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Abstract

Dystrophin is a cytosolic protein belonging to a membrane-spanning glycoprotein complex, called dystrophin–
glycoprotein complex (DGC) that is expressed in many tissues, especially in skeletal muscle and in the nervous
system. The DGC connects the cytoskeleton to the extracellular matrix and, although none of the proteins of the
DGC displays kinase or phosphatase activity, it is involved in many signal transduction pathways. Mutations in
some components of the DGC are linked to many forms of inherited muscular dystrophies. In particular, a
mutation in the dystrophin gene, leading to a complete loss of the protein, provokes one of the most prominent
muscular dystrophies, the Duchenne muscular dystrophy, which affects 1 out of 3500 newborn males. What is
observed in these circumstances, is a dramatic alteration of the expression levels of a multitude of
metalloproteinases (MMPs), a family of extracellular Zn2+-dependent endopeptidases, in particular of MMP-2
and MMP-9, also called gelatinases. Indeed, the enzymatic activity of MMP-2 and MMP-9 on dystroglycan, an
important member of the DGC, plays a significant role also in physiological processes taking place in the central
and peripheral nervous system. This mini-review discusses the role of MMP-2 and MMP-9, in physiological as
well as pathological processes involving members of the DGC.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Dystrophin is a cytosolic protein associated to a
glycoprotein complex, the dystrophin–glycoprotein
complex (DGC), composed by the intracellular α and
β-syntrophin, α-dystrobrevin and neuronal nitric oxide
synthase (nNOS), the transmembrane β-dystrogly-
can, α-, β-, γ- and δ-sarcoglycan and sarcospan, and
the extracellular α-dystroglycan [1,2]. The DGC is
expressed in a wide variety of tissues, especially in
skeletal muscle and in the nervous system, and
provides a strong contribution to the sarcolemma
stability. The DGC represents an important link
between the cytoskeleton and the extracellular matrix,
in several respects. It is directly and indirectly involved
in different signal transduction pathways. As an

example, nNOS, an enzyme activated by muscle
contraction, produces nitric oxide from L-arginine,
which in turn triggers the production of cGMP
catalyzed by the guanylyl cyclase; the second
messenger cGMP stimulates vasodilatation favoring
the blood influx into the contracting muscle [3–5].
Furthermore, some DGC members, including dystro-
brevin [6], syntrophins [7] and β-dystroglycan [8],
serve as platforms to recruit phosphatases and
kinases involved in signal transduction pathways. In
addition to their indirect involvement in signal trans-
duction pathways, the two dystroglycan subunits, α-
and β, which represent the DGC inner core, interact in
a non-covalent fashion through theC-terminal domain
of α-dystroglycan and the β-dystroglycan ectodomain
[9], playing a key role in maintaining the connection
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between the cytoskeleton and the extracellular matrix
through formation of a multitude of interactions [10].
This network of interactions contributes to the

plasma membrane stability in normal conditions, on
the other hand, the connection between the cytosol
and the extracellular matrix needs to be interrupted
when tissue remodeling takes place. In such circum-
stances, an overexpression of some matrix–metallo-
proteinases (MMPs) is often observed. These
proteins belong to a family of Zn2+-dependent
extracellular endopeptidases involved in many phys-
iological (such as morphogenesis, development, cell
migration, proliferation and adhesion) as well as
pathological processes, such as cancer, neurodegen-
eration, inflammation and muscular dystrophy [11].
Although dystrophin has recently been proposed

as a new target of MMP-2 during ischemic injury [12]
and a decrease in γ-sarcoglycan levels has been
shown to correlate with an increase of MMP-2
activity, in an animal model of right ventricular failure
[13], dystroglycan remains the only ascertained and
direct DGC target of MMP-2 and MMP-9. In vitro,
the two gelatinases disrupt the recombinant β-
dystroglycan ectodomain by two distinct molecular
mechanisms. MMP-9 induces a first cleavage
leaving an intact C-terminal region of about 30
amino acids and an N-terminal region that is further

processed [14], whereas MMP-2 produces multiple
early cleavages on the entire protein [15] (see
Fig. 1). MMP-2 has lately also been found to exert
a significant proteolytic activity on native and
recombinant α-dystroglycan in vitro [16].

