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Abstract

The objective of the present paper is to develop a two-step methodology integrat-
ing system identification and numerical continuation for the experimental extraction
of nonlinear normal modes (NNMs) under broadband forcing. The first step pro-
cesses acquired input and output data to derive an experimental state-space model
of the structure. The second step converts this state-space model into a model in
modal space from which NNMs are computed using shooting and pseudo-arclength
continuation. The method is demonstrated using noisy synthetic data simulated on
a cantilever beam with a hardening-softening nonlinearity at its free end.
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1 Introduction

Experimental modal analysis of linear engineering structures is now well-established and
mature [1]. It is routinely practiced in industry, in particular during on-ground certifica-
tion of aircraft and spacecraft structures [2, 3, 4], using two specific approaches, namely
phase resonance and phase separation methods. Phase resonance testing, also known as
force appropriation, consists in exciting the normal modes of interest one at a time us-
ing a multipoint sine forcing at the corresponding natural frequency [5]. Conversely, in
phase separation testing, several normal modes are excited simultaneously using either
broadband or swept-sine forcing, and are subsequently identified using appropriate linear
system identification techniques [6, 7].

The existence of nonlinear behavior in dynamic testing, at least in certain regimes of
motion, is today a challenge the structural engineer is more and more frequently con-
fronted with. In this context, the development of a nonlinear counterpart to experimental
modal analysis would be extremely beneficial. An interesting approach to nonlinear modal
testing is the so-called nonlinear resonant decay method introduced by Wright and co-
workers [8, 9]. In this approach, a burst of a sine wave is applied to the structure at
the undamped natural frequency of a normal mode, and enables small groups of modes
coupled by nonlinear forces to be excited. A nonlinear curve fitting in modal space is then
carried out using the restoring force surface method. The identification of modes from
multimodal nonlinear responses has also been attempted in the past few years. For that
purpose, advanced signal processing techniques have been utilized, including the empirical
mode decomposition [10, 11, 12], time-frequency analysis tools [13] and machine learning
algorithms [14]. Multimodal identification relying on the synthesis of frequency response
functions using individual mode contributions has been proposed in Refs. [15, 16]. The
difficulty with these approaches is the absence of superposition principle in nonlinear dy-
namics, preventing the response of a nonlinear system from being decomposed into the
sum of different modal responses.

In the present study, we adopt the framework offered by the theory of nonlinear normal
modes (NNMs) to perform experimental nonlinear modal analysis. The concept of nor-
mal modes was generalized to nonlinear systems by Rosenberg in the 1960s [17, 18] and
by Shaw and Pierre in the 1990s [19]. NNMs possess a clear conceptual relation with
the classical linear normal modes (LNMs) of vibration, while they provide a solid math-
ematical tool for interpreting a wide class of nonlinear dynamic phenomena, see, e.g.,
Refs. [20, 21, 22, 23]. There now exist effective algorithms for their computation from
mathematical models [24, 25, 26, 27]. For instance, the NNMs of full-scale aircraft and
spacecraft structures and of a turbine bladed disk were computed in Refs. [28, 29, 30],
respectively.

A nonlinear phase resonance method exploiting the NNM concept was first proposed in
Ref. [31], and was validated experimentally in Ref. [32]. Following the philosophy of
force appropriation and relying on a nonlinear generalization of the phase lag quadrature
criterion, this nonlinear phase resonance method excites the targeted NNMs one at a time
using a multipoint, multiharmonic sine forcing. The energy-dependent frequency and
modal curve of each NNM are then extracted directly from the experimental time series
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by virtue of the invariance principle of nonlinear oscillations. Applications of nonlinear
phase resonance testing to moderately complex experimental structures were recently
reported in the technical literature, in the case of a steel frame in Ref. [33] and of a
circular perforated plate in Ref. [34].

The identification of NNMs from broadband data represents a distinct challenge in view
of the absence of superposition principle in nonlinear dynamics. Indeed, the measured
responses cannot merely be decomposed into a sum of individual NNM contributions.
To address this challenge, the present paper develops a two-step methodology integrating
system identification and numerical continuation for the experimental extraction of NNMs
under broadband forcing. The first step processes acquired input and output data using
the frequency-domain nonlinear subspace identification (FNSI) method [35] to derive an
experimental state-space model of the structure. The second step converts this state-space
model into a model in modal space from which NNMs are computed using shooting and
pseudo-arclength continuation [25]. It should be noted that identification and continuation
tools others than FNSI and pseudo-arclength may also qualify for the present framework.
However, the two latter are adopted because of their accuracy and applicability to real-life
structures.

