). The results
show that it may indeed be possible for software
developers to use a fully automated approach to
decrease the TD in a software system, and that it
may be useful to combine metrics to represent more
abstract properties of a system. This automated
approach could ease the costly maintenance process
usually involved in software development, saving
time and effort for the developer.

8. Future Work

Various avenues have been uncovered for further
research. It has been found that, as the program size
increases and the available search size increases,
the time taken to execute the tasks will increase at a
non linear rate (this may be because the amount of
available refactorings will increase at order n2).
Further research using A-CMA’s available parallel
functionality and exploring other options would
hopefully allow for a more agreeable execution
time on larger programs. Another option is to
explore alternate or more recently developed search
techniques such as ‘Great Deluge’ or a global
search. Alternatively, a multi-objective approach
may provide improved results in the metric
functions. More work required includes further
inspection of the effect that individual metrics can
have on the refactoring ability of an automated
refactoring program (to deduce the volatility of
each metric) and inspecting whether more metrics
can yield more useful results. Further research of
the sensitivity of individual metrics on the fitness
functions could help derive the best combination of
metrics and weights to use for an effective fitness
function. Otherwise, a consensus derived among
software experts may inform a more reliable set of
weights to use for the individual metrics in the
function. A correlation was found in this study
between the amount of refactoring actions available
to a fitness function and the improvement of the
fitness function after refactoring. They may be
merit in conducting further investigation to test this
connection for any valid implications. Further
inspection of the hill climbing search would also be
useful to inspect why it failed to produce better
results than the baseline random search. Finally,
further investigation could be considered by

comparing TD against other measures of software
quality beyond abstraction, coupling and
inheritance such as cohesion, encapsulation,
polymorphism or complexity.

Acknowledgements

The authors are deeply grateful to Ekin Koc for
permission to modify and use his refactoring tool
A-CMA. The research for this paper contributes to
a PhD project funded by the UK EPSRC.

References

Allman, E., 2012. Managing Technical Debt.
Queue. 10, 50–55.
doi:10.1145/2168796.2168798

Bakar, A.D., Sultan, A.B., Zulzalil, H., Din, J.,
2012. Applying Evolution Programming
Search Based Software Engineering (SBSE)
In Selecting The Best Open Source Software
Maintainability Metrics, in: International
Symposium on Computer Applications and
Industrial Electronics, ISCAIE 2012. Ieee,
pp. 70–73.
doi:10.1109/ISCAIE.2012.6482071

Bansiya, J., Davis, C.G., 2002. A Hierarchical
Model For Object-Oriented Design Quality
Assessment. IEEE Trans. Softw. Eng. 28, 4–
17. doi:10.1109/32.979986

Basili, V.R., Caldiera, G., Rombach, H.D., 1994.
The Goal Question Metric Approach, in:
Encyclopedia of Software Engineering. John
Wiley & Sons, pp. 528–532.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M.,
Kruchten, P., Lim, E., MacCormack, A.,
Nord, R., Ozkaya, I., Sangwan, R., Seaman,
C., Sullivan, K., Zazworka, N., 2010.
Managing Technical Debt In Software-
Reliant Systems, in: FSE/SDP Workshop on
Future of Software Engineering Research,
FoSER 2010. pp. 47–52.
doi:10.1145/1882362.1882373

Chidamber, S.R., Kemerer, C.F., 1994. A Metrics
Suite For Object Oriented Design. IEEE
Trans. Softw. Eng. 20, 476–493.

Colanzi, T.E., Vergilio, S.R., Assunção, W.K.G.,
Pozo, A., 2013. Search Based Software
Engineering: Review And Analysis Of The
Field In Brazil. J. Syst. Software. 86, 970–
984. doi:10.1016/j.jss.2012.07.041

Di Penta, M., 2005. Evolution Doctor: A
Framework To Control Software System
Evolution, in: 9th European Conference on
Software Maintenance and Reengineering,
CSMR 2005. Ieee, pp. 280–283.
doi:10.1109/CSMR.2005.29

Fatiregun, D., Harman, M., Hierons, R.M., 2004.
Evolving Transformation Sequences Using
Genetic Algorithms, in: 4th IEEE

International Workshop on Source Code
Analysis and Manipulation, SCAM 2004.
IEEE Comput. Soc, pp. 65–74.
doi:10.1109/SCAM.2004.11

Ferrucci, F., Harman, M., Sarro, F., 2014. Search-
Based Software Project Management, in:
Software Project Management in a Changing
World. pp. 1–28.