Dystroglycan degradation is driven by
gelatinases in physiological conditions

The ectodomain of β-dystroglycan represents the
Achille's heel of theDGC.Thepossibility of a proteolytic
breakdown, likely to take place at the ectodomain of
β-dystroglycan, was first postulated after observing the
electrophoretic behavior of a 30 kDa β-dystroglycan
fragment in carcinoma cell lines [17].
The first direct evidence of an enzymatic activity

driven by an MMP on dystroglycan comes from a
study of Yamada and colleagues who found a
truncated form of β-dystroglycan, devoid of part of
its ectodomain and therefore unable to maintain its
link with α-dystroglycan, in healthy tissues, such as
peripheral nerve, kidney, lung and smooth muscle.
In the same study the authors indicated the
metalloproteinases MMP-2/MMP-14 and MMP-9,
as the main players involved in the production of
this 30 kDa β-dystroglycan fragment [18].

Fig. 1. Scheme of the DGC and β-dystroglycan degradation driven by gelatinases. In vitro, MMP-9 catalyzes a first
cleavage within the β-dystroglycan ectodomain producing an intact C-terminal region of about 30 amino acids and an
N-terminal region that is further processed [14], while MMP-2 induces multiple cleavages on the entire ectodomain [15].
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Further studies highlighted that MMP-2, rather
than MMP-9, is constitutively expressed in injured
neurons and is responsible for the production of the
30 kDa β-dystroglycan fragment. This leads to loss
of pre- and post-synaptic connections preceding the
synaptic remodeling induced by injury [19].
A basal enzymatic activity level of the two

gelatinases producing low amounts of the 30 kDa
β-dystroglycan fragment was also found in healthy
neurons and hippocampus, but, under stimulation
with glutamate or bicuculline, the MMP-9 driven
cleavage of β-dystroglycan was significantly in-
creased in post-synaptic elements and in the
hippocampus, indicating that this process might be
involved in learning and memory processes [20]. A
consistent increase of the MMP-9 levels, induced by
the transcription factor AP-1, with a consequent
increase of the 30 kDa β-dystroglycan fragment, has
also been observed in animals subjected to fear
conditioning [21]. It was hypothesized that the
MMP-9-driven cleavage of β-dystroglycan might
reorganize the network of interactions that dystro-
glycan, expressed in the post-synaptic elements,
establishes with other proteins, such as neurexin,
expressed in the pre-synapsis. The β-dystroglycan
cleavage might influence also the cytoskeletal
organization; for example, in Schwann cells, it was
found that the 30 kDa β-dystroglycan displays a
higher affinity for a short isoform of utrophin, UP71,
than for the dystrophin isoform Dp116, whose
interaction with full length β-dystroglycan is indeed
stronger than that with its truncated form [22].
Accordingly, it has been revealed that in normal
nerves MMP-2 and MMP-9 (that are differentially
expressed during development) shed the N-terminal
extracellular domain of β-dystroglycan making it
not longer able to bind α-dystroglycan, thus modu-
lating the dystroglycan complex composition and
the size of the Schwann cell compartments [23].
Recently, a gelatinolytic activity targeting β-dystro-
glycan has been proposed to be involved in the
remodeling of the postsynaptic domain of the
neuromuscular junction after physical exercise [24].

Gelatinases are overexpressed in
DGC-associated muscular dystrophies

Duchenne muscular dystrophy is a lethal X-linked
disease due to a mutation in the dystrophin gene
causing complete loss of protein function [25].
Muscular tissues of patients affected by Duchenne
muscular dystrophy show sarcolemma instability,
loss of Ca2+ homeostasis and reduced resistance to
mechanical stress with consequent degeneration of
muscular fibers followed by cycles of regeneration
[26]. Complete regeneration of the muscular fibers is
prevented by inflammatory cell invasion that triggers
fibrosis, progressively reducing the amount of func-

tional muscular tissue [1]. Many proteases, including
calpains, caspases and lysosomal proteases, in-
crease their enzymatic activity in these conditions;
although controversial, an increased proteasome
activity has also been found [27].
In such circumstances, the integrity of the entire

