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Abstract 

Background: Treatment of inflammatory bowel disease (IBD) is mainly based on suppression 

of symptoms, often with numerous side effects. Trials of probiotics in IBD have frequently 

produced disappointing results. The majority of probiotics are unusual, since they do not 

require iron for growth, unlike many bacteria resident in the intestine. The IBD intestine is 

iron-rich due to bleeding and use of oral iron supplements; conventional probiotics would be 

rapidly outcompeted. We have evaluated an iron-responsive Streptococcus thermophilus 

strain for its potential to reduce signs of colitis.  

Methods: Efficacy of S. thermophilus was evaluated in the dextran sodium sulphate (DSS) 

mouse model of colitis. Treated animals were given 1x108 cfu S. thermophilus per day and 

clinical observations were taken daily. At termination, gross and histopathological signs of 

disease, cellular infiltration, location of bacteria, and cytokine expression in the intestine were 

determined. 

Results: S. thermophilus delayed onset of colitis and reduced clinical signs of disease, 

including bodyweight loss and gastrointestinal bleeding. It reduced bacterial translocation into 

the colonic tissue. Increased numbers of CD8+ intraepithelial lymphocytes were seen in 

control animals treated with S. thermophilus. S. thermophilus had no effect on gross 

pathology, histopathology or cytokine production in either colitic or control animals.  

Conclusions: We propose that S. thermophilus promotes maintenance of mucosal barrier 

function which reduces bacterial translocation, thereby reducing immune stimulation and 

associated inflammation. This allows mucosal healing, reducing gastrointestinal bleeding and 

weight loss. This could be studied as a locally-acting adjunct or alternative to current IBD 

treatments.  

Key words: Probiotic, epithelial barrier function, gastrointestinal bleeding.   
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Introduction 

The inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis, are chronic, 

debilitating diseases affecting an estimated 2.5-3 million people in Europe (Burisch et al., 

2013). These diseases are characterised by relapsing and remitting inflammation and 

ulceration in the gastrointestinal tract. In many cases, these chronic inflammatory processes 

lead to irreversible intestinal damage, the only treatment for which is surgical resection. 

Current IBD treatments are mainly based on suppression of symptoms by the use of biologics, 

systemic anti-inflammatory drugs such as mesalazine, glucocorticoids or immunosuppressive 

agents; these therapies are associated with numerous side effects and therefore new treatment 

options with fewer side effects would be beneficial to patients. 

The causes of IBD are not yet fully understood but one hypothesis is that a dysregulated 

mucosal immune response is initiated by an environmental factor in a genetically susceptible 

host (Kucharzik et al., 2006; Xavier and Podolsky, 2007). It has been suggested that gut 

microbes, both pathogenic and commensal, could play a role in this. The intestinal microflora 

is fundamental in the maintenance of host health, but IBD patients have an altered intestinal 

microflora with decreased biodiversity (specifically reduced Bacteroidetes and Firmicutes, 

and increased numbers of Escherichia coli (Packey and Sartor, 2009)). In an attempt to 

redress this balance, reduce inflammation and the symptoms of IBD, probiotics, defined as 

‘live microorganisms which when administered in adequate amounts confer a health benefit 

on the host’, have been trialled. Trials have mainly focussed on Lactobacillus and 

Bifidobacteria spp. and, for Crohn’s disease patients, have not produced the beneficial effects 

anticipated, with no consistent effects seen in treating active disease or preventing relapse of 

disease (Sanders et al., 2013). Probiotics have shown more promise in the treatment of 

ulcerative colitis. Two preparations in particular, E. coli Nissle 1917 and VSL#3 (a 

combination of 8 different probiotic strains) have been shown to induce and maintain 

remission in mild to moderate disease (Kruis et al., 2004; Miele et al., 2009; Sood et al., 

2009). Despite the lack of clinical evidence for efficacy of many probiotic strains, in a recent 

study, 40% of IBD patients regularly used non-prescribed probiotics, and use was more 

common in Crohn’s disease patients than ulcerative colitis patients (Agathou and Beales, 

2013). 