The paper is organized as follows. The fundamental properties of NNMs defined as
periodic solutions of the underlying undamped system are briefly reviewed in Section 2.
The existing nonlinear phase resonance method introduced in Ref. [31] is also described.
In Section 3, the two building blocks of the proposed NNM identification methodology,
namely the FNSI method and the pseudo-arclength continuation algorithm, are presented.
The methodology is demonstrated in Section 4 using noisy synthetic data simulated on a
cantilever beam with a hardening-softening nonlinearity at its free end. Since it can be
viewed as a nonlinear generalization of linear phase separation techniques, the proposed
methodology is also compared in Section 5 with the previously-developed nonlinear phase
resonance method. The conclusions of the study are finally summarized in Section 6.

2 Brief review of nonlinear normal modes (NNMs)

and identification using phase resonance

In this work, an extension of Rosenberg’s definition of a NNM is considered [23]. Specifi-
cally, a NNM is defined as a nonnecessarily synchronous, periodic motion of the undamped,
unforced, np-degree-of-freedom (DOF) system

M q̈(t) +K q(t) + f(q(t)) = 0, (1)

whereM andK ∈ R
np×np are the mass and linear stiffness matrices, respectively; q ∈ R

np

is the generalized displacement vector; f(q(t)) ∈ R
np is the nonlinear restoring force vector

encompassing elastic terms only. This definition of a NNM may appear to be restrictive in
the case of nonconservative systems. However, as shown in Refs. [23, 36], the topology of
the underlying conservative NNMs of a system yields considerable insight into its damped
dynamics.
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Because a salient property of nonlinear systems is the frequency-energy dependence of
their oscillations, the depiction of NNMs is conveniently realized in a frequency-energy plot
(FEP). A NNMmotion in a FEP is represented by a point associated with the fundamental
frequency of the periodic motion, and with the total conserved energy accompanying the
motion. A branch in a FEP details the complete frequency-energy dependence of the
considered mode. Fig. 1 illustrates the FEP of the two-DOF system described by the
equations

q̈1 + (2 q1 − q2) + 0.5 q31 = 0
q̈2 + (2 q2 − q1) = 0.

(2)

The plot features two branches corresponding to the in-phase and out-of-phase syn-
chronous NNMs of the system. These fundamental NNMs are the direct nonlinear exten-
sion of the corresponding LNMs. The nonlinear modal parameters, i.e. the frequencies
of oscillation and the modal curves, are found to depend markedly on the energy. In
particular, the frequency of the two fundamental NNMs increases with the energy level,
revealing the hardening characteristic of the cubic stiffness nonlinearity in the system.
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Figure 1: FEP of the two-DOF system described by Eqs. (2). NNM motions depicted
in displacement space are inset. The horizontal and vertical axes in these plots are the
displacements of the first and second DOF of the system, respectively.

Two essential properties of linear systems are preserved in the presence of nonlinearity.
First, forced resonances of nonlinear systems occur in the neighborhood of NNMs [20].
Second, NNMs obey the invariance principle, which states that if the motion is initiated
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on one specific NNM, the remaining NNMs are quiescent for all time [19]. These two
properties were exploited in Ref. [31] to develop a nonlinear phase resonance method.
The procedure comprises two steps, as illustrated in Fig. 2. During the first step, termed
NNM force appropriation, the system is excited using a stepped-sine signal to induce a
single-NNM motion at a prescribed energy level. This step is facilitated by a generalized
phase lag quadrature criterion applicable to nonlinear systems [31]. This criterion asserts
that a structure vibrates according to an underlying conservative NNM if the measured
displacements possess, for all harmonics, a phase difference of ninety degrees with respect
to the excitation. The second step of the procedure, termed NNM free-decay identification,
turns off the excitation to track the energy dependence of the appropriated NNM. The
associated modal parameters are extracted directly from the free damped system response
through time-frequency analysis. This nonlinear phase resonance method was found to be
highly accurate but, as in linear testing, very time-consuming. In addition, to reach the
neighborhood of the resonance where a specific NNM lives may require a trial-and-error
approach to deal with the shrinking basins of attraction along forced resonance peaks.
The methodology described in the next section precisely addresses these two issues.
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Figure 2: Experimental modal analysis of nonlinear systems using a nonlinear phase
resonance method [31]. (a) NNM force appropriation; (b) NNM free-decay identification.
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3 A two-step methodology for NNM identification

under broadband forcing

The proposed methodology, presented in Fig. 3, comprises two major steps. The first
step, described in Section 3.1, processes acquired input and output data using the FNSI
method to derive an experimental state-space model of the structure. The second step,
described in Section 3.2, converts this state-space model into a model in modal space
from which the energy-dependent frequencies and modal curves of the excited NNMs are
computed individually using shooting and pseudo-arclength continuation.

