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Proteomics informed by transcriptomics for
characterising active transposable elements
and genome annotation in Aedes aegypti
Kevin Maringer1,2,6*, Amjad Yousuf1,3, Kate J. Heesom4, Jun Fan5, David Lee1, Ana Fernandez-Sesma2,
Conrad Bessant5, David A. Matthews1 and Andrew D. Davidson1*

Abstract

Background: Aedes aegypti is a vector for the (re-)emerging human pathogens dengue, chikungunya, yellow fever
and Zika viruses. Almost half of the Ae. aegypti genome is comprised of transposable elements (TEs). Transposons
have been linked to diverse cellular processes, including the establishment of viral persistence in insects, an
essential step in the transmission of vector-borne viruses. However, up until now it has not been possible to study
the overall proteome derived from an organism’s mobile genetic elements, partly due to the highly divergent
nature of TEs. Furthermore, as for many non-model organisms, incomplete genome annotation has hampered
proteomic studies on Ae. aegypti.

Results: We analysed the Ae. aegypti proteome using our new proteomics informed by transcriptomics (PIT)
technique, which bypasses the need for genome annotation by identifying proteins through matched
transcriptomic (rather than genomic) data. Our data vastly increase the number of experimentally confirmed Ae.
aegypti proteins. The PIT analysis also identified hotspots of incomplete genome annotation, and showed that poor
sequence and assembly quality do not explain all annotation gaps. Finally, in a proof-of-principle study, we
developed criteria for the characterisation of proteomically active TEs. Protein expression did not correlate with a
TE’s genomic abundance at different levels of classification. Most notably, long terminal repeat (LTR)
retrotransposons were markedly enriched compared to other elements. PIT was superior to ‘conventional’
proteomic approaches in both our transposon and genome annotation analyses.

Conclusions: We present the first proteomic characterisation of an organism’s repertoire of mobile genetic
elements, which will open new avenues of research into the function of transposon proteins in health and disease.
Furthermore, our study provides a proof-of-concept that PIT can be used to evaluate a genome’s annotation to
guide annotation efforts which has the potential to improve the efficiency of annotation projects in non-model
organisms. PIT therefore represents a valuable new tool to study the biology of the important vector species Ae.
aegypti, including its role in transmitting emerging viruses of global public health concern.
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Background
The arrival of the ‘omics’ era has revolutionised the
study of model organisms, including humans and mice,
and even greater gains are arguably being made in less
tractable non-model organisms. The number of organ-
isms with sequenced genomes is increasing rapidly, fa-
cilitating proteomic, transcriptomic and molecular
studies. However, proteomic studies have been ham-
pered in organisms with unsequenced or incompletely
annotated genomes [1]. This is because proteomics usu-
ally relies on genome annotation for identifying peptides
detected by high-throughput liquid chromatography
with coupled tandem mass spectrometry (LC-MS/MS)
(Fig. 1Ai). We previously reported a new approach called
proteomics informed by transcriptomics (PIT) that cir-
cumvents the requirement for a reference genome by
identifying peptides based on transcripts assembled de
novo from RNA-seq data (Fig. 1Aii) [2]. Importantly, es-
pecially for non-model species, we showed that the ap-
proach was universal and comparable to using gold
standard bioinformatic datasets in humans. Amongst
other non-model organisms, PIT has been applied to
reservoir hosts and arthropod vectors of infectious dis-
eases, including bats and ticks [3–6]. While proteomic
data can provide genome annotation [1, 7], whether PIT
can evaluate the state of a genome’s annotation has not
been tested. Here, we used the reference genome se-
quence for the important vector mosquito Aedes aegypti
[8] to assess PIT’s utility in evaluating genome annota-
tion. The Ae. aegypti genome is particularly amenable to
such studies because it is in an intermediate state of an-
notation, less complete than the human genome, but
more advanced than that of other non-model organisms.
We also investigated the usefulness of PIT to study the

‘mobilome’ (the total of all mobile transposable elements
(TEs) in a genome) in Ae. aegypti cells. While several
transposon classification systems have been proposed
(for example [9–12]), we will here use conventions de-
scribed by Tu et al. [10], because this system is specific
to mosquitoes, and because it aligns with the major
database used in our analyses (TEfam, tefam.biochem.-
vt.edu) and with TE classifications used by Nene et al. in
the published Ae. aegypti reference genome [8]. As de-
scribed by Tu et al., mosquito TEs can be divided into
two major classes based on their mechanism of trans-
position. Class I TEs replicate via a reverse
transcriptase-generated RNA intermediate and result in
amplification of the element, while class II transposons
transpose without RNA intermediates and may or may
not involve TE amplification [10, 11]. Class I TEs can be
further subdivided into several orders; long terminal re-
peat (LTR) retrotransposons, non-LTR retrotransposons
(sometimes also referred to as retroposons or long inter-
spersed repetitive/nuclear elements (LINEs)), and

Penelope-like elements (PLEs) [9, 10]. LTR retrotranspo-
sons share similarities with retroviruses, encoding a
structural group-associated antigen (gag)-like protein,
polymerase (pol)-like protein required for reverse tran-
scription and genomic insertion, and sometimes a trans-
membrane receptor-binding envelope (env)-like protein,
flanked by 200–500 bp regulatory non-translated LTRs
[9–11]. LTR retrotransposons can be classified into four
major clades, Ty1/copia, Ty3/gypsy, BEL and DIRS,
based on their pol-encoded reverse transcriptase domain
[10]. Non-LTR retrotransposons also encode a pol-like
(ORF2) and sometimes a gag-like (ORF1) protein, and
can be classified into 17 clades based on the pol-
encoded reverse transcriptase domain [10]. Class II
(DNA-mediated) TEs include ‘cut and paste’ DNA trans-
posons, typified by 10–200 bp terminal inverted repeats
(TIRs) that flank one or more ORFs encoding a transpo-
sase [9–11]. These elements transpose via a non-
amplifying ‘cut and paste’ mechanism, with copy number
increasing through cellular DNA repair mechanisms,
and are classified into several families or superfamilies
according to their transposase sequence [10]. The
recently-discovered helitrons are thought to replicate via
a rolling-circle mechanisms and encode proteins similar
to helicases and replicases [9, 10]. Short interspersed ele-
ments (SINEs, class I) and miniature inverted repeat TEs
(MITEs, class II) rely on proteins expressed from other
TEs for their replication [9, 10] and would not be ex-
pected to be identifiable by PIT.
Characterising the proteomically active mobilome is of

interest because TEs are implicated in processes as di-
verse as gene regulation [13, 14], mammalian pregnancy
[15] and carcinogenesis [16]. TEs also contribute to gen-
ome plasticity and evolution [16, 17], and have been ‘do-
mesticated’ for certain host functions [17]. Mobile
genetic elements are of particular interest in relation to
Ae. aegypti, because approximately 47% of the genome
consists of TEs, contributing to a five-fold larger genome
size compared to the distantly related mosquito Anoph-
eles gambiae [8]. Furthermore, Ae. aegypti is a vector for
several (re-)emerging arthropod-borne viruses (arbovi-
ruses), including dengue virus (DENV), the most signifi-
cant arbovirus infecting humans [18], the re-emerging
yellow fever virus (YFV), which continues to cause
death and disease despite an effective vaccine [19],
chikungunya virus (CHIKV), which has spread rapidly
across the globe to become a major public health
concern [20], and Zika virus (ZIKV), which recently
emerged in the Americas and has been associated
with a rise in microcephaly and neurological compli-
cations in Brazil [21]. Of relevance to arbovirus trans-
mission, TEs have been shown to help establish
persistent viral infections in mosquitoes and the
model organism Drosophila melanogaster by reverse
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transcribing incoming viral RNA into extrach-
romosomal and/or genomically integrated DNA forms
[22, 23]. Transcripts from these virus-derived genomic
sequences feed in to the antiviral RNA interference