DGC is severely compromised; besides loss of
dystrophin, the levels of nNOS [28,29] and of one
or both the dystroglycan subunits are dramatically
reduced, when they are not completely lost [30].
In 1999, Kherif and colleagues observed that the

expression and the activity of MMP-9 were in-
creased in mice deficient of the dystrophin gene,
called mdx mice, which represent an animal model of
Duchenne muscular dystrophy [31]. This observa-
tion has been corroborated by many other studies
that revealed an upregulation of gelatinases also in
hearts of mdx mice [32–34].
MMP-2 and MMP-9 are overexpressed also in the

brain of mdx mice and they co-localize with the
vascular endothelial growth factor (VEGF), thus
explaining the increased angiogenesis and vascular
permeability observed in the brain of mdx mice [35].
Recently, many studies revealed that MMP-9 also

increases in serum and muscular biopsies of
patients affected by Duchenne muscular dystrophy
and that the MMP-9 levels correlate with the severity
of the disease [36].
Other members of the MMPs family display altered

expression patterns and enzymatic activities in the
dystrophic phenotype. For example, an increased
activity of MMP-1, which limits fibrosis mainly by
degrading collagen I and III, has been reported in
dystrophic muscles, during remodeling of the extra-
cellular matrix [34]. Altered levels and activities of
MMP-1 and MMP-7, favoring a fibrotic phenotype,
have also been found in fibroblasts from Duchenne
muscular dystrophy biopsies [37], whereas overex-
pression of MMP-10 in dystrophic muscles plays a
role in the muscle regeneration process [38].
Interestingly, alterations of the MMP levels are very
often accompanied by alterations in the levels of
TIMP-1 and TIMP-2, the endogenous inhibitors of
MMPs [39,40]. In general, the increased expression
of MMPs in mdx mice is probably due to macro-
phages, mast cells and fibroblasts that infiltrate the
muscular tissue in pathological conditions and
secrete different endopeptidases [39]. Indeed, it is
well known that fibroblasts express high amounts of
MMPs [41,42].
What is the exact role of gelatinases in the

pathogenesis of DGC-related muscular dystro-
phies? This question still awaits a complete and
exhaustive answer. A characteristic shared by many
neuromuscular diseases is the presence of the
aforementioned 30 kDa β-dystroglycan fragment
that therefore represents an interesting biomarker
(see Fig. 1). Indeed, this peptide was revealed in
skeletal muscle of tissues affected by Duchenne
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muscular dystrophy [43] and sarcoglycanopathy
[43,44].

The quest for therapeutic targets:
inhibiting the gelatinases activity
by molecular genetics or
pharmacological methods

Important clues regarding the role of gelatinases in
the pathogenesis of DGC-related muscular dystro-
phies come from studies in which the corresponding
genes have been up- or down-regulated in healthy
and/or mdx mice or have been inhibited by molecular
drugs.
In general, genetic ablation of MMP-9 in mdx mice

improves the dystrophic phenotype, as indicated by a
number of parameters [33,45,46]. For example, dis-
ruption of the MMP-9 gene reduces the serum levels of
creatine kinase (a marker of muscular fibers damage),
as well as the amount of macrophages that infiltrate
muscular fibers, promotes muscle regeneration and
ameliorates the fibers' stability increasing the amount of
the two known targets of MMP-9, β-dystroglycan and
collagen IV, this latter being essential for the stability of
the basal membrane. Moreover, genetic depletion of
MMP-9 increases nNOS while reducing the levels of
caveolin-3 [45]. It was also observed that partial
deletion of MMP-9 in 8-week old mdx mice i) improves
the number of satellite cells in dystrophic muscles,
ii) suppresses the pro-inflammatory M1macrophages
that contribute to muscular necrosis, and iii) increases
the anti-inflammatory M2 macrophages that stimulate
muscle regeneration by reducing the transcript levels
of the inflammatory cytokines INF-γ and IL-6 while
increasing the ones of the anti-inflammatory cytokine
IL-4 [46].
Surprisingly, MMP-9 ablation in mdx mice reduces