3.1 Identification of a nonlinear state-space model

The FNSI method is capable of deriving models of nonlinear vibrating systems directly
from measured data, and without resorting to a preexisting numerical model, e.g., a
finite element model [35]. It is applicable to multi-input, multi-output structures with
high damping and high modal density, and makes no assumption as to the importance of
nonlinearity in the measured dynamics [37, 38].

3.1.1 Feedback interpretation and state-space model identification

The vibrations of damped nonlinear systems obey Newton’s second law of dynamics

M q̈(t) +Cv q̇(t) +K q(t) + f(q(t)) = p(t) (3)

where Cv ∈ R
np×np is the linear viscous damping matrix; p(t) ∈ R

np is the generalized
external force vector; f(q(t)) ∈ R

np is the nonlinear restoring force vector, encompassing
elastic terms only as this paper concentrates on stiffness nonlinearities. Note that Eq. (3)
represents the damped and forced generalization of Eq. (1). The nonlinear restoring force
term in Eq. (3) is expressed by means of a linear combination of basis functions ha(q(t))
as

f(q(t)) =
s∑

a=1

ca ha(q(t)). (4)

Given measurements of p(t) and q(t) or its derivatives, and an appropriate selection of the
functionals ha(q(t)), the objective of the FNSI method is to identify a state-space model
from which the nonlinear coefficients ca can be estimated. The nonlinear components
in the structure must therefore be instrumented on both sides in order to measure the
relative displacement required in the formulation of the nonlinear basis functions ha(q(t)),
as illustrated in Fig. 3.

The FNSI approach builds on a block-oriented interpretation of nonlinear structural dy-
namics, which sees nonlinearities as a feedback into the linear system in the forward
loop [39]. This interpretation boils down to moving the nonlinear internal forces in
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Figure 3: Proposed methodology for the identification of NNMs based on broadband
measurements. It comprises two major steps, namely nonlinear system identification and
numerical continuation.
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Eq. (3) to the right-hand side, and viewing them as additional external forces applied
to the underlying linear structure, that is,

M q̈(t) +Cv q̇(t) +K q(t) = p(t)−
s∑

a=1

ca ha(q(t)). (5)

Without loss of generality, it is assumed in this section that the structural response is mea-

sured in terms of generalized displacements. Defining the state vector x =
(
qT q̇T

)T
∈ R

ns ,
where ns = 2 np is the dimension of the state space and T the matrix transpose, Eq. (5)
is recast into the set of first-order equations

{
ẋ(t) = A x(t) +B e(t)
q(t) = C x(t) +D e(t),

(6)

where the vector e ∈ R
(s+1) np , termed extended input vector, concatenates the external

forces p(t) and the nonlinear basis functions ha(t). The matrices A ∈ R
ns×ns , B ∈

R
ns×(s+1) np , C ∈ R

np×ns and D ∈ R
np×(s+1) np are the state, extended input, output

and direct feedthrough matrices, respectively. State-space and physical-space matrices
correspond through the relations

A =

(
0 np×np I np×np

−M−1 K −M−1 Cv

)
; B =

(
0 np×np 0 np×np 0 np×np . . . 0 np×np

M−1
−c1 M

−1
−c2 M

−1 . . . −cs M
−1

)

C =
(
I np×np 0 np×np

)
; D = 0 np×(s+1) np , (7)

where 0 and I are the zero and identity matrices, respectively.

The FNSI estimation of the four system matrices A, B, C and D is achieved in the
frequency domain using a classical subspace resolution scheme. This resolution essentially
involves the reformulation of Eqs. (6) in matrix form, and the computation of estimates
of A, B, C and D through geometrical manipulations of input and output data. The
interested reader is referred to Ref. [35] for a complete introduction to the theoretical and
practical aspects of the FNSI method.