The lactic acid bacteria, frequently employed as probiotics, are unusual organisms in that they 

do not appear to have a requirement for iron (Bruyneel et al., 1989; Pandey et al., 1994; 

Imbert and Blondeau, 1998). This is in contrast to the majority of constituents of the 

commensal flora and many pathogens which are able to use iron to increase their growth rate 

(Wooldridge and Williams, 1993; Freestone et al., 1999; Cogan et al., 2007; Kortman et al., 

2012). Therefore, under high iron conditions, many lactic acid bacteria-based probiotics are 

rapidly outcompeted as other species increase growth rate and predominate. Inflammatory 

bowel disease sufferers have particularly iron-rich intestines due to intestinal bleeding, 

resulting from ulceration and chronic inflammation (Sturniolo et al., 1998), and oral iron 

supplements taken to counteract anaemia. A recent European study found that 92% of  

anaemic IBD patients received iron supplementation; only 28% received intravenous iron 

whereas 67% had oral iron supplements (Stein et al., 2013). We hypothesise that the 

increased levels of iron in the IBD gut are detrimental to conventional probiotics and could 

skew the microflora towards an unfavourable, potentially pathogenic population, which would 

provoke or maintain inflammation. 

We previously identified an isolate of Streptococcus thermophilus (NCIMB 41856) with the 

ability to reduce epithelial cell death, maintain tight cell junctions, reduce pathogen binding to 
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epithelial cells, and reduce pro-inflammatory signalling from epithelial cells and intestinal 

leukocytes in vitro (Bailey et al., 2011). This strain is unusual amongst lactic acid bacteria as 

it has the ability to increase its growth rate in response to iron (Bailey et al., 2011). While iron 

is not required for S. thermophilus NCIMB 41856 to exert its beneficial effect, the ability to 

use it as a growth factor better equips it to compete with the resident flora and pathogens in 

the iron-rich environment of the IBD gut. We propose that this iron-responsive bacterium 

could be used therapeutically to reduce inflammation and promote mucosal healing in IBD 

patients. The aim of this study was therefore to evaluate the ability of S. thermophilus 

NCIMB 41856 to ameliorate colitis in an animal model of inflammatory bowel disease.  

Materials and Methods 

Preparation of Streptococcus thermophilus NCIMB 41856 

S. thermophilus NCIMB 41856 was cultured in M17 broth supplemented with lactose (Oxoid, 

Cambridge, UK) at 37⁰C, under microaerobic conditions, overnight. Bacteria were washed 

with PBS and resuspended to a concentration of 5 x 108 cfu/ml in 3% sodium bicarbonate. We 

have used the maximum dose possible in order to determine any positive effect in the DSS 

colitis model used. Bacteria were resuspended in 3% sodium bicarbonate in order to mimic 

the effect of administering encapsulated bacteria in humans.  

Induction of colitis and treatment protocol 

All animal experiments were carried out by KWS BioTest Ltd (Bristol, UK) in accordance 

with UK Home Office Guidelines. Adult male BALB/c mice were housed under specific 

pathogen free conditions with food and water available ad libitum. Animals were randomised 

into four experimental groups of 10 mice according to bodyweight and allowed to acclimatise 

for one week. Starting from Day -2 and continuing until the end of the experiment (Day 11), 

two groups of animals were given a dose of 1 x 108 cfu of S. thermophilus NCIMB 41856 in 

3% sodium bicarbonate by oral gavage; two groups of control animals were given an equal 

volume of sodium bicarbonate alone. On Day 0, the drinking water was replaced with a 5% 

dextran sodium sulphate salt (DSS) solution for two groups, one given S. thermophilus, the 

other given sodium bicarbonate. Animals were given ad libitum access to the 5% DSS 

solution until the end of the experiment on Day 11. The experiment was carried out once with 

portions of the same colon being used for all analyses.  