(RNAi) pathway to suppress viral replication and
allow viral persistence [23].
To our knowledge the mobilome-derived proteome

has not been characterised for any organism. Previous
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Fig. 1 PIT identifies additional proteins in Ae. aegypti cells compared to ‘conventional’ proteomics. a Overview of the PIT pipeline. In
‘conventional’ proteomics (i), proteins detected by high-throughput LC-MS/MS from Ae. aegypti cell extracts are identified by comparison to
mass spectra computationally predicted from protein or transcript annotations on the Ae. aegypti reference genome. (Annotated transcripts are
in silico translated prior to mass spectra prediction). PIT identifies additional proteins by using RNA-seq to identify transcripts in RNA samples matched
to protein isolates (ii). Transcripts are assembled de novo using Trinity software, translated in silico, and used for mass spectra prediction for
peptide identification. From a single experimental sample, proteins are identified without the need for an annotated reference genome,
and transcript abundance can be inferred from RNA-seq data. b Total unique proteins (i) and proteins with at least two recorded peptides (ii)
identified in Aag2 cells based on the Ae. aegypti reference genome protein or transcript annotations, or using PIT. Percentages indicate the proportion
of proteins identified only by PIT. c BLAST analysis of the PIT-identified proteome. Hits were mapped against the Ae. aegypti [taxid 7159], Culex quinque-
fasciatus [taxid 7176] (Culex) or Drosophila melanogaster [taxid 7227] (Drosophila) Ref-Seq databases. A subset of hits did not match annotated genes
from these dipteran insects (non-insect). (i) Total PIT proteome, (ii) Translated ORFs from Trinity transcripts matched with at least two peptides
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studies have focussed on genes encoded by just a subset of
transposons (such as transposase), and usually analysed a
subset of spots on a 2D SDS-PAGE gel rather than per-
forming a systematic proteomic analysis [24–31]. In mos-
quitoes, TE activity has additionally been inferred
indirectly through comparative genomic and transcrip-
tomic analyses [8, 32–34]. However, genomic data only
provide a long-term evolutionary view of transposition
events whilst transcriptomic data do not distinguish be-
tween bona fide TE activity and host responses mounted
against TEs.
Here, we report for the first time a PIT analysis of a

mosquito species, using the Ae. aegypti cell line Aag2.
The proteins encoded by approximately 6,500 transcripts
were identified, vastly increasing the number of experi-
mentally confirmed Ae. aegypti proteins. The analysis
provided 145 new genome annotations, the majority of
which did not lie in either regions of poor sequence
quality or mapping data, suggesting that the complete-
ness of a genome’s assembly may not be a major driver
behind gaps in annotation. The utility of PIT analysis for
guiding annotation efforts was demonstrated by the
identification of chromosome 1 and chromosomal loci
1p3, 1q4 and 2p4 as hotspots of poor annotation. We
also detected 137 proteins expressed by TEs, represent-
ing the first proteomic characterisation of an organism’s
mobilome. Interestingly, the relative abundance of spe-
cific mobile elements in the Ae. aegypti genome is not
reflected at the protein level. While different types of
genomic element are known to be more or less active in
terms of transposition events in different cellular con-
texts [10, 16, 35–39], our proteomic analysis is the first
to make this observation at the protein level, with clear
implications for the co-opted functions of TE-derived
proteins in cellular processes. The overrepresentation of
long terminal repeat (LTR) retrotransposon proteins is of
particular interest due to the potential role these TEs play
in antiviral defence. Our data may inform future studies
into virus persistence and arbovirus control methods, and
demonstrate PIT’s utility for interrogating a genome’s an-
notation and proteomically active mobilome.

Results
Side-by-side comparison of PIT and ‘Conventional’
proteomic analysis of Aag2 cells
We performed PIT on Aag2 cells, an immortalised Ae.
aegypti cell line commonly used for arbovirus research
[40, 41]. Total RNA and protein was isolated from the
same population of exponentially growing Aag2 cells.
RNA-seq analysis of poly(A)+ enriched RNA resulted in
~73 million paired-end reads, 91 nt in length that were
assembled into a de novo transcriptome using Trinity
[42]. To maximise the protein search database for prote-
omic analysis, a combined database was prepared by

translating each of the 73,881 Trinity transcripts and the
official Ae. aegypti transcript list (Aedes-aegypti-Liver-
pool_TRANSCRIPTS_AaegL3.3.fa; 27,799 entries) in all
6 reading-frames (retaining ORFs > 200 nt) and combin-
ing the resulting protein sequences (62,675 and 53,824
sequences respectively) with the official Ae. aegypti pre-
dicted peptides list (Aedes-aegypti-Liverpool_PEPTIDE-
S_AaegL3.3.fa; 17,703 entries) into a FASTA file. This
file was then used as a search database for the MS/MS
data acquired from analysis of the Aag2 proteome using
MaxQuant/Andromeda [43, 44]. The analysis resulted in
the identification of 6,124 unique protein groups
(Fig. 1Bi), of which 5,215 were identified by two or more
peptides (Fig. 1Bii). Although routinely only proteins
identified by at least two peptides are reported in many
studies, proteins identified using only one peptide using
a stringent peptide-spectrum match (PSM) false discov-
ery rate (FDR) can be informative [45, 46], especially
when combined with specific transcript data [2, 3].
There was a good correlation between the protein
groups identified using the Ae. aegypti translated tran-
scripts search list and the predicted proteins list. The
differences observed could reflect differences in the way
the two databases are curated, i.e. protein predictions
based on direct transcript analyses rather than from the
reference genome sequence-derived transcript list, and/
or the existence of alternative ORFs not present in the
predicted peptides list. By contrast, the use of the trans-
lated Trinity transcriptome as a search database (‘PIT’ in
Fig. 1B) resulted in 16% (Fig. 1Bi, all hits) and 14%
(Fig. 1Bii, 2+ peptides) uniquely-identified protein groups
(as a percentage of all identified protein groups) corre-
sponding to all or 2 or more peptide hits respectively. The
results confirm that PIT provides additional information
compared to ‘conventional’ proteomics. A subset of pro-
tein groups were identified using the official Ae. aegypti
transcript and predicted peptides lists but not by PIT,
which has been reported before and may be due to insuffi-
cient RNA-seq coverage and/or incomplete de novo tran-
script assembly in this particular experiment [7].