3.1.2 Estimation of the nonlinear coefficients

It is well-known that the matrices A, B, C and D defined in Eqs. (7) can be retrieved
using subspace identification only up to an unknown similarity transformation of the
state-space basis [7]. This implies that estimates of the nonlinear coefficients ca cannot
be obtained from a direct inspection of matrix B. This issue was resolved in Ref. [40] by
forming the transfer function matrix of the state-space model

Gs(ω) = C
(
jω I ns×ns

−A
)
−1

B+D, (8)

where ω is the pulsation and j the imaginary unit.
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Matrix Gs(ω) is invariant with respect to any similarity transformation, and relates the
extended input vector to the measured response. Indeed, substituting Eq. (4) into Eq. (3)
and moving to the frequency domain yields

G−1(ω)Q(ω) +
s∑

a=1

ca Ha(ω) = P(ω), (9)

where G(ω) = (−ω2 M+ j ω Cv +K)
−1

is the transfer function matrix of the underlying
linear system, and where Q(ω), Ha(ω) and P(ω) are the continuous Fourier transforms
of q(t), ha(t) and p(t), respectively. The concatenation of P(ω) and Ha(ω) into the
extended input spectrum E(ω) finally gives

Q(ω) = G(ω)
[
I np×np −c1 I

np×np . . . −cs I
np×np

]
E(ω) = Gs(ω) E(ω). (10)

The nonlinear coefficients ca, together with the frequency response functions (FRFs) in
G(ω), can be directly extracted from Eq. (10), given the transfer function matrix Gs(ω)
estimated from Eq. (8).

3.2 Computation of NNMs in modal space

The calculation of NNMs is not realized in this work in state space but in modal space in
order to be compatible with the computational framework of Ref [25]. For that purpose,
Eq. (1) is recast into

q̈(t) +K q(t) +
s∑

a=1

ca Φ
T ha(q(t)) = 0, (11)

where q(t) = Φ−1q(t) is the vector of linear modal coordinates. Matrix Φ contains
the mode shapes φ(i) scaled to unit modal mass, i.e. M = ΦT M Φ = I np×np and
K = ΦT KΦ = diag

(
ω2
i,0

)
.

To simulate Eq. (11), the knowledge of the undamped frequencies ωi,0, nonlinear coef-
ficients ca, scaled mode shapes φ(i) and basis functions ha is required. The nonlinear
coefficients and basis functions are known from Section 3.1. The undamped frequencies
ωi,0 are the absolute values of the complex eigenvalues λi of matrix A estimated using
FNSI in the previous section, that is,

Aψ(i) = λi ψ
(i), i = 1, .., ns. (12)

The state-space mode shapes ψ(i) are converted into the corresponding modes φ̃(i) in
physical space utilizing the output matrix C as

φ̃(i) = Cψ(i). (13)

Each mode shape vector φ̃(i) is then scaled using the residue R
(i)
kk of the driving point

FRF Gkk(ω) of the underlying linear system formulated as

Gkk(ω) =

np∑

i=1

R
(i)
kk

j ω − λi

+
R

(i)∗

kk

j ω − λ∗

i

, (14)
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where k is the location of the excited DOF, and where a star denotes the complex conjugate
operation. Eq. (14) is an overdetermined algebraic system of equations with np unknowns
and as many equations as the number of processed frequency lines. The i-th scaled mode
shape vector at the driving point φ

(i)
k is finally obtained by enforcing a unit modal mass,

i.e.

R
(i)
kk =

φ
(i)
k φ

(i)
k

2 j ωi,0

, (15)

while the other components of the mode shape vector are scaled accordingly. This mode
scaling is rigorously valid in the case of linear proportional damping [41], which implies a

real-valued mode shape at the driving point φ
(i)
k . In general, experimental mode shapes

are however complex-valued. They can be enforced to be real by rotating each mode
in the complex plane by an angle equal to the mean of the phase angles of the mode
components, and subsequently neglecting the imaginary parts of the rotated components.

The algorithm described in Ref. [25] can now be applied to seek NNMs, given that all
quantities in Eq. (11) are known. To obtain the family of periodic solutions that de-
scribe the considered NNM, shooting is combined with a pseudo-arclength continuation
technique. Starting from a known periodic solution, continuation proceeds in two steps,
namely a prediction and a correction, as illustrated in Fig. 4. In the prediction step, a
guess of the next periodic solution along the NNM branch is generated in the direction of
the tangent vector to the branch at the current solution. Next, the prediction is corrected
using a shooting procedure, forcing the variations of the period and the initial conditions
to be orthogonal to the prediction direction.