Clinical observations 

From Day 0 until the end of the experiment on Day 11, animals were monitored daily for 

clinical signs of colitis including bodyweight loss, loose stools and/or diarrhoea and presence 

of occult or gross blood in the stools. Animals were scored from 0-4 for weight loss (0 

indicated no weight loss, 1 was a loss of  1-5%, 2 was 5-10%, 3 was 10-15% and 4 was 

greater than 15%), stool consistency (0 indicated normal stool, 2 was loose stool and 4 was 

diarrhoea) and bleeding (0 was no bleeding, 2 was hemoccult and 4 was gross bleeding). 

Scores for each parameter were added together to give a total clinical score with a maximum 

score of 12. All data were assessed for normality and analysed by one-way MANOVA with 

an LSD post-hoc test (SPSS, IBM, Armonk, NY, USA).    

Gross pathology 

At termination, colons were dissected out and a picture taken to allow for length 

measurements to be performed on digital images using ImageJ software 
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(http://rsb.info.nih.gov/ij). Data were assessed for normality and analysed by one-way 

ANOVA with a Tukey post-hoc test (GraphPad Prism 5, California, USA).   

Histopathology 

Colons were dissected out and a small pieces of tissue was stored at ambient temperature in 

tissue fixative, without prior washing, for histopathology analysis. Samples were processed 

for paraffin embedding and sections of colon were cut and stained with haematoxylin and 

eosin (H&E). Sections were scored on a scale of 0 to 2 by a qualified histopathologist for 

signs of colitis, specifically mucosal thickness, mucosal ulceration, lamina propria 

mononuclear cell infiltration, granulocyte infiltration and crypt abscesses and/or dilation 

and/or distortion. The scoring system was based on assessment of overall sections and the 

maximum possible score was 10. Data were assessed for normality and analysed by one-way 

ANOVA with a Tukey post-hoc test (GraphPad Prism 5).   

Fluorescence in situ hybridisation to quantify and identify location of S. thermophilus and 

total bacteria in colon tissue 

Fluorescence in situ hybridisation (FISH) to S. thermophilus was carried out as previously 

described (Garcia-Hernandez et al., 2012) on sections of formalin-fixed colon using a Cy3-

conjugated probe (5’-CATGCCTTCGCTTACGCT-3’) specific to 23S rRNA. Total levels of 

bacteria were quantified using a combination of three FITC-conjugated eubacteria probes to 

16S rRNA (EUB338 5'GCT GCC TCC CGT AGG AGT-3', EUB 338 II 5'GCA GCC ACC 

CGT AGG TGT-3, and EUB338 III 5'GCT GCC ACC CGT AGG TGT-3') as previously 

described (Daims et al., 1999). Bacteria adherent to the epithelium and within the tissue were 

counted. Data were not normally distributed and were therefore analysed by Kruskal-Wallis 

test with a Dunn’s multiple comparison post-hoc test (GraphPad Prism 5).  

Immunofluorescence to determine level of expression of CD8 in colon 

Colons were dissected out and a small piece of tissue was mounted in OCT and snap frozen in 

liquid nitrogen without prior washing. 5μm sections were fixed in acetone and blocked with 

IHC/ICC blocking buffer (eBioscience, San Diego, California, USA). Sections were 

incubated overnight at 4°C with rat anti-mouse CD8α (1/200; eBioscience). FITC-conjugated 

anti-rat IgG (1/200; eBioscience) was used to detect CD8α and sections were incubated for 90 

minutes at room temperature. Sections were mounted in Vectashield containing DAPI (Vector 

Laboratories, California, USA) and visualised on a Leica DMRA microscope equipped with a 

Hamamatsu Orca-ER monochrome camera. Leica Q-Fluoro software was used to capture ten 

fields of view per section at 40x magnification. Images were viewed using ImageJ software 

(http://rsb.info.nih.gov/ij) and positive pixels automatically counted as previously described 

(Inman et al., 2005). Data were assessed for normality and analysed by one-way ANOVA 

with a Tukey post-hoc test.  