Characterisation of the Aag2 PIT proteome
To provide further information on the identity of protein
groups uniquely identified by the PIT analysis, we per-
formed a second PIT analysis of the de novo assembled
transcriptome using a bespoke PIT workflow imple-
mented in the Galaxy Integrated Omics (GIO) platform
[7]. In this workflow, proteins identified by PIT were
BLAST searched against the Ae. aegypti, Culex quinque-
fasciatus, Drosophila melanogaster and NCBI non-
redundant protein RefSeq protein databases. Ae. aegypti
and Cx. quinquefasciatus are distantly related mosquitoes
classified in the order Diptera (flies) with the even more
distantly related D. melanogaster. We extended our analysis
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to these non-Aedes insects to identify proteins that might
be missing from the current Ae. aegypti genome assembly
(AaegL3.3).
A total of 5,457 proteins (83% of the PIT proteome)

matched known Ae. aegypti genes (Fig. 1Ci). Most of
these (4,663) shared homology with Cx. quinquefasciatus
proteins, and 2,231 matched proteins from all three
dipteran insects, although we did not check whether
these represent 1:1:1 orthologues. A further 215 hits (3%
of the total) matched proteins from Cx. quinquefasciatus
and D. melanogaster, but not Ae. aegypti. Their hom-
ology to non-Aedes insect proteins suggests these pro-
teins represent Ae. aegypti genes not annotated in the
current genome assembly (as described below). Finally,
14% of the PIT proteome (899 hits) shared no similarity
with known Ae. aegypti, Cx. quinquefasciatus or D.
melanogaster proteins. For simplicity, we will refer to
these proteins as ‘non-insect hits’, although we acknow-
ledge that the three dipteran species we used in our ana-
lysis do not encompass the full diversity of proteins
expressed by all members of the class Insecta, and there-
fore a proportion of these hits might display homology
to proteins from other insect species. These non-insect
hits may represent agents such as viruses and TEs (see
below). Overall, similar results were obtained when we
included only proteins identified through two or more
peptides in our analysis (Fig. 1Cii), although a larger
proportion of the non-insect hits were identified with
just one peptide. For the remainder of this report we
used the complete list of identified proteins for our ana-
lyses unless otherwise indicated. As explained above, we
believe that hits associated with one peptide still provide
valuable biologically relevant information in the context
of PIT, due to the additional transcriptomic evidence for
their expression. The PIT-identified proteins are listed in
Additional file 1.

New annotation for the Ae. Aegypti reference genome
Of the known Ae. aegypti proteins identified (Fig. 1Ci),
3,309 (61%) are annotated with names and/or functions
(Fig. 2A). The rest are listed as ‘hypothetical’ (674 pro-
teins, 12%) or ‘conserved hypothetical’ (1,474 proteins,
27%) (Fig. 2A). The proportion of annotated and ‘(con-
served) hypothetical’ proteins in our data is comparable
to their relative proportion in the reference genome [8].
All of these proteins had previously been verified at the
transcript level, yet only a minority (703) have been de-
tected at the protein level (Fig. 2B). The overrepresenta-
tion of annotated versus hypothetical proteins previously
verified proteomically is possibly due to a bias towards
proteins with better annotation in functional studies.
We next focussed on the proteins identified through

homology to Cx. quinquefasciatus and D. melanogaster,
but not Ae. aegypti, proteins (‘non-Aedes insect’ proteins)

(Fig. 1Ci). We aligned their PIT transcripts to the Ae.
aegypti reference genome (AaegL3.3) using the BLAST
function at vectorbase.org [47] (Fig. 2C). Of the 215 non-
Aedes insect proteins, 38 hits did not map to the Ae.
aegypti reference sequence (Fig. 2C, no match). The short
transcript length of these hits (Fig. 2D, no match) might
reduce the ability of algorithms to detect homology across
several shorter exons. A further 21 hits were already anno-
tated, likely because of new annotation added since our
initial PIT analysis (Fig. 2Ei). Eleven hits mapped to mul-
tiple locations in the genome (Fig. 2C, ambiguous) and
were excluded from further analyses. These may represent
duplicated genes due to genome assembly errors or para-
logues arising through real gene duplication events. The
remaining 145 hits (Fig. 2C) represent new annotation
provided by PIT. This annotation takes several forms,
such as extensions to predicted ORFs (Fig. 2Eii) that might
be due to the current annotation being incorrect or be-
cause we identified an unknown transcript variant. We
also identified new ORFs (Fig. 2Fi), and new exons close
to or within existing ORFs (Fig. 2Fii and iii) that may rep-
resent new genes, or new transcript variants. Additional
file 2 summarises our new annotation data.

Evaluation of the Ae. Aegypti reference genome
annotation using PIT
We next investigated why our new annotations were not
already present in the Ae. aegypti reference genome. As a
measure of sequence quality, we used vectorbase.org to
analyse the genome sequences aligning to our PIT tran-
scripts and the 5,000 up- and down-stream bases for se-
quencing gaps (N’s). Poor sequence quality was associated
with 36% of our annotations (Fig. 3A, non-annotated).
This was slightly higher than, but comparable to, a set of
randomised PIT transcripts mapping to annotated genes
(Fig. 3A, annotated).
When the Ae. aegypti genome was sequenced, sequen-

cing reads were assembled into contigs and then super-
contigs and scaffolds [8]. Some of these supercontigs have
been assigned physical chromosomal locations [8, 48–50].
We used the most recent mapping data [48] as a proxy for
the quality of the genome assembly surrounding our PIT
annotation. Chromosomal locations have been assigned to
45% of all supercontigs, compared to 38% of supercontigs
containing new PIT annotation (Fig. 3B). Note that some
supercontigs contain more than one PIT hit. Although
there is a trend for our PIT annotation to map to regions
of poor sequence (Fig. 3A) and assembly (Fig. 3B) quality,
this trend is not pronounced, suggesting the completeness
of a genome’s assembly may not be a major driver behind
gaps in annotation.
The 42 supercontigs containing new annotation were

spread across all three chromosomes (Fig. 3C). Normalised to
the number of supercontigs mapped to each chromosome,
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new PIT annotation exhibited a two-fold enrichment on
chromosome 1. Normalised on a finer scale, chromosomal re-
gions 1p3, 1q4 and 2p4 were enriched in new annotation.
While annotation on 1p3 and 2p4 was associated with poor
sequence quality, annotation on 1q4 was not. Full mapping
data is given in Additional file 3. Our data demonstrate that
PIT can evaluate the state of a genome’s annotation by identi-
fying hotspots of incomplete annotation.

Identification of proteins derived from mobile genetic
elements
We next turned to the PIT hits lacking homology to Ae.
aegypti, Cx. quinquefasciatus or D. melanogaster

proteins (Fig. 1Ci, “non-insect”). We reasoned that some
of these hits may stem from transposons or viruses.
Studying the proteome derived from highly repetitive
mobile genetic elements is intrinsically difficult for sev-
eral reasons. Individual elements may be present in mul-
tiple copies within the genome, and each copy may
differ markedly from the consensus sequence [51]. Ele-
ments that invaded the genome more recently are less
divergent from their consensus sequence [9, 51]. How-
ever, the repertoire of recently acquired elements differs
between individuals in both the identity and genomic lo-
cation of TEs [51, 52]. Therefore, a given experimental
sample may match poorly to the organism’s reference
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stylistically edited for clarity); <> indicates annotated transcript orientation; filled boxes represent regions of alignment to genome (exons)
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genome. The sequence of evolutionarily ancient in-
vaders, on the other hand, may degenerate until these
TEs are difficult to identify [9, 51, 53]. While ancient
TEs are less likely to be actively transposing [51], they
may still express protein, especially where a TE protein
is co-opted for host cell functions [17]. Finally, repetitive
genetic elements are masked in genome reference se-
quences and therefore do not show up in classical tran-
script and protein databases [53].
For these reasons, proteomic studies of the mobilome

have so far focussed on a subset of TE proteins, such as
transposase [24, 25], and are therefore inherently biased
and non-systematic in their approach. We hypothesised
that PIT might overcome some of the intrinsic difficulties
in studying the mobilome, because PIT allows potentially
divergent TE proteins to be matched to their correspond-
ing transcripts irrespective of differences from the refer-
ence genome. Ae. aegypti provides a tractable platform for
a proof-of-principle study because a large number of mo-
bile genetic elements previously identified in evolutionar-
ily divergent mosquito species have been curated in the
TEfam database (tefam.biochem.vt.edu). While it is likely
that many more TEs remain to be identified and charac-
terised in each of these mosquito species, the existing data
allowed us to validate our approach.