fibrosis by reducing the levels of collagen I and III [45],
whereas overexepression of MMP-9 in healthy mice
suppresses fibrosis by reducing the levels of collagen
I and IV but not collagen III [47]. These contradictory
results may be in part explained considering that in
pathological conditions, MMP-9 deletion alters the
levels of other MMPs, whose specificity is often
overlapping, and/or of their endogenous inhibitors
[33]. Deregulation of other cytokines and inflammatory
cells that modulate the entire fibrotic process, makes
this scenario evenmore complex [47]. Interestingly, in
addition to reducing fibrosis, overexpression of an
active form of MMP-9 in healthy mice stimulates
growth and regeneration of the muscle fibers (also
increasing their cross-sectional area), promotes the
fusion of myoblasts into myotubes, and improves the
contractile force in soleus muscle. Accordingly, an
upregulation of the insulin growth factor and follistatin,
both promoting skeletal muscle regeneration and
growth [48,49], is observed [47].

Disruption of the MMP-2 gene in mdx mice leads to
different results compared to the MMP-9 knockout.
Indeed, ablation of MMP-2 significantly reduces
muscle regeneration, as indicated by decreased
centronuclear regenerating fibers. This is probably
due to decreased levels of vascular endothelial growth
factor-A (VEGF-A) that impair angiogenesis by reduc-
ing the mean size of the vessels. Nitric oxide (NO) is a
vasodilator, produced by nNOS from arginine, which
stimulates capillary proliferation [50]. Depletion of
MMP-2 gene in mdx mice further reduces the levels
of nNOS. Surprisingly, degradation of full-length
β-dystroglycan producing the 30 kDa fragment occurs
at 1 month of age but not at 3 months [51].
These studies suggest that gelatinase overexpres-

sion compensates for muscular damage. For exam-
ple, they partially degrade the basal lamina favoring
the migration and fusion of myogenic cells devoted to
regeneration of the damaged fibers [31,52]. A
sustained and prolonged activation of the two
gelatinases, on the other hand, leads to an excessive
protein degradation that exacerbates the dystrophic
phenotype.
In accordance with the knockout studies, suramin,

an antifibrotic drug, restores the diaphragm function,
decreasing the activity of MMP-9 but not that of
MMP-2, and increasing the β-dystroglycan levels [53].
Moreover, spironolactone, an aldosterone antagonist,
and lisinopril, an angiotensin-converting enzyme
(ACE) inhibitor, if co-administered before functional
impairment reduce the damageof cardiac and skeletal
muscle by decreasing the gelatinase activity [54].
Other molecules can be listed that ameliorate the
dystrophic phenotype by suppressing the gelatinase
activity. Among them, drugs that support the signal
transduction pathway mediated by nitric oxide,
which is otherwise attenuated in mdx mice, have
beneficial effects on these animal models. For
example, L-arginine, a target of nNOS enzyme,
reduces the β-dystroglycan cleavage and reinforces
its interaction with utrophin, by suppressing the
MMP-2 and MMP-9 activity. A correct re-localization
of nNOS is also observed in short-term treated mdx
mice [55], although prolonged treatment with this drug
stimulates fibrosis and is no longer effective on the
gelatinase activity [56]. Similar results are obtained
with Sildenafil, an inhibitor of phosphodiesterase 5, an
enzyme that reduces the levels of cGMP, a second
messenger involved in the NO induced signal
transduction pathway, reinforcingNO-driven signaling
[57]. Beneficial effects were obtained also with
Batimastat, a broad-spectrum MMP inhibitor, which
reduces fibrosis and the number of macrophages and
increases the diaphragm force restoring the levels of
nNOS and β-dystroglycan [40]. A mixture of free
radical scavengers, composed of α-lipoic acid and
L-carnitine, also reduces damages of dystrophy,
suppressing the gelatinase activity and increasing
the levels of β-dystroglycan [58].
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All these data strongly support the view that
MMPs may contribute to the progression of
DGC-linked muscular dystrophy, mainly by degrad-
ing β-dystroglycan.