RT-qPCR to determine IL-6 and IL-17a expression 

RNA was extracted from colon samples stored in RNAlater using an RNeasy mini kit 

(Qiagen, Crawley, UK). Synthesis of cDNA was carried out using 500ng random hexamers 

and the ImProm-II Reverse Transcription System (Promega , Southampton, UK) in a final 

volume of 20μl. All reactions were prepared according to the manufacturer’s instructions 

giving a final magnesium concentration of 3mM. All cDNAs were diluted to a final volume of 

100μl (1/5 dilution) using EB buffer (10mM Tris HCl pH 8.4; Qiagen). Primers and probes 

were designed using Primer3 (http://frodo.wi.mit.edu/primer3) and M-fold 
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(http://mfold.rna.albany.edu/?q=mfold) using the mouse specific GenBank sequences for IL-6 

(accession number NM_031168) and IL-17a (accession number NM_010552). The 

housekeeper gene GAPDH was used as an internal control. Primer and probe sequences are 

shown in Table 1. Quantitative PCR (qPCR) was performed using GoTaq master mix 

(Promega). Gene specific amplification was performed using 0.2μM of each primer, 0.1μM of 

probe and 5μl of diluted cDNA in a final volume of 25μl. Magnesium chloride concentrations 

were adjusted to 4.5mM in the final reaction by addition of 50mM MgCl2. Amplifications 

were performed in an MxPro3005P (Stratagene, California, USA) at 95°C for 2 minutes and 

then 45 cycles of 95°C for 15 seconds and 60°C for 30 seconds during which time the 

fluorescence data was collected. Data were assessed for normality and analysed by one-way 

ANOVA with a Tukey post-hoc test (GraphPad Prism 5).  

Table 1: Primers used to quantify transcription of IL-6 and IL-17a 

Name Primer and probe sequences 

IL-6 Forward 

Reverse 

Probe 

5’-AGCCAGAGTCCTTCAGAGAGA-3’ 

5’-ACTCCTTCTGTGACTCCAGC-3’ 

5’ FAM-CCCCAATTTCCAATGCTCTCC-3’ BHQ1 

IL-17a Forward 

Reverse 

Probe 

5’-CCAAACACTGAGGCCAAGGA-3’ 

5’-TGAGGTAGTCTGAGGGCCTT-3’ 

5’ FAM-GTCTTTAACTCCCTTGGCGC-3’ BHQ1 

GAPDH Forward 

Reverse 

Probe 

5’-GTCATCCCAGAGCTGAACGG-3’ 

5’-GCCTGCTTCACCACCTTCTT-3’ 

5’ FAM-TTCCTACCCCCAATGTGTCC-3’ BHQ1 

 

Results 

S. thermophilus reduces clinical signs of colitis 

Figure 1: DSS induced signs of colitis including loss of bodyweight (A), increase in clinical 

score (B), increase in faecal blood score (C) and an increase in faecal consistency score (D). 

Animals were weighed daily to monitor DSS-induced loss of bodyweight. DSS administration 

induced a highly significant bodyweight loss from Day 3 until the end of the experiment on 

Day 11 when the total weight loss was 13.5% (±6.3) compared to initial bodyweight. While 

colitic animals given S. thermophilus did still lose a significant percentage of bodyweight, the 

onset of this was delayed until Day 9 and the final weight loss was significantly lower at 7.2% 

(±8.4); S. thermophilus administration significantly reduced DSS-induced bodyweight loss at 

Day 4 and Days 7 to 11 (Figure 1A). S. thermophilus administered to healthy animals did not 

induce any weight changes.   