We began by BLASTing the translated ORFs from the
Trinity transcript list that had been experimentally con-
firmed by PIT, and had been classified as ‘non-insect’
hits, against all mosquito TE proteins in the TEfam data-
base. In principle, any (non-PIT) proteomic dataset can
be searched by BLAST against the TEfam database.
However, given the highly divergent nature of mobile
genetic elements, the in silico translated transcripts
(which were experimentally matched with peptides)
should identify more low homology hits than the much
shorter peptides identified by LC-MS/MS. Identifying
these lower homology matches is essential for character-
ising proteomically active TEs that diverge markedly
from the limited list of known mobile genetic elements.
Given the lack of high-throughput proteomic studies

on TEs, we then sought to empirically define criteria for
identifying TE proteins with high confidence. Using an
E-value threshold of 10−5, considered a significant match
at the amino acid level, we identified 149 proteins
matching TEs from Ae. aegypti, Cx. quinquefasciatus
and Anopheles spp. (17% of all non-insect hits). We next
used the PIT dataset corresponding to known Ae.
aegypti genes as a calibrator for determining a stringent,
yet inclusive, threshold for TE protein identification.
Since repetitive mobile genetic elements are masked in
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Fig. 3 Interrogation of the Ae. aegypti genome annotation using PIT. a Sequencing gaps surrounding 145 previously non-annotated proteins identified
by PIT (‘new annotation’ in Fig. 2C) compared to a matched sample of annotated Ae. aegypti genes (Additional file 7). b Number of supercontigs
within the Ae. aegypti genome assembly, or the subset containing new annotation from PIT, that have been mapped to chromosomal locations [48]. c
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the reference genome [8], we would expect our Ae.
aegypti PIT hits to contain no TE proteins. However, in
practice a small number of TE-derived proteins might
be included in the reference genome if they are misan-
notated or have been co-opted for known cellular func-
tions. At the level of amino acid homology, 90% of
protein pairs with 30% identity or greater represent bona
fide homologous proteins [54]. While TE proteins might
be expected to be more divergent, we used this thresh-
old to plot PIT hits matching known TE proteins in the
non-insect and Ae. aegypti datasets at different % amino
acid sequence coverage cut-offs (Fig. 4A). As expected,
the Ae. aegypti dataset contained a lower proportion of
hits with homology to TE proteins (Fig. 4A). At a cut-off
of 0% coverage (i.e. all identified hits) 15.5% of the non-
insect hits matched TE proteins, while only 0.7% of Ae.
aegypti hits did (Fig. 4A). As the % coverage cut-off is
increased, the number of TE matches drops rapidly in
the Ae. aegypti dataset (Fig. 4A), suggesting that a large

proportion of the TE hits mapping to Ae. aegypti genes
are false positives. In contrast, the TE hits in the non-
insect dataset are predominantly resistant to an increase
in the % coverage cut-off (up to about 75% sequence
coverage), suggesting that the majority of the TE pro-
teins identified in this dataset represent real TE proteins.
Therefore, our criteria for the identification of TE
proteins was >30% amino acid identity across >45% se-
quence coverage, which maximises the number of bona
fide TE proteins identified in the non-insect database,
while minimising the number of potential false positives
in the Ae. aegypti PIT dataset (Fig. 4A). At >45% se-
quence coverage, increasing the % identity threshold has
a marginal impact on ‘background’ TE detection in the
Ae. aegypti PIT list, while the number of real TE pro-
teins identified in our non-insect dataset is reduced
(Fig. 4B). Therefore, the lower 30% identity threshold is
preferable for maximising the detection of bona fide TE
proteins.
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Using these criteria, we identified 127 TE proteins in
our non-insect PIT hits (14.1% of the total) (Fig. 4Ci).
On the other hand, just nine (0.2%) of Ae. aegypti PIT
hits matched TE proteins (Fig. 4Cii). Additional file 4
lists the complete set of TE proteins identified by PIT.
Fifteen non-insect proteins exhibited >95% amino acid
homology to known Ae. aegypti TEs across >95% se-
quence coverage (Fig. 4Ci, Table 1), which, given the
highly divergent nature of mobile genetic elements,
might be considered the closest thing to an ‘exact match’
[12]. The remaining TE proteins shared lower homology
with known mobile elements from Ae. aegypti and other
mosquito species. Importantly, the overall proportion of
TE proteins identified in the non-insect and Ae. aegypti
PIT datasets did not change when we analysed only PIT-
identified proteins associated with two or more peptide
hits (Fig. 4D). In addition to using TEfam as a source
database for identifying TE proteins, we also used
RepBase (girinst.org), a larger database of TEs from
eukaryotic genomes [12]. Using RepBase alone, or in
combination with TEfam, increased the number of TE
proteins identified in our non-insect dataset by up to
53% (Fig. 4Ei). Importantly, almost all of the TE proteins
identified by TEfam alone (Fig. 4Ci, Additional file 4)
were also identified using RepBase, with close correl-
ation in terms of the type of elements identified, indicat-
ing that these TE proteins are high-confidence hits. Of
the new TE proteins identified through the RepBase
database (which also matched TEfam proteins below our

thresholds for inclusion) 41% disagreed with TEfam in
terms of the TE identity (LTR retrotransposon versus
cut and paste DNA transposon, etc.), with only 25%
agreeing at the clade/superfamily level. Since these hits
may therefore be of lower quality, we decided to focus
on our more robust hits identified in the initial TEfam
analysis (Fig. 4Ci, Additional file 4) for the remainder of
this paper. In fact, we found that combining TEfam and
RepBase as source databases for the identification of TE
proteins increased the ‘background’ identification of TE
proteins in our Aedes protein dataset (Fig. 4Eii). Interest-
ingly, 96% of TE proteins identified through RepBase
alone matched mosquito TEs, suggesting that TEfam,
which is more tailored to mosquito TEs and identified
highly confident hits in our analysis, may be sufficient
and favourable for the identification of mosquito TEs
over RepBase.
In summary, our analysis demonstrates that the use of