Downregulation or pharmacological
inhibition of gelatinases suppresses
the MAPK kinase cascades

In various dystrophic models the susceptibility to
contraction-induced injury and the sarcolemma integ-
rity are not always clearly correlated with fiber
degeneration and muscular dystrophy [59-61]. This
suggests that someother factors are likely to contribute
to muscle cell degeneration and its apoptosis.
Detrimental signal transduction pathways have been
indicated as a possible cause of muscular dystrophy.
In mdx mice, an alteration of the mitogen-activated
protein kinase (MAPK) signaling cascades, that
regulate proliferation, differentiation and cell-survival,
has been observed; dystrophic animals in fact display
an increased phosphorylation of the extracellular
signal regulated kinases 1 (ERK1) and 2 (ERK2)
[55,62,63] and of the c-junN-terminal kinases 1 (JNK1)
and 2 (JNK2) [64–66], and a reduction in the
phosphorylation of p38 [63]. Activation of the ERK1/2
pathway has been found also in limb–girdle muscular
dystrophy, due to a deficiency in γ-sarcoglycan [67].
Moreover, the phosphatidylinositol 3-kinase (PI3K/Akt)
signaling pathway, which regulates cell viability and
protein synthesis [68], resulted altered in DMD and
limb–girdlemuscular dystrophy, showing an increased
synthesis and phosphorylation of Akt to compensate
muscular damages [69,70]. Indeed, an increase of the
expression levels of Akt inmdxmice stimulatesmuscle
regeneration andmuscle hypertrophy, by elevating the
levels of utrophin [71].
Interestingly, overexpression of MMP-9 in healthy

mice leads to increased phosphorylation levels of Akt
aswell as ofmTORandFOXO1, two of its downstream
phosphorylation targets (the PI3K/Akt/mTOR pathway
promotes protein synthesis and hypertrophy, whereas
FOXO1 stimulates protein degradation, by modulating
the ubiquitin–proteasome pathway) rather than of
ERK1/2 and JNK1/2, whereas p38 MAPK phosphor-
ylation is reduced. Conversely, ablation of MMP-9 in
mdx mice leads to reduced phosphorylation levels of
Akt andp38MAPK, but doesnot affect phosphorylation
levels of ERK1/2 and JNK1/2 in the diaphragm of mdx
mice [33]. In the hearts of mdx mice, depletion of
MMP-9 reduces the phosphorylation of ERK1/2 and
Akt, thus stimulating heart hypertrophy, but not the
phosphorylation of JNK1/2 and p38 MAPK [47]. Many
drugs that ameliorate the dystrophic phenotype by
suppressing the gelatinase activity also affect the
MAPK kinase signaling. For example, a mixture of
α-lipoic acid and L-carnitine reduces the phosphory-

lation levels of p38 MAPK, ERK1/2 and JNK1/2
kinases, with a concomitant reduction of the creatine
kinase levels [58]. Moreover, Batimastat reduces
the levels of phosphorylated ERK1/2 and p38
MAPK, but does not affect the levels of phosphorylat-
ed JNK1/2 in mdx mice [41], although it should be
noted that this drug may have a more complex effect,
since it inhibits also other MMPs as well as ADAM
proteases [72,73].
However, the reason why and the mechanism by

which downregulation, or pharmacological inhibition
of MMPs suppresses MAPK kinase cascades has
yet to be clarified. There is some evidence that some
transcription factors or cytokines, involved in inflam-
mation and fibrosis, may represent a liaison between
inhibition of MMPs and suppression of MAPK kinase
cascades.
The nuclear factor (NF)-kB, a ubiquitous transcrip-

tion factor, which activates genes involved in inflam-
mation, immune and stress responses [74,75]
and induces the expression of MMP-9, is over-
expressed in mdx mice and in DMD patients [76–78].
MMP-9 expression is also induced by the transcrip-
tion factor activator protein-1 (AP-1) [79,80]. Genet-
ic ablation of MMP-9 in mdx mice reduces the
activity of NF-kB and AP-1, suggesting that MMP-9
regulates its own expression by a positive feedback
mechanism [45]. On the other hand, activation of
MAPK signaling triggers the expression of many
genes involved in inflammation and fibrosis, includ-
ing AP-1 and NF-kB.
All these observations suggest that MAPK signal-

ing, as well as the activities of NK-kB, AP-1 and
gelatinases, might be reciprocally regulated. Indeed,
the downregulation of MAPK signaling may produce
beneficial effects both per se and by reducing the
gelatinase levels, with possible important repercus-
sions for the development of effective therapeutic
protocols for muscular dystrophies.
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