Clinical signs of colitis (combination of bodyweight loss, loose stools and/or diarrhoea and 

presence of occult or gross blood in the stools) were monitored daily and scored on a scale of 

0-12 where 0 indicates a healthy animal and 12 indicates severe colitis. DSS-administered 

animals first started to show disease signs on Day 2; by Day 8 clinical scores were 

significantly higher in DSS-treated animals than controls. Animals treated with DSS and S. 

thermophilus developed colitis later, at Day 9, and the clinical scores were significantly lower 

than those of DSS-treated animals at Day 8 and Day 10 (Figure 1B). The administration of S. 

thermophilus to healthy animals did not induce any increase in clinical score.   



7 
 

Animals dosed with DSS showed presence of blood in faeces, indicating significant 

gastrointestinal bleeding, on Day 8 and this continued until the end of the experiment on Day 

11. DSS-treated animals given S. thermophilus did not show observable blood in faeces until 

Day 10 and, at this point, the amount of blood was significantly lower than that in animals 

given DSS alone (Figure 1C). DSS induced significant levels of loose stools on Day 9 and 

this progressed towards diarrhoea as the experiment continued. S. thermophilus treatment had 

no effect on faecal consistency of DSS-treated animals. Control animals given S. 

thermophilus showed signs of mild loose stools on Days 3, 4 and 10 (Figure 1D).  

The effect of DSS and S. thermophilus administration on pathological markers of 

inflammatory disease 

Figure 2: Treatment with S. thermophilus had no effect on DSS-induced colon shortening (A) 

or histopathology score (B). 

Colon shortening is associated with severity of colitis and the administration of DSS induced 

a shortening of the colon when compared to the control group which was not prevented by S. 

thermophilus treatment. S. thermophilus treatment alone did not induce any reduction in colon 

length (Figure 2A). The nature of pathological change was as expected for the DSS model. 

The most severely affected colons displayed mucosal thickening, full circumferential 

ulceration, marked mixed mononuclear and granulocytic infiltration with inflammation and 

oedema of the submucosa, with loss or distortion of cryptal structure. DSS induced a highly 

significant increase in histopathology scores but administration of S. thermophilus was unable 

to prevent this. S. thermophilus treatment of healthy animals did not induce any 

histopathological changes (Figure 2B).     

S. thermophilus reduces binding of bacteria to epithelial cells and bacterial translocation 

Figure 3: Adherence of S. thermophilus (A) and non-S. thermophilus bacteria (B) to colonic 

epithelium. 

S. thermophilus was found bound to the colonic epithelium of both DSS-treated and control 

mice (Figure 3A). In healthy animals, S. thermophilus treatment significantly reduced levels 

of non-S. thermophilus bacteria bound to the epithelium but it did not significantly reduce the 

number of non-S. thermophilus bacteria bound to the epithelial cells in colitic animals (Figure 

3B). Although not significant, we tended to see lower levels of bacteria associated with in the 

epithelium in DSS-treated animals compared to controls. We hypothesise that this is due to a 

higher degree of epithelial cell shedding and therefore a reduction in the availability of 

bacterial binding sites. In 40% of DSS-treated animals and 30% of control animals, S. 

thermophilus was able to cross the epithelial barrier and penetrate into the colonic tissue 

(Figure 4A). In DSS-treated animals, S. thermophilus treatment significantly reduced 

translocation of non-S. thermophilus bacteria into the colonic tissue (Figure 4B). S. 

thermophilus was not found at any location in animals which had not received S. 

thermophilus NCIMB 41856 (data not shown).   

Figure 4: Translocation of S. thermophilus (A) and non-S.thermophilus bacteria (B) into the 

colonic tissue. 

The role of S. thermophilus in the mucosal immune response 

Figure 5: DSS induced an upregulation of IL-6 (A) and IL-17 (B) transcripts in the colon. 
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DSS induced an upregulation of both IL-6 and IL-17 transcripts in the colon, as expected for 

this model (Alex et al., 2009). The administration of S. thermophilus was unable to prevent 

this but there was no effect on the production of these cytokines in healthy animals given S. 

thermophilus (Figure 5). In healthy animals, S. thermophilus treatment was associated with 

increased expression of CD8 (Figure 6A) and these cells were predominantly resident within 

the epithelium, indicating that they are likely to be intraepithelial lymphocytes (Figure 6B).  