PIT with the criteria we have described can identify
proteins expressed from mobile genetic elements in an or-
ganism’s genome. Furthermore, PIT is superior to ‘conven-
tional’ proteomic approaches in this regard, as the vast
majority of TEs were identified in the ‘non-insect’ list of
hits that were only identified by PIT.
Using our thresholds for TE identification, a number of

non-insect hits (772) remained unidentified (Fig. 4Ci,
other). Whilst many of these hits might represent TEs that
fall below our threshold of detection, we also identified
proteins derived from the insect-specific flavivirus cell fus-
ing agent virus (CFAV), a known contaminant of Aag2
cells, and the recently discovered insect-specific bunya-
virus Phasi Charoen-like virus (PCLV), which we identify
here as a previously unknown contaminant of Aag2 cells
(Fig. 4Ci and Di, virus, and Additional file 5). We con-
firmed that PCLV is an actively replicating virus in Aag2
cells (Additional file 5), and deposited all viral genome se-
quences in Genbank (accession numbers KU936054,
KU936055, KU936056 and KU936057). For more infor-
mation on these viruses, please refer to Additional file 5.
The remaining 757 non-insect hits (Fig. 4Ci, other)
showed sequence identity to TEs which was below our
cut-off threshold value and may be explained by; errone-
ous assembly of transcripts by Trinity, false assignment of
specific peptides to a protein predicted from the transcrip-
tome, the presence of contaminants and/or poor annota-
tion of specific TEs in the sequence databases.

Types of mobile elements expressing protein in Aag2
cells
We next wanted to determine what sorts of TEs express
protein in Ae. aegypti cells. Mobile genetic elements pre-
viously described in mosquitoes are summarised in
Fig. 5A. We found proteins from LTR retrotransposons,
non-LTR retrotransposons and ‘cut and paste’ DNA

Table 1 Known Ae. aegypti TEs Active at the Protein Level in
Aag2 Cells

TE Order TE Clade Element ORF Detected TEfam ID

LTR Ty3/gypsy Ele7 pol TF000099

Ele19 gag TF000110

Ele40 gag TF000135

Ele50 env-like TF000145

Ele54 env-like TF000317

Ele55 env-like TF000318

Ele69 gag TF000341

Ele101 gag TF000382

Ele104 pol TF000385

Ele122 env-like TF000419

Ele154 gag TF000540

Ele227 gag TF000507

BEL Ele153 gag TF000298

Non-LTR R4 Ele1 ORF1 TF000040

Jockey Ele1 ORF2 TF000019

All elements are class I TEs. Detected proteins exhibit >95% amino acid
homology and >95% sequence coverage with specified elements
Bold typeface indicates Trinity transcripts associated with two or
more peptides
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transposons in our complete PIT dataset, with a larger
number of LTR retrotransposon proteins detected com-
pared to other TEs (Fig. 5Bi, Additional file 4). A larger
number of LTR retrotransposon proteins was also de-
tected when only TE proteins identified through two or
more peptides were analysed, although in this case we
were no longer able to detect proteins derived from
non-LTR retrotransposons (Fig. 5Bii). This overrepresen-
tation of LTR retrotransposons could in principle result
from a greater number of LTR retrotransposons in the
TEfam database, which includes TEs from non-Aedes
mosquitoes, or in the Ae. aegypti genome (both in terms
of absolute sequence coverage and the number of ele-
ments present). We therefore normalised the absolute
number of proteins detected in our PIT dataset for each
type of TE to the respective known representation of
each type of element in the TEfam database or Ae.
aegypti reference genome, and plotted the resulting
‘relative enrichment’ proportional to the relative

abundance of LTR retrotransposons, which was set to 1
(Fig. 5Cand D). Interestingly, LTR retrotransposon pro-
teins remained enriched two- to nine-fold (Fig. 5Ci),
while proteins from non-LTR retrotransposons and ‘cut
and paste’ DNA transposons were detected at similar
relative frequencies to each other despite differences in
their absolute abundance (Fig. 5Bi). To exclude the pos-
sibility that this observation was an artefact of our
thresholds for TE identification, we repeated our analysis
using only TE proteins exhibiting >40% or >50% amino
acid identity to known mosquito TE proteins (at >45%
sequence coverage throughout) (Fig. 5Cii and iii). At
these higher thresholds, the ‘background’ identification
of proteins derived from mobile genetic elements in our
Ae. aegypti PIT dataset is reduced, although many bona
fide TE proteins are likely also excluded (Fig. 4B). We
observed an even greater four- to 19-fold enrichment of
LTR retrotransposon proteins in this more stringent
analysis (Fig. 5Cii and iii). Finally, we repeated our
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analysis using only hits associated with more than two
peptides (Fig. 5D). Again, LTR retrotransposon proteins
remained overrepresented in our PIT data (Fig. 5D), and
were the only elements identified with greater than 40%
amino acid identity to known TE proteins (Fig. 5Dii).
We conclude that, under our experimental conditions,
LTR retrotransposons are more likely to express protein
at levels detectable by PIT than other Ae. aegypti mobile
genetic elements.
The data were then analysed at the level of TE clades/

superfamilies. For LTR retrotransposons, we detected
more proteins from Ty3/gypsy and BEL elements than
Ty1/copia elements (Fig. 6Ai). The relative enrichment of
Ty3/gypsy proteins and underrepresentation of Ty1/copia
proteins was still observed when normalised to their re-
spective copy number (Fig. 6Aii) or % coverage (Fig. 6Aiii)
in the Ae. aegypti genome. This discrepancy between an
element’s genomic abundance and the detection of its pro-
teins is more clearly illustrated for non-LTR retrotranspo-
sons (Fig. 6B), which are classified into more clades than
LTR retrotransposons. For example, the second highest
number of detected proteins come from Jockey elements,
which are nevertheless underrepresented relative to their
genomic abundance, while the elements L1 and Outcast
are detected in lower absolute numbers, but are overrep-
resented relative to their genomic abundance (Fig. 6Bi, ii
and iii). The data for ‘cut and paste’ DNA transposons are
unclear, since IS630-Tc1-mariner elements were under-
represented relative to genome copy number but not %
genome coverage (Fig. 6C). We did not detect protein
from L2 (non-LTR retrotransposon) or P, piggyBac, PIF-
harbinger or Transib (‘cut and paste’ DNA transposons)
elements, even though some of these TEs are present in
higher numbers in the TEfam database and Ae. aegypti
genome than other detectable elements. Therefore, at dif-
ferent classification levels, the abundance of mobile ele-
ments in a host’s genome does not correlate with their
activity at the protein level.

TE ORFs expressed in Aag2 cells
Of the TEs for which we detected protein, LTR and non-
LTR retrotransposons encode more than one ORF
(Fig. 5A). For all LTR retrotransposon clades, we detected
a greater number of gag proteins than pol proteins
(Fig. 7a). Protein from env-like genes was only detected
for a few Ty3/gypsy elements. Note that this analysis
quantifies the total number of different elements for
which each ORF was detected, not absolute TE protein
levels. For non-LTR retrotransposons, the reverse trend
was observed, with more proteins detected for ORF2 than
ORF1 (Fig. 7b). Of the 15 ‘perfect match’ TEs (Fig. 4Ci,
Table 1), there were none for which more than one ORF
was detected. We therefore conclude that TE ORFs are
not expressed equally at the protein level in Aag2 cells.