Fowler, M., 2015. Refactoring Catalog [WWW
Document]. URL
http://refactoring.com/catalog/ (accessed
4.22.15).

Fowler, M., 2002. Refactoring: Improving The
Design Of Existing Code.

Griffith, I., Wahl, S., Izurieta, C., 2011.
TrueRefactor: An Automated Refactoring
Tool To Improve Legacy System And
Application Comprehensibility, in: 24th
International Conference on Computer
Applications in Industry and Engineering,
ISCA 2011.

Harman, M., 2007. The Current State And Future
Of Search Based Software Engineering, in:
Future Of Software Engineering, FOSE 2007.
pp. 342–357.

Harman, M., Clark, J., 2004. Metrics Are Fitness
Functions Too, in: 10th International
Symposium on Software Metrics, METRICS
2004. Ieee, pp. 1–12.
doi:10.1109/METRIC.2004.1357891

Harman, M., Jones, B.F., 2001. Search-Based
Software Engineering. Inf. Softw. Technol.
43, 833–839. doi:10.1016/S0950-
5849(01)00189-6

Harman, M., Mansouri, S.A., Zhang, Y., 2012a.
Search Based Software Engineering: Trends,
Techniques And Applications. ACM
Comput. Surv. 45, 1–64.
doi:10.1145/0000000.0000000

Harman, M., McMinn, P., 2010. A Theoretical And
Empirical Study Of Search-Based Testing:
Local, Global, And Hybrid Search. IEEE
Trans. Softw. Eng. 36, 226–247.
doi:10.1109/TSE.2009.71

Harman, M., McMinn, P., De Souza, J.T., Yoo, S.,
2012b. Search Based Software Engineering:
Techniques, Taxonomy, Tutorial, in:
Empirical Software Engineering and
Verification. pp. 1–59.

Kirk, D., Roper, M., Wood, M., 2007. A Heuristic-
Based Approach To Code-Smell Detection,
in: 1st Workshop On Refactoring Tools,
WRT 2007. pp. 54–55.

Koc, E., Ersoy, N., Andac, A., Camlidere, Z.S.,
Cereci, I., Kilic, H., 2012. An Empirical
Study About Search-Based Refactoring
Using Alternative Multiple And Population-
Based Search Techniques, in: Gelenbe, E.,
Lent, R., Sakellari, G. (Eds.), Computer and
Information Sciences II. Springer London,

London, pp. 59–66. doi:10.1007/978-1-4471-
2155-8

Kumari, M., Sharma, M., Kumar, A., 2014. A
Review Of Research Work In Software
Engineering. Int. J. Eng. Comput. Sci. 3,
5288–5298.

Li, H., Thompson, S., 2010. Refactoring Support
For Modularity Maintenance In Erlang, in:
10th IEEE Working Conference on Source
Code Analysis and Manipulation, SCAM
2010. Ieee, pp. 157–166.
doi:10.1109/SCAM.2010.17

Martin, R.C., 2000. Design Principles And Design
Patterns. Object Mentor.

McMinn, P., 2004. Search-Based Software Test
Data Generation: A Survey. Softw. Testing,
Verif. Reliab. 14, 1–58.

Mitchell, B.S., Mancoridis, S., 2002. Using
Heuristic Search Techniques To Extract
Design Abstractions From Source Code, in:
Genetic and Evolutionary Computation
Conference, GECCO 2002. pp. 1375–1382.

Moghadam, I.H., Ó Cinnéide, M., 2011. Code-Imp:
A Tool For Automated Search-Based
Refactoring, in: 4th Workshop on
Refactoring Tools, WRT 2011. pp. 41–44.

