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Abstract
Estimating a person’s energy expenditure and activity inten-
sity over time is an important component in managing vari-
ous health conditions or tracking lifestyle choices. To imple-
ment an automatic estimation, most current systems ultimately
require users to wear sensor devices. In contrast, this paper
presents a framework for the contact-free, real-time estima-
tion of energy expenditure, applicable to daily living scenar-
ios. This is a new application in real-time computer vision.
We demonstrate the effectiveness and the benefits of utilising
a basic set of features and evaluate the resulting framework on
the challenging SPHERE-calorie dataset. To ensure accurate
evaluation, automated estimates are compared against a simul-
taneously taken indirect calorimetry ground truth based on per
breath gas exchange. Following detailed experiments, we con-
clude that the proposed real-time vision pipeline is suitable for
monitoring physical activity levels in a controlled environment
with higher accuracy than the commonly used manual estima-
tion via metabolic lookup tables (METs), whilst being signifi-
cantly faster than existing automated methods.

1 Introduction
Physical activity is an important determinant in understanding
the development of chronic diseases. Current evidence-based
guidelines [19] indicate that people who are regularly physi-
cally active have a 20% to 40% lower risk of developing con-
ditions such as cardiovascular disease and type 2 diabetes than
those who are inactive, and suggest that adults should accumu-
late at least 150 minutes of moderate intensity physical activity
each week or 75 minutes of vigorous activity, or a combination
of the two.

Energy expenditure, also referred to as ‘calorific expendi-
ture’, is one commonly used single metric to quantify physical
activity levels over time. It can be accurately measured using
a calorimeter which operates based on the respiratory differ-
ences of oxygen and carbon dioxide in the inhaled and exhaled
air. Measurements can either be direct via a sealed respiratory
chamber [17] or indirect which requires carrying gas sensors
and wearing a breathing mask [1]. However, these devices are
impractical to use routinely in daily life due to their high cost,
lack of portability and cumbersomeness. On the other hand,
wearable devices have become a popular choice to measure

coarse categorisation of activity intensity levels [5]. Among
these, tri-axial accelerometers are the most broadly used iner-
tial sensors [8].

Computer vision techniques that help with the diagnosis
and management of health and wellbeing conditions have also
started to draw some research attention recently. Yet, although
there exists a significant body of literature describing the infer-
ence of activities from 2D colour intensity imagery [2], RGB-D
data [3], and skeleton-based data [16], studies on energy expen-
diture using visual sensors have been relatively limited. RGB
only video has recently been used by Edgcomb and Vahid [10]
to coarsely estimate daily energy expenditure where a sub-
ject was segmented from the scene background and changes
in height and width of the subject’s motion bounding box, to-
gether with vertical and horizontal velocities and accelerations,
were then used to estimate calorific uptake. However, we note
that their regression models were trained based on the ground
truth readings reported by wearable accelerometry, which may
provide only an approximate benchmark. Tsou and Wu [24]
took this idea further and estimated calorie consumption using
full 3D joint movements tracked as skeleton models using a Mi-
crosoft Kinect. In this setting skeleton data is commonly noisy
and currently only operates reliably when the subject faces the
camera [23], thus the method has difficulties to generalise to
more unconstrained scenarios.

The above examples exemplify that calorific uptake and
linked activity levels can often be directly related to body mo-
tion. Motion information could also be recovered directly using
the optical flow derived from two adjacent RGB images [22] or
4D surface normals [14] and more recently, dense 3D flow [20]
from depth images. These approaches, however, often suffer
from unaffordable run time, for example with a reported com-
putation time of up to 9 minutes per frames in [20].

Apart from the currently performed activity, energy val-
ues are also highly dependent on the previous energy expen-
diture, as adaptations of the human body cause an exponen-
tial increase/decrease to a plateau in oxygen consumption un-
til a steady state corresponding to the current activity is at-
tained [12]. Therefore, the motion information needs to be re-
covered from a sequence of data over some time window to
infer calorific uptake levels. Concatenating per-frame descrip-
tors is straightforward, but it often suffers from the curse of di-
mensionality and related high computational cost. Compacting
data within a temporal window may be achieved to some de-
gree by abstracting large feature arrays [15, 18], but remains a
challenge. Thus, in essence, any system will require capturing



Figure 1. Framework Overview. Image sequences are represented by features extracted from bounding boxes. The proposed
recurrent method RM (top) then maps features to calorie estimates. We compare this method to a direct mapping method DM,
and a manual standard using a lookup table MET (bottom).

visual aspects relevant to calorific expenditure, whilst limiting
the dimensionality of the descriptor.

Here, we propose a real-time framework for estimating
calorific expenditure levels from bounding box features only.
We evaluate the proposed system over daily activities per-
formed in a living room environment. Figure 1 shows in bold a
flowchart of our proposed approach – extracting features from
the bounding box, mapping the features directly to calorie esti-
mates via a monolithic classifier, and adding a cascaded and re-
current classifier as the last step to capture temporal dependen-
cies (RM in short). The proposed method is compared against
a ground truth as-exchange measurements (GT in short) and
two alternative methods also shown Figure 1: (1) direct map-
ping to calorie estimates without recurrent approach (DM in
short), and (2) manual mapping from activity classes to calo-
rie estimates via the Metabolic Equivalent Task lookup tables
[4] (MET in short). We also compare the processing time
of feature extraction and estimation accuracy of the proposed
method against that of a fully fledged vision system [21], which
uses detailed flow and depth features at the cost of sacrificing
real-time capabilities. We will show that the proposed system
can operate under real-time constraints whilst achieving accu-
rate activity intensity level prediction outperforming the widely
used MET method.

2 Proposed Method

2.1 Feature Representation

We first extract base features from bounding boxes, and then
form higher level motion features by a set of temporal filters.
We use the bounding box returned by the OpenNI SDK [13]
person detector and tracker using an Asus Xtion for capture.
Our per-frame descriptor describes the velocity vector and the
ratio of height and width of the bounding box.

To represent both short and long term temporal changes in
a video, one may model how the local/global information is
changing over time. Pooled motion features were first pre-
sented in [18], designed for egocentric video analysis. We
modify this pooling operator to make it more suitable for our
data.

Figure 2 illustrates the overall process of feature assem-