Figure 6: S. thermophilus treatment increased expression of CD8 in control animals (A), 

predominantly in the epithelium. 

Discussion 

The predominant feature of IBD is inflammation in the gastrointestinal tract, either confined 

to the colon in ulcerative colitis or at any point from mouth to anus in Crohn’s disease. This 

inflammation manifests itself as recurrent or bloody diarrhoea, abdominal pain and weight 

loss. Using an animal model of disease we have assessed the efficacy of S. thermophilus 

NCIMB 41856 to reduce inflammation and alleviate IBD signs. While S. thermophilus 

treatment had no effect on faecal consistency, it did significantly reduce weight loss and 

presence of blood in faeces (Figure 1), two common symptoms of IBD.  

We conducted a pilot experiment to evaluate the ability of both the iron responsive S. 

thermophilus strain NCIMB 41856 and a non-iron responsive S. thermophilus strain to 

survive and persist within the mouse intestine. Both strains were given in equal doses in 3% 

sodium bicarbonate by oral gavage to groups of three healthy mice. Three days post gavage, 

S. thermophilus NCIMB 41856 could be found in 2/3 mice whereas the non-iron responsive 

strain was not detected in any animal (unpublished data). While not significant, we felt this 

gave us a strong enough indication that a non-iron responsive S. thermophilus was not able to 

survive in the mouse intestine and therefore we did not investigate it further. In contrast, S. 

thermophilus NCIMB 41856 was able to adhere to the colonic epithelium in both control and 

DSS-treated animals and binding of other bacterial species to the epithelium was reduced 

(Figure 3). Competitive exclusion of pathogens from epithelial surfaces has been proposed as 

a mechanism by which probiotics may act. Competition both for limited nutrients and 

physical attachment sites could assist in the elimination of pathogens and opportunistic 

pathogens. We have previously shown that, unlike the majority of conventional probiotics, S. 

thermophilus NCIMB 41856 can compete with the resident microflora for iron, abundant in 

the IBD gut and used by many bacterial strains as a growth factor (Bailey et al., 2011). In the 

data presented here, we have shown that, in addition to this, it can compete for physical 

attachment sites at the iron-rich intestinal mucosa and therefore occupy a niche which could 

otherwise be inhabited by potentially pathogenic bacterial species.       

Epithelial cells lining the gastrointestinal tract form the first line of defence against invading 

pathogens. Epithelial barrier function is known to be disrupted in IBD patients (Irvine and 

Marshall, 2000; Pastorelli et al., 2013) and those with a higher degree of intestinal 

permeability have been shown to be at a greater risk of relapse (Wyatt et al., 1993; Arnott et 

al., 2000; Shavrov et al., 2015). Defective barrier function exacerbates diarrhoea and allows 

for increased uptake of luminal bacteria which results in a loss of tolerance to the resident 

microflora, thus stimulating the underlying immune system, enhancing and maintaining 

chronic intestinal inflammation (Duchmann et al., 1995). Tight junctions, found between 

epithelial cells, are required to maintain adequate barrier function but defects in the 

expression of tight cell junction proteins have been observed in IBD patients. Decreases in 

expression of the claudins, ZO-1, occludin and α-catenin have been seen in both Crohn’s 

disease and ulcerative colitis patients (Heller et al., 2005; Zeissig et al., 2007; Vivinus-Nebot 
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et al., 2014). Additionally, increased leaks which occur as a result of epithelial cell apoptosis 

have been observed in Crohn’s disease and ulcerative colitis (Heller et al., 2005; Zeissig et 

al., 2007). We have previously shown that S. thermophilus prevents occludin degradation and 

breakdown of tight cell junctions induced by E. coli in vitro as well as reducing epithelial cell 

death (Bailey et al., 2011). In the data presented here, we have shown that S. thermophilus 

prevents bacterial translocation from the lumen of the gut into the intestinal tissue in colitic 

animals (Figure 4). We hypothesise that this is due to the ability of S. thermophilus to protect 

and maintain tight cell junctions and prevent epithelial cell apoptosis, thereby enhancing 

barrier function.  