Frequency

Energy

b

Current
solution

Tangential
prediction

b
Next

solution
Orthogonal
correction

Figure 4: Computation of a family of periodic solutions using a pseudo-arclength contin-
uation scheme including prediction and correction steps.
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4 Numerical demonstration using a cantilever beam

possessing a hardening-softening nonlinearity

In this section, the methodology is demonstrated based on numerical experiments carried
out on the nonlinear beam structure proposed as a benchmark during the European
COST Action F3 [42]. This structure consists of a main cantilever beam whose free end
is connected to a thin beam clamped on the other side. The thin beam can exhibit
geometrically nonlinear behavior for sufficiently large displacements.

The linear finite element model of the structure, shown in Fig. 5, is identical to the lin-
ear model experimentally updated in Ref. [32]. It comprises 14 two-dimensional beam
elements for the main beam and 3 elements for the thin beam. The geometrical and me-
chanical properties of the structure are listed in Tables 1 and 2, respectively. As discussed
in Refs. [35, 43], the nonlinear dynamics induced by the thin beam can be represented
through a grounded cubic spring associated with a coefficient c1, and positioned at the
connection between the two beams. Moreover, it was observed in Ref. [44] that a slight
asymmetry in the clamping conditions of the thin beam may be responsible for significant
softening distortions in the system response. This physics is modeled herein by adding
a quadratic grounded spring with a negative coefficient c2 in parallel to the cubic spring
element.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

c1, c2

Figure 5: Finite element model of the nonlinear beam.

Length (m) Width (mm) Thickness (mm)
Main beam 0.7 14 14
Thin beam 0.04 14 0.5

Table 1: Geometrical properties of the nonlinear beam.

Young’s modulus (N/m2) Density (kg/m3) c1 (N/m3) c2 (N/m2)
2.05 1011 7800 8 109 −1.05 107

Table 2: Mechanical properties of the nonlinear beam.

According to Fig. 3, the testing procedure applies a broadband excitation signal to the
nonlinear beam structure. The FNSI method can address classical random excitations,
including Gaussian noise, periodic random, burst random and pseudo random signals.
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Impulsive excitations also fall within the scope of the method, but they involve window-
ing to avoid leakage and generally lead to low signal-to-noise ratios (SNRs). Swept-sine
excitations are not applicable because of the inability of the FNSI method to handle non-
stationary signals, i.e. signals with time-varying frequency content [35]. One opts herein
for pseudo random signals, also known as random phase multisine signals. A random
phase multisine is a periodic random signal with a user-controlled amplitude spectrum,
and a random phase spectrum drawn from a uniform distribution. If an integer number of
periods is measured, the amplitude spectrum is perfectly realized, unlike Gaussian noise.
One of the other main advantages of a multisine is that its periodic nature can be utilized
to separate transient from steady-state oscillations in response time histories. This, in
turn, eliminates the systematic errors due to leakage in the identification. Periodicity also
allows the estimation of the covariance matrix of the noise perturbations affecting the
system outputs.

A multisine excitation with a flat amplitude spectrum and a root-mean-squared (RMS)
amplitude of 15 N was applied vertically to node 4 of the structure (see Fig. 5). The
excited band spans the 5 – 500 Hz interval to encompass the three linear modes of
interest. The response of the nonlinear beam to this excitation was simulated over 20
periods of 215 = 32768 samples each. Fig. 6 (a – b) shows the amplitude and the phase
spectrum of one period of the multisine input. The first 5 periods of the signal in the time
domain are also depicted in Fig. 6 (c), where one specific period is highlighted in gray.

Numerical experiments were conducted by direct time integration using a nonlinear New-
mark scheme. To this end, a linear proportional damping matrix Cv = α K + β M,
with α = 3 10−7 and β = 5, was introduced in the model. The resulting linear natural
frequencies and damping ratios of the first three bending modes of the beam structure are
given in Table 3. The sampling frequency during time simulation was set to 60000 Hz to
ensure the accuracy of the integration. Synthetic time series were then decimated down
to 3000 Hz for practical use, considering low-pass filtering to avoid aliasing. The decay
of the transient system response is illustrated using a logarithmic scaling in Fig. 6 (d). It
is seen to die out after 3 periods. This latter plot was generated at the main beam tip
by subtracting from the entire measured signal its last period, i.e. its twentieth period,
assumed to be in steady state.