Discussion
We report, for the first time, a PIT analysis of a mosquito
species, and provide the first protein expression data for
almost a third of Ae. aegypti genes. This includes 1,989
(27% of) genes listed as ‘(conserved) hypothetical’ and
lacking functional annotation. We provide 145 new anno-
tations, representing novel genes and new exons for
known transcripts. Our data will benefit molecular stud-
ies, where misannotations waste time and resources.
Intron-exon junctions in particular are incorrectly anno-
tated in many genome assemblies [53], and we confirm
that PIT can help resolve these (Fig. 2E) [55–57].
While PIT has been used to provide annotation in

other organisms [56–58], this study is the first to dem-
onstrate PIT’s utility in interrogating the state of a ge-
nome’s annotation. By its very nature, this sort of
proteomic analysis cannot be performed when the refer-
ence genome is used to identify peptides. We also estab-
lish proof-of-principle that PIT can characterise the
proteome derived from an organism’s mobile genetic ele-
ments, and show that PIT identifies vastly more ele-
ments compared to ‘conventional’ proteomics analyses
that rely on existing genome annotation.

PIT as a tool for evaluating a Genome’s annotation
The reference genomes of non-model organisms often
lack comprehensive annotation, with missing, out-of-
frame and duplicated ORFs, incorrect splicing predic-
tions and poor functional annotation, posing problems
for molecular studies [1, 53, 56, 57]. Given limited re-
sources, identifying hotspots of incomplete annotation
would focus annotation efforts and maximise their impact.
By identifying Ae. aegypti chromosome 1, and chromo-
somal regions 1p3, 1q4 and 2p4, as enriched in new PIT
annotation, we demonstrate PIT’s utility in characterising
such hotspots. PIT is superior to proteomic or transcrip-
tomic analyses alone, as PIT simultaneously verifies pro-
tein expression and an ORF’s transcript structure.
Although chromosomal regions 1p3 and 2p4 were associ-
ated with poor sequence quality, region 1q4 was not, and
more generally our new annotations were only marginally
associated with poor sequence and assembly quality. This
suggests that the completeness of a genome’s assembly
may not be a major driver behind gaps in annotation. In-
stead, the large number of minisatellites and rapid evolu-
tion of chromosome 1 [48] may hinder gene prediction
and annotation [53]. Furthermore, some PIT annotations
were close to contig termini (data not shown), and genes
spanning misassembled contigs often lack annotation [56].
Regions with low manual annotation are also enriched for
new PIT annotation [56]. We mapped new annotation to
chromosomal locations, but where this is not possible a
list of incompletely annotated contigs, as we also provide
(Additional file 3), is still of benefit.
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PIT for characterising the proteome expressed by an
organism’s mobilome
We present the first characterisation of an organism’s
proteomically active mobilome. Only 15 proteins
exactly matched known Ae. aegypti TEs. This might
reflect mobilome differences between mosquito popu-
lations [52] and Aag2 cells not captured in the single
existing reference genome. TE sequences are also
difficult to characterise [53], perhaps leading to in-
complete TE annotation. In fact, at least 122 mobile
genetic elements were identified that are not repre-
sented in the TEfam database, and the majority of
these hits map with close to 100% homology to non-
annotated regions of the Ae. aegypti reference genome
(data not shown), suggesting that the current list of
Ae. aegypti TEs is incomplete. Our data demonstrate
the utility of PIT in the discovery and annotation of
protein-expressing mobile elements. Of note, Mutator,
a ‘cut and paste’ DNA transposon, was identified for
the first time in Ae. aegypti.
For this initial proof-of-concept study, a threshold

for TE protein identification was empirically deter-
mined that we believe to be highly stringent, yet
inclusive. However, it was noted that almost all (non-
viral) PIT hits in our non-insect dataset displayed
varying levels of homology to known mosquito mobile
genetic elements, which was not the case for the Ae.
aegypti PIT hits (data not shown). Given the highly
divergent nature of mobile genetic elements, and their
likely incomplete representation in the TEfam data-
base, many more of these hits may represent bona
fide TE-derived proteins. By compiling a database of
Ae. aegypti TE proteins identified by PIT in different
cell lines and wild and laboratory mosquitoes under
varying experimental conditions it should in the
future be possible to more confidently characterise a
larger array of mobile genetic elements in this mos-
quito species.

Genomic abundance does not predict a TE’s protein
expression
Interestingly, at different levels of classification, the gen-
omic abundance of mobile genetic elements in Aag2
cells did not predict protein expression. Similar observa-
tions regarding the propensity for a transposon to trans-
pose have been made previously [10, 16, 35–39].
However, at the level of expression of individual TE pro-
teins, this observation could not have been predicted
prior to the systematic analysis of the proteomically ac-
tive mobilome reported here. This distinction is import-
ant because many non-transposing genomic elements
might be contributing to cellular functions through the
expression of their individual proteins, and we demon-
strate that PIT is particularly well-suited to further eluci-
dating such non-transposition-related functions of TEs.
Interestingly, we found LTR retrotransposon proteins to
be overrepresented compared to other types of mobile
genetic elements (Fig. 5Cand D). At the clade/superfam-
ily level, a similar discordance between the genomic
abundance of elements and their protein expression was
observed (Fig. 6). While half of the Ae. aegypti genome
consists of TEs, only around 200 encode intact ORFs
[8]. At the level of individual TEs, protein expression
was only detected from 15 of these elements (Fig. 4Ci,
Table 1). Despite the likelihood of incomplete proteomic
coverage, it would therefore appear that not all elements
encoding intact ORFs express protein. Finally, not all
proteins are equally detectable proteomically for TEs en-
coding multiple ORFs (Fig. 7). For elements that exactly
match known Ae. aegypti TEs, expression of more than
one ORF per element could not be detected.
Although incomplete PIT coverage and the un-

known abundance of elements in the Aag2 genome
might influence our results, this was compensated for
by also normalising to the TEfam database. Given the
large number of data points at the class and clade/super-
family level, we believe our overarching conclusions
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hold true, even though trends might change for
individual elements. Additionally, the enrichment of
LTR retrotransposon proteins (Fig. 5Cand D) corre-
lates with the overrepresentation of small RNAs de-
rived from these elements, which predict TE activity
[59], in D. melanogaster [60].
Several mechanisms might account for the lack of cor-

relation between TE protein expression and the presence
of an element/ORF in the genome. Firstly, genomic ele-
ments themselves regulate their own protein expression
[14]. Secondly, host immune pathways suppress TE ac-
tivity to protect against the deleterious genomic effects
of transposition, and it is conceivable that certain ele-
ments and their ORFs are more effectively silenced by
host immunity [17, 51]. Finally, a subset of TE proteins
may be co-opted for host cell functions [17], while other
ORFs within the same element, and other elements
within the same clade/superfamily, may not be active in
this way.