In addition to the direct effects of S. thermophilus on maintenance of tight cell junctions and 

barrier function, healthy animals treated with S. thermophilus showed increased numbers of 

CD8+ intraepithelial lymphocytes (IELs; Figure 6). The picture in colitic animals was less 

clear since DSS induces a generalised increase in intestinal CD8+ cells (Sund et al., 2005). 

IELs reside within the intestinal epithelial barrier and are predominantly CD8+. These cells 

play a vital role in host defence at the mucosal surface and facilitate maintenance of a 

competent intestinal barrier. For example, they have been shown to modulate expression of 

tight cell junction proteins by epithelial cells in order to maintain barrier integrity following 

infection (Dalton et al., 2006; Inagaki-Ohara et al., 2006). Furthermore, they regulate 

proliferation and differentiation of epithelial cells and play a role in induction of apoptosis in 

senescent or infected cells, allowing for rapid regeneration and reducing the risk of leaks 

(Guy-Grand et al., 1998). IELs are a mixed population of cells with different phenotypes 

having different roles in intestinal inflammation, some of which have been shown to be 

protective against colitis in animal models of disease (Chen et al., 2002; Inagaki-Ohara et al., 

2004; Roselli et al., 2009). Further phenotypical and functional analyses are required in order 

to accurately determine the role that this increased population of CD8+ IELs play in 

inflammation. However, given the reduction in bacterial translocation seen in this colitis 

model following S. thermophilus treatment, it seems likely that these IELs are of a protective 

rather than a colitogenic phenotype. Since we have previously shown that S. thermophilus is 

able to maintain tight cell junctions in vitro in the absence of IELs (Bailey et al., 2011), we 

hypothesise that it exerts two different mechanisms to enhance mucosal barrier integrity: 

preservation of occludin expression and increasing numbers of IELs which are 

multifunctional in maintaining a competent epithelial barrier.  

DSS induced an upregulation in transcription of IL-6 and IL-17 and histopathological signs of 

inflammation but S. thermophilus had no effect on this (Figure 5). DSS is a polyclonal 

activator of T and B cells (Ni et al., 1996) therefore it is not surprising that S. thermophilus is 

unable to prevent this direct activation, subsequent cytokine production and inflammation 

from occurring. We hypothesise that a stronger epithelial barrier, enhanced by S. 

thermophilus, reduces bacterial translocation, thereby reducing antigen-specific immune cell 

activation and secondary inflammation but it is unable to prevent the direct activation of 

immune cells by DSS.   

We have shown that S. thermophilus treatment of DSS-induced colitis in mice had a clear 

beneficial effect. DSS-induced colitis is frequently used as a model of human IBD due to its 

simplicity and many similarities with the natural disease. However, it is not a perfect model 

and the mechanism by which it induces inflammation is not entirely understood. It is thought 

that inflammation results from damage to the epithelial cells lining the colon which allows 

dissemination of pro-inflammatory intestinal contents into the tissue (Chassaing et al., 2014). 

In this study, animals were being treated with DSS for the duration of the experiment; it was a 

progressive model with a continuous chemical assault on the epithelial cells lining the gut, 
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therefore, a cure of colitis by S. thermophilus would not be expected. We have used this 

model to look for markers of efficacy rather than total resolution of inflammation and clinical 

signs. We would like to evaluate the efficacy of S. thermophilus NCIMB 41856 to reduce 

signs of colitis in a spontaneous mouse model of colitis, such as the SAMP1/YitFc mouse 

(Matsumoto et al., 1998; Sugawara et al., 2005) or the recently developed Winnie mouse 

(Heazlewood et al., 2008). This will allow us to further investigate parameters such as the 

cytokine inflammatory profile in models more comparable to the naturally-occurring disease.  