Mode Natural frequency ω0 (Hz) Damping ratio ζ (%)

1 31.28 1.28
2 143.64 0.29
3 397.87 0.14

Table 3: Linear natural frequencies ω0 and damping ratios ζ of the first three bending
modes of the nonlinear beam.

Simulated time series were finally corrupted by adding white noise, recreating the me-
chanical and electrical disturbances observed in a typical measurement setup. The noise
level was set to 1 % of the RMS displacement amplitude at the main beam tip. The
resulting SNR calculated at the translational DOFs along the beam is plotted in Fig. 7.
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Figure 6: Random phase multisine excitation signal. (a – b) Amplitude and phase spec-
trum of a single period; (c) first 5 periods in the time domain with one specific period
highlighted in gray; (d) decay of the transient system response illustrated using a loga-
rithmic scaling at the main beam tip over 5 periods.

It is found that imposing 1 % noise at the tip, i.e. a SNR of 40 dB at DOF 14 in Fig. 7,
results in more severe noise conditions at all other sensors. In particular, at mid-span,
the SNR is around 34 dB, while it is lower than 30 dB close to the left clamping.

4.1 Identification using the FNSI method

4.1.1 Selection of the nonlinear basis functions

The application of the FNSI method to measured data requires the selection of appropriate
basis functions ha(q(t)) to describe the nonlinearity in the system. This task, referred
to as the characterization of nonlinearity, is in general challenging because of the various
sources of nonlinear behavior that may exist in engineering structures, and the plethora
of dynamic phenomena they may cause [45]. In this work, a gray-box methodology is
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Figure 7: Signal-to-noise ratio calculated at the translational DOFs along the main beam.
The noise level is set to 1 % (= 40 dB) of the RMS displacement amplitude at beam tip,
i.e. at translational DOF 14.

adopted by exploiting cubic splines, i.e. piecewise third-order polynomials [46]. Cubic
splines have the advantage of being as simple as ordinary polynomials, while overcoming
some of their drawbacks [38]. The use of splines as nonlinear basis functions is a key aspect
of the present study, as it allows NNMs to be identified without assuming the functional
forms ha(q(t)) of the nonlinearities in the system under test. Specifically, the hardening-
softening nonlinearity in the beam dynamics is modeled herein using a spline function
of the beam tip displacement, considering a division of the measured displacement range
into 10, equally-wide segments.

4.1.2 Selection of the model order

The order of the state-space model derived using the FNSI method is equal to twice the
number of linear modes activated in the measured data [35]. This order is conveniently
estimated using a stabilization diagram, similarly to the current practice in linear system
identification. Fig. 8 charts the stabilization of the natural frequencies, damping ratios
and mode shapes of the structure computed at 15 N RMS for model orders up to 20.
In this diagram, the modal assurance criterion (MAC) is utilized to quantify the corre-
spondence between mode shapes at different orders. The knowledge of the output noise
covariance matrix gained via the periodicity of the excitation was incorporated in the di-
agram following the discussion in Ref. [47]. Fig. 8 shows full stabilization of three modes
in the input band, which leads to the selection of the order 6. Opting for higher model
orders would here result in overfitting issues, and would hence obviously deteriorate the
identification accuracy. Note that the usual practice in linear system identification is to
pick up poles at different model orders. In the nonlinear case, this is no longer possible
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as a single model order should be selected to further estimate nonlinear coefficients [35].
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Figure 8: Stabilization diagram. Cross: stabilization in natural frequency; circle: extra
stabilization in damping ratio; triangle: full stabilization. Stabilization thresholds in
natural frequency, damping ratio and MAC are 1 %, 5 % and 0.98, respectively. The blue
line indicates the selected order.