Biological implications of TE protein expression detected
by PIT
Our data cannot prove transposition-in-progress. In-
stead, the strengths of PIT lie in its ability to provide an
unbiased global characterisation of protein expression
from mobile genetic elements, whether or not these are
in the process of actively transposing. PIT is therefore
useful as a starting point for functional studies into
transposon activity and TE proteins co-opted for cellular
functions. PIT can also give insight into mobilome biol-
ogy. Non-LTR retrotransposons for example are often
5’-truncated due to incomplete reverse transcription
during transposition [61], which is reflected in the
higher abundance of ORF2 versus ORF1 proteins in our
dataset (Fig. 7b). The greater abundance of gag proteins
than env-like proteins of LTR retrotransposons also
makes sense, because, unlike endogenous retroviruses,
not all LTR retrotransposons encode an env-like protein
[9, 10]. In addition, gag is a structural component of the
virus-like particles produced during the lifecycle of LTR
retrotransposons, and therefore more gag is required
(and produced) than the enzymatically active non-
structural pol protein [62]. These observations highlight
the ability of PIT to provide biologically relevant infor-
mation about TEs.
For arbovirus transmission, the overrepresentation of

LTR retrotransposon proteins is of particular interest.
These TEs are enriched at genomic sites of viral se-
quence integration and play a critical role in arbovirus
persistence in insects [23]. Cells may distinguish be-
tween such ‘useful’ elements and ‘hostile’ TEs [61]. It is
unclear whether LTR retrotransposon protein expression
is tolerated to facilitate mosquito immunity, or whether
these elements are better at evading host defences

against TEs. Our data provide a starting point for studies
into how specific LTR retrotransposons contribute to
arboviral persistence and transmission. A list of proteo-
mically active TEs should also facilitate the identification
of active elements for typing mosquito populations, and
might improve transposon-mediated genome editing of
mosquitoes [10]. Given that our current dataset is repre-
sentative of just one experimental condition in one cell
line, it will be important in the future to expand on
these proof-of-principle studies by analysing different
experimental conditions and by expanding our work into
wild and laboratory mosquito populations.

Conclusions
PIT represents a valuable new tool to investigate mobi-
lome activity and protein expression, since genomic data
cannot identify current mobilome activity and RNA-seq
data do not distinguish between TE activity and cellular
defences against TEs [32, 63, 64]. Furthermore, our data
on TE protein expression, Ae. aegypti genome annota-
tion and persistent Aag2 viruses are of value to
arbovirus-vector interaction studies. Finally, we provide
proof-of-principle for PIT’s usefulness in evaluating gen-
ome annotation, with clear utility in guiding annotation
efforts in the increasing number of sequenced genomes
of non-model organisms.

Methods
Cells
Ae. aegypti Aag2 cells [41, 65] were a kind gift from
Alain Kohl (University of Glasgow, UK) and Raul
Andino (University of California, San Francisco, CA
USA), and were maintained in Leibovitz’s L-15 medium
(ThermoFisher Scientific, Waltham, MA USA) supple-
mented with 2 mM glutamine, 0.1 mM non-essential
amino acids, 8% (v/v) tryptose phosphate broth (Sigma-
Aldrich, St. Louis, MO USA), 100 U/ml penicillin,
100 μg/ml streptomycin and 10% (v/v) foetal bovine
serum (FBS) (ThermoFisher Scientific) at 28 °C in a hu-
midified atmosphere without CO2.

RNA and protein purification from Aag2 cells
Approximately 2 × 107 Aag2 cells (grown to 90% con-
fluency) were scraped into the culture medium, har-
vested by centrifugation, washed twice with ice cold PBS
and split into two samples which were then used for ei-
ther RNA or protein extraction. For RNA isolation, the
cell pellet was resuspended in 1 ml of TRIzol® reagent
(ThermoFisher Scientific) and purified as described by
the manufacturer. The purified RNA then underwent a
second round of purification using an RNeasy MinElute
spin column (Qiagen, Venlo, Netherlands). For protein
extraction, the cell pellet was suspended in 0.5 ml of 2X
Laemmli sample buffer (without bromophenol blue) and
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heated to 95 °C for 5 min. The protein concentration in
the cell lysate was determined using a BCA Protein
Assay kit (ThermoFisher Scientific).

RNA-seq analysis
A sample of the Aag2 total RNA was supplied to the
Beijing Genomics Institute (Beijing, China) for
Eukaryotic RNA-seq (Transcriptome) analysis which
entailed; RNA integrity analysis, poly(A)+ enrichment
and cDNA library production, followed by sequencing
using an Illumina HiSeq2000. After filtering, the analysis
resulted in a dataset containing ~73 million paired-end
reads 91 bp in length. The sequencing data was then
uploaded to the Galaxy suite of software, hosted locally
on BlueCrystal, the University of Bristol High Perform-
ance Computer. The Trinity de novo assembly software
[42], hosted locally on Galaxy, was used to produce a set
of assembled transcripts from the RNA-seq data (73,881
entries) using the default parameters. The RNAseq data
is available at the European Nucleotide Archive with the
accession number PRJEB13078 (http://www.ebi.ac.uk/
ena/data/view/PRJEB13078).

LC-MS/MS analysis
The proteins in 50 μg of total protein extract were sepa-
rated by 10% SDS-PAGE. The gel lane was cut into 20
slices and each slice subjected to in-gel tryptic digestion
using a ProGest automated digestion unit (Digilab, Marl-
borough, MA USA). The resulting peptides were fraction-
ated using a Dionex Ultimate 3000 nanoHPLC system in
line with an LTQ-Orbitrap Velos mass spectrometer
(ThermoFisher Scientific). In brief, peptides in 1% (v/v)
formic acid were injected onto an Acclaim PepMap C18
nano-trap column (Dionex, Sunnyvale, CA USA). After
washing with 0.5% (v/v) acetonitrile 0.1% (v/v) formic acid,
peptides were resolved on a 250 mm× 75 μm Acclaim
PepMap C18 reverse phase analytical column (Dionex)
over a 150 min organic gradient, using 7 gradient seg-
ments (1–6% solvent B over 1 min, 6–15% B over 58 min,
15–32% B over 58 min, 32–40% B over 3 min, 40–90% B
over 1 min, held at 90% B for 6 min and then reduced to
1% B over 1 min) with a flow rate of 300 nl min−1. Solvent
A was 0.1% formic acid and Solvent B was aqueous 80%
acetonitrile in 0.1% formic acid. Peptides were ionized by
nano-electrospray ionization at 2.3 kV using a stainless
steel emitter with an internal diameter of 30 μm (Thermo-
Fisher Scientific) and a capillary temperature of 250 °C.
Tandem mass spectra were acquired using an LTQ-
Orbitrap Velos mass spectrometer controlled by Xcalibur
2.1 software (ThermoFisher Scientific) and operated in
data-dependent acquisition mode. The Orbitrap was set to
analyze the survey scans at 60,000 resolution (at m/z 400)
in the mass range m/z 300 to 2000 and the top six multi-
ply charged ions in each duty cycle selected for MS/MS in

the LTQ linear ion trap. Charge state filtering, where un-
assigned precursor ions were not selected for fragmenta-
tion, and dynamic exclusion (repeat count, 1; repeat
duration, 30 s; exclusion list size, 500) were used. Frag-
mentation conditions in the LTQ were as follows: normal-
ized collision energy, 40%; activation q, 0.25; activation
time 10 msec; and minimum ion selection intensity, 500
counts. Data are available via ProteomeXchange with
identifier PXD003799.