Morgenthaler, J.D., Gridnev, M., Sauciuc, R.,
Bhansali, S., 2012. Searching For Build Debt:
Experiences Managing Technical Debt At
Google, in: 3rd International Workshop on
Managing Technical Debt, MTD 2012. Ieee.
doi:10.1109/MTD.2012.6225994

Murgia, A., Tonelli, R., Concas, G., Marchesi, M.,
Counsell, S., 2012. Parameter-Based
Refactoring And The Relationship With Fan-
In/Fan-Out Coupling. J. Object Technol. 11,
1–24. doi:10.1109/ICSTW.2011.26

Ó Cinnéide, M., Tratt, L., Harman, M., Counsell,
S., Moghadam, I.H., 2012. Experimental
Assessment Of Software Metrics Using
Automated Refactoring, in: ACM-IEEE
International Symposium on Empirical
Software Engineering and Measurement,
ESEM 2012. pp. 49–58.

O’Keeffe, M., Ó Cinnéide, M., 2008. Search-Based
Refactoring For Software Maintenance. J.
Syst. Software. 81, 502–516.
doi:10.1016/j.jss.2007.06.003

O’Keeffe, M., Ó Cinnéide, M., 2007. Getting The
Most From Search-Based Refactoring, in: 9th
Annual Conference on Genetic and
Evolutionary Computation, GECCO 2007.
pp. 1114–1120.

O’Keeffe, M., Ó Cinnéide, M., 2006. Search-Based
Software Maintenance, in: 10th European
Conference on Software Maintenance and
Reengineering, CSMR 2006. pp. 251–260.

O’Keeffe, M., Ó Cinnéide, M., 2003. A Stochastic
Approach To Automated Design
Improvement, in: 2nd International

Conference on Principles and Practice of
Programming in Java, PPPJ 2003. pp. 59–62.

Räihä, O., 2009. An Updated Survey On Search-
Based Software Design.

Trifu, A., Seng, O., Genssler, T., 2004. Automated
Design Flaw Correction In Object-Oriented
Systems, in: 8th European Conference on
Software Maintenance and Reengineering,
CSMR 2004. Ieee, pp. 174–183.
doi:10.1109/CSMR.2004.1281418

Veerappa, V., Harrison, R., 2013. An Empirical
Validation Of Coupling Metrics Using
Automated Refactoring, in: ACM/IEEE
International Symposium on Empirical
Software Engineering and Measurement.
Ieee, pp. 271–274.
doi:10.1109/ESEM.2013.37

Vivanco, R., Pizzi, N., 2004. Finding Effective
Software Metrics To Classify Maintainability
Using A Parallel Genetic Algorithm, in: 6th
Annual Conference on Genetic and
Evolutionary Computation, GECCO 2004.
pp. 1388–1399.

Michael Mohan received his MEng degree in
Computer Games Design And Development at
Queen’s University Belfast. During the degree, he
undertook a 12 month placement in industry as a
software engineer. He is currently a Ph.D. student
at Queen’s University. His research interests
include search based software engineering,
software maintenance, automated refactoring and
multi-objective search techniques.

Dr. Desmond Greer is a senior lecturer at Queens
University, Belfast. He earned a Master of Science
and Doctorate at Queens University and University
of Ulster. His research can be collectively
described as how to better manage and adapt to
change, both in the software product and the
software development process. He has published
over 50 research papers, many of which have arisen
from research in an experimental context, in
collaboration with industry. He is a member of the
IEEE and IEEE Computer Society as well as an
active member of the International Software
Engineering Research Network (ISERN).

Dr. Paul McMullan is a lecturer in the School of
Electronics, Electrical Engineering and Computer
Sciences (EEECS) at Queen’s University Belfast.
His main research expertise is in the area of
Scheduling and Optimization using Artificial
Intelligence and Hyper-Heuristic Search
Techniques. He is also a practitioner of applying
research to Industrial Applications and Commercial
Spin-outs. He is a Director of two Queen's
University IT companies, Realtime Solutions
Limited and EventMap Limited.