4.1.3 Estimation of the nonlinear coefficients

The nonlinear restoring force identified at beam tip is displayed in Fig. 9. The agreement
between the exact (in blue) and estimated (black markers) force curves is excellent. The
inset close-up in Fig. 9, together with the absolute error plot in Fig. 10 (a), reveal that
discrepancies are of the order of 0.1 N . The 11 coefficients of the identified spline nonlin-
earity are spectral quantities, i.e. complex-valued and frequency-dependent, as a result
of Eq. (10). Fig. 10 (b) depicts in logarithmic scaling the ratios between their real and
imaginary parts. They are all found to be greater than 3, which confirms the high quality
of the parameter estimates.
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Figure 9: Exact (in blue) and estimated (black markers) nonlinear restoring force curves.
The estimated curve is a cubic spline function of the displacement measured at the main
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Figure 10: (a) Absolute error between exact and estimated nonlinear restoring force
curves; (b) ratios in logarithmic scaling between real and imaginary parts of the 11 coef-
ficients of the identified spline nonlinearity
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4.2 Computation of the first two NNMs using continuation

In this section, the first two NNMs of the beam structure are computed by applying the
algorithm of Section 3.2 to Eqs. (11) populated with the nonlinear and linear parameters
estimated using FNSI. Nonlinear parameter estimates were discussed in the previous sec-
tion. Table 4 lists the relative errors on the linear natural frequencies and damping ratios
together with the diagonal MAC values. The results in this table demonstrate the ability
of the FNSI method to recover accurately the modal properties of the underlying linear
structure from nonlinear data. Note that the third mode will not be further analyzed
herein as it involves virtually no nonlinear distortions.

Mode Error on ω0 (%) Error on ζ (%) MAC

1 0.0008 -0.0758 1.00
2 -0.0015 0.0709 1.00
3 -0.0144 -0.1015 1.00

Table 4: Relative errors on the estimated natural frequencies and damping ratios (in %)
and diagonal MAC values of the first three modes of the beam computed at order 6.

Fig. 11 shows the evolution of the frequency of the first bending mode of the structure as
a function of the amplitude of the motion evaluated at the main beam tip. The use of a
displacement amplitude as horizontal axis in this plot is justified by the absence of direct
access to the total conserved energy associated with the considered mode in experimental
conditions [32]. The identified frequency-amplitude curve depicted in orange in Fig. 11 is
seen to closely match the exact NNM presented in black (with a maximum relative error
of 0.25 %). The identification accuracy is confirmed through the comparison between the
exact and identified modal shapes inserted in Fig. 11 at four specific amplitude levels,
namely 0.2, 0.4, 0.6 and 0.8 mm. Similar conclusions are drawn from the quality of the
identification of the second mode of the nonlinear beam plotted in Fig. 13.

The results in Fig. 11 prove the validity of the NNM identification methodology for
strongly nonlinear regimes of motion. Specifically, positive and negative variations of
the natural frequency of approximately 4 and 1 %, respectively, are found to be accu-
rately captured in this plot. These variations correspond to an amplitude of motion of
1 mm at the main beam tip, which is twice the thickness of the thin beam. The impor-
tance of nonlinearity in the beam dynamics is well evidenced in Fig. 12 (a – b), where
the first NNM of the structure is represented in the configuration space for amplitudes
of 0.2 and 1 mm, respectively. The configuration space is spanned in this figure by the
displacements measured at nodes 4 and 14, i.e. at the driving point and the main beam
tip, respectively. One observes that, at low amplitude level in Fig. 12 (a), the NNM is a
straight line, whereas it corresponds to a curved line for high amplitudes in Fig. 12 (b),
revealing the appearance of harmonics in the time series. The asymmetry in the nonlin-
ear restoring force in the system is also clearly visible. A similar analysis is achieved in
Fig. 14 (a – b) for the second NNM of the beam. These two graphs show that, owing
to the displacement nature of the involved nonlinearity, higher-frequency modes are less
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impacted by harmonic distortions, and translate into straight lines in configuration space
even for large amplitudes of motion. In this study, the amplitude interval over which
the continuation was performed was merely selected by observing that the maximum am-
plitude of displacement recorded in Section 4.1 at the main beam tip under multisine
forcing was of the order of 1 mm. However, a rigorous evaluation of the validity ranges
of identified frequency-amplitude plots deserves more investigation.

5 Comparison with NNMs identified using nonlinear

phase resonance

As depicted in Fig. 2, the first step of the nonlinear phase resonance testing procedure
is the isolation of the NNM of interest. To this end, a 3 N sine signal is applied to
node 4 of the structure. The frequency of this stepped-sine excitation is tuned until the
force appropriation indicator derived from the generalized phase lag quadrature criterion
is equal to 1 [32]. Fig. 15 (a) shows that NNM appropriation is achieved at 36.8 Hz for
the first beam mode. The corresponding amplitude of the forced response at beam tip in
Fig. 15 (b) depicts the distorted frequency response of the mode and the sudden jump
occurring as soon as resonance is passed.