Proteomic analysis
PIT analysis was done using a bespoke bioinformatic
pipeline (PIT: Genome annotation_from mgf; http://
gio.sbcs.qmul.ac.uk/root?workflow_id=63cd3858d057a6
d1) available on the publically available proteomics re-
source GIO [7]. The default settings on each tool con-
tained in the pipeline were used unless otherwise stated,
as follows. The 20 .RAW files from the MS/MS analysis
were first converted to mzML files using MSConvert
whilst the de novo transcriptome produced by Trinity
(containing 73,881 sequences) was translated in all 6
frames (ORFs with a start codon > 200 nt) using PIT:OR-
Fall to produce 62,675 ORFs. The resultant mzML and
FASTA files were used for a database search and subse-
quent downstream processing using MSGF +MSMS
Search and PIT:PSMProcessing. Cysteine carbamido-
methylation was set as a fixed modification and methio-
nine oxidation and N-terminal acetylation as variable
modifications in the search. Searches were performed
with full tryptic digestion, a MS tolerance of 10 ppm and
a decoy search database option enabled. The PSM-FDR
for peptides and proteins was set to 0.01. The mzid out-
put file was used by PIT:Extract hits to extract ~160,000
peptides corresponding to Trinity generated transcript
ORFs. The Trinity transcripts were mapped to the Ae.
aegypti genome (taxid: 7159; Aedes-aegypti-Liverpool
_SCAFFOLDS_AaegL3.fa, VectorBase, vectorbase.org
[47] release date Apr, 2014) using GMAP [66] The out-
put files from PIT:Extract hits and GMAP were used for
PIT:Integrate, which is the core of PIT methodology, to
integrate identified transcriptomic and proteomic fea-
tures into a single file. In the final step of the workflow,
PIT:Protein homology was used to BLAST each protein
sequence against the Ae. aegypti (Aedes-aegypti-Liver-
pool_PEPTIDES_AaegL3.3, VectorBase: release date Oct,
2014), Cx. quinquefasciatus (taxid: 7176; Culex-quinq
uefasciatus-Johannesburg_PEPTIDES_CpipJ2.2.fa, Vec-
torBase: release date Aug, 2014), D. melanogaster (taxid:
7227; proteome ID UP000000803, Uniprot: release date
Oct, 2014) and the NCBI non-redundant protein RefSeq
databases respectively. For each protein, if the identity of
the BLAST hit passed the threshold (default value is
60%) the search for that sequence stopped, if not, the
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sequence was BLAST searched against the NCBI non-
redundant database.
MaxQuant (version 1.2.2.5) [43] in combination with

the Andromeda search engine [44] were used to com-
pare the PIT analysis with conventional proteomic ana-
lysis. The 20 .RAW files were processed and searched
against a combined FASTA file containing the 6 frame
translation of the de novo transcriptome produced by
Trinity, a 6 frame translation of the official Ae. aegypti
transcript list (Aedes-aegypti-Liverpool_TRANSCRIPT-
S_AaegL3.3.fa; VectorBase: release date Oct 2014) and
the official Ae. aegypti peptide list (Aedes-aegypti-Liver-
pool_PEPTIDES_AaegL3.3.fa). Cysteine carbamidometh-
ylation was set as a fixed modification and methionine
oxidation and N-terminal acetylation as variable modifi-
cations in the search. Searches were performed with full
tryptic digestion, a MS tolerance of 6 ppm, a maximum
number of 5 modifications per peptide and a minimum
peptide length of 6, a maximum of 2 missed cleavages
and a maximum charge of 7. Reverse database search
options were enabled and contaminants included. The
MS/MS tolerance was set at 0.5 Da and the FDR for
peptides and proteins was set to 0.01. A posterior error
probability (PEP) score was generated for each protein.
Only proteins with a PEP of less than 0.1 were consid-
ered in the analysis.

Genome annotation
Transcripts corresponding to ‘non-Aedes’ insect PIT hits
were searched for homology against the current Ae.
aegypti genome assembly (Aedes-aegypti-Liverpool_S-
CAFFOLDS_AaegL3.fa). Alignments were downloaded
in.svg format and superficially modified in Adobe Illus-
trator (Adobe Systems, San Jose, CA USA) for clarity
only. To assess sequence quality, the genomic sequence
5,000 bases up- and down-stream of each PIT transcript
alignment that corresponded with new genome annota-
tion (n = 145) was downloaded, copied into Microsoft
Excel (Microsoft Corporation, Redmund, WA USA) and
analysed for the presence of N’s (sequencing gaps). An
equal number of PIT hits corresponding to known Ae.
aegypti genes (matched for transcript length) was simi-
larly analysed. Supercontig chromosomal mapping data
was as published [50]. The top 20% of chromosomal
regions containing more than two new PIT annotations
were considered ‘enriched’ for new annotation. In
Fig. 2B, published transcriptomic and proteomic data-
sets (Additional file 6) were downloaded and trans-
ferred into Microsoft Excel. PIT hits were searched
against these data based on VectorBase ID (vectorba-
se.org). For practical reasons proteins and transcripts
lacking a Vectorbase ID were excluded from the ana-
lysis. Proteins listed in the Uniprot database (unipro-
t.org) were also included. All data analyses were

performed in Microsoft Excel and illustrations prepared
in Adobe Illustrator.

TE analyses
The complete list of mosquito TE amino acid sequences
was downloaded from tefam.biochem.vt.edu on the 31st

of August 2015. A complete list of TE sequences was
downloaded from RepBase (RepBase21.06 on the 16th of
August, 2016) and compiled into a FASTA file. A com-
bined FASTA file containing the TEfam and RepBase
TEs was also generated. PIT data were searched against
these sequences using the online versions of BLASTp and
tBLASTn and bespoke scripts [2, 7]. Criteria for high-
confidence hits were a BLAST E-value <10−5, query cover
>45% and identity >30%, according to Pearson et al. [67]
and our own empirically-determined thresholds. The top
hit (according to the BLAST score) was used for all ana-
lyses. As a final quality control measure, five TE proteins
identified through just one peptide were removed from
the final mobilome list. The peptides associated with these
five hits also matched other Ae. aegypti genes or TE pro-
teins corresponding to non-related mobile elements or
non-concordant ORFs in related elements. These peptides
therefore do not reliably map to specific TE proteins, pos-
sibly due to poor peptide quality or because these amino
acid sequences are common to many unrelated proteins.
Analyses were performed in Microsoft Excel and illustra-
tions prepared in Adobe Illustrator. Apart from in Fig. 4C,
D and E, the complete set of high-confidence TEs are
included in figures and tables (not just ‘non-insect’ PIT
data). For Figs. 5 and 6, percent coverage of TEs in the Ae.
aegypti genome was as published [8], copy number in the
Ae. aegypti genome and total representation in the TEfam
database were taken from tefam.biochem.vt.edu.

Virus analyses
The ‘non-insect’ PIT data subset was searched against
the GenBank database of viruses [taxid: 10239] using the
online version of BLASTp (blast.ncbi.nlm.nih.gov). Only
results with a good score (>50) were included; viral pro-
teins with homology to TEs and cellular proteins were
excluded. See Additional file 5 for further details.

Statistics
Statistical significance was determined using two-tailed
Student’s t-test for samples of equal variance in Micro-
soft Excel. The level of statistical significance is indicated
in figure legends.

Data statement
The transcriptomic data has been deposited to the Euro-
pean Nucleotide Archive (ENA) with the study accession
number PRJEB13078. The mass spectrometry proteo-
mics data has been deposited to the ProteomeXchange
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Consortium via the PRIDE partner repository with the
dataset identifier PXD003799. The CFAV and PCLV se-
quences have been deposited in GenBank with the ac-
cession numbers KU936054 and KU936055, KU936056
and KU936057 respectively.
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