The goal of IBD treatment is to reduce inflammation early in the course of disease and induce 

mucosal healing. Here we have shown that treatment with S. thermophilus NCIMB 41856 

was able to reduce two key signs of IBD in an animal model of disease: weight loss and 

intestinal bleeding. We suggest that these key physical effects are mediated by enhanced 

epithelial barrier function, demonstrated by reduced bacterial translocation, induced by S. 

thermophilus. The mucosal barrier is often disrupted in IBD patients leading to increased 

intestinal permeability; therefore a more robust barrier would significantly lessen bacterial 

translocation and prevent antigenic overload, thereby reducing inflammation. While other 

probiotics have been shown to enhance barrier function (Madsen et al., 2001; Luyer et al., 

2005; Zeng et al., 2008; Pagnini et al., 2010; Zakostelska et al., 2011; Carlsson et al., 2013), 

they are unlikely to be able to survive and compete within the iron-rich environment of the 

IBD intestine. Since S. thermophilus NCIMB 41856 can use iron as a growth factor it is able 

to compete with the resident microflora in order to survive and exert its beneficial effect 

(Bailey et al., 2011).  

Conventional IBD treatments are frequently immunosuppressive and often act systemically, 

leaving the patient more susceptible to infection. We propose that S. thermophilus NCIMB 

41856 could show utility as an alternative to current IBD treatments or as an adjunct which 

may improve the efficacy of conventional drugs, allowing the same level of control with a 

lower dose of systemic immunosuppressive therapy, thereby potentially reducing side effects. 

S. thermophilus NCIMB 41856 is not immunosuppressive, has shown no deleterious effects in 

healthy or colitic animals and would act locally to restore barrier function, preventing 

perpetual immune stimulation and therefore reducing inflammation. This, in turn, would 

reduce gastrointestinal bleeding and weight loss.   
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Figure legends 

Figure 1: DSS induced signs of colitis including loss of bodyweight (A), increase in clinical 

score (B), increase in faecal blood score (C) and an increase in faecal consistency score (D). 

Treatment with S. thermophilus NCIMB 41856 delayed onset of colitis symptoms and 

significantly reduced loss of bodyweight, clinical score and faecal blood score but had no 

effect on faecal consistency. Data for each group are expressed as means. * indicates p<0.05, 

** p<0.01, ***p<0.001 when the DSS group is compared to control. # indicates p<0.05, ## 

p<0.01 and ### p<0.001 when the DSS group is compared to the DSS + S. thermophilus 

group. 

Figure 2: Treatment with S. thermophilus had no effect on DSS-induced colon shortening (A) 

or histopathology score (B) but did not induce any pathological or histopathological changes 

alone. * indicates p<0.05 and **p<0.01.  

Figure 3: Adherence of S. thermophilus (A) and non-S. thermophilus bacteria (B) to colonic 

epithelium. S. thermophilus adhered to the epithelium and binding of other species in control 

animals was reduced. ** indicates p<0.01. 

Figure 4: Translocation of S. thermophilus (A) and non-S.thermophilus bacteria (B) into the 

colonic tissue. S. thermophilus treatment was associated with significantly reduced 

translocation of other bacterial species in colitic animals. * indicates p<0.05.  

Figure 5: DSS induced an upregulation of IL-6 (A) and IL-17 (B) transcripts in the colon. 

This was not affected by treatment with S. thermophilus; S. thermophilus had no effect on the 

transcription of either cytokine in control animals. ** indicates p<0.01 and *** indicates 

p<0.001. 

Figure 6: S. thermophilus treatment increased expression of CD8 in control animals (A), 

predominantly in the epithelium (CD8+ cells are shown in green and nuclei are stained with 

DAPI) (B).  
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Figure 3 
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Figure 5 
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