When the considered NNM is appropriated, the second step of the procedure turns off
the excitation in order to observe the free decay of the system along the NNM branch. A
time-frequency analysis of the decaying time response is then carried out to extract the
frequency-energy dependence of the mode. This is achieved in Fig. 16 where the wavelet
transform of the displacement measured at beam tip is represented. The ridge of the
wavelet, i.e. the locus of maximum amplitude with respect to frequency, is presented as a
black line, and is seen to closely coincide with the NNM identified in the previous section
and plotted in orange. The comparable accuracy of the phase separation and phase
resonance approaches is confirmed by the modal shapes superposed at four amplitude
levels in Fig. 16. The results in this figure, together with the analysis of the second NNM
appropriation in Figs. 17 and 18, clearly confirm the accuracy of this new nonlinear phase
separation technique. In summary, Table 5 lists the strengths and limitations of the two
methodologies.
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Figure 11: Comparison between the theoretical (in black) and identified (in orange)
frequency-amplitude evolution of the first NNM of the nonlinear beam. The NNM shapes
(displacement amplitudes of the main beam) at four amplitude levels, namely 0.2, 0.4,
0.6 and 0.8 mm, are inset in (a – d).
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Figure 12: First NNM of the nonlinear beam represented in configuration space at two am-
plitude levels. The configuration space is constructed using the displacements measured
at the driving point and the main beam tip. (a) 0.2 mm ; (b) 1 mm.
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Figure 13: Comparison between the theoretical (in black) and identified (in orange)
frequency-amplitude evolution of the second NNM of the nonlinear beam. The NNM
shapes (displacement amplitudes of the main beam) at four amplitude levels, namely 0.2,
0.4, 0.6 and 0.8 mm, are inset in (a – d).
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Figure 14: Second NNM of the nonlinear beam represented in configuration space at
two amplitude levels. The configuration space is constructed using the displacements
measured at the driving point and the main beam tip. (a) 0.2 mm ; (b) 1 mm.
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Figure 15: Appropriation of the first NNM of the beam structure in the nonlinear phase
resonance method. (a) NNM appropriation indicator; (b) amplitude of the response at
the main beam tip.
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Figure 16: Decay along the first NNM branch calculated using time-frequency analysis (in
black) and corresponding NNM obtained in Section 4.2 using the proposed identification
methodology (in orange). The NNM shapes (displacement amplitudes of the main beam)
at four amplitude levels, namely 0.2, 0.4, 0.6 and 0.8 mm, are inset in (a – d).
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Figure 17: Appropriation of the second NNM of the beam structure in the nonlinear phase
resonance method. (a) NNM appropriation indicator; (b) amplitude of the response at
the main beam tip.
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Figure 18: Decay along the second NNM branch calculated using time-frequency analysis
(in black) and corresponding NNM obtained in Section 4.2 using the proposed identifica-
tion methodology (in orange). The NNM shapes (displacement amplitudes of the main
beam) at four amplitude levels, namely 0.2, 0.4, 0.6 and 0.8 mm, are inset in (a – d).
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Nonlinear phase Nonlinear phase
separation method resonance method

Fast Time-consuming
(multiple NNMs (one NNM at a time)
simultaneously)

Need of an Model-free
experimental model

Classical random Harmonic
excitation can be utilized forcing must be tuned

Nonlinear components must Shaker must
be instrumented on both sides be turned off

Nonlinearity characterization Limited information needed
is required about the nonlinearities

Table 5: Comparison of the strengths and limitations of the two methodologies.

6 Conclusion

The present paper extracted the nonlinear normal modes (NNMs) of vibrating systems
from measurements collected under broadband forcing. A key feature of the proposed
method is that it makes no assumption as to the strength of the nonlinearities and the
modal couplings. Together with the previously-developed NNM identification method
based on stepped-sine forcing, they provide a rigorous generalization of modal testing to
nonlinear systems.

The accuracy of the method was demonstrated numerically considering important noise
perturbations and no prior knowledge about the nonlinearities in the system, which paves
the way for a future experimental validation of the method. In its current state, the
method can only handle stiffness nonlinearities. Further research will address this limi-
tation by computing damped NNMs from the experimentally-derived state-space model
using, e.g., the computational technique proposed in Ref. [27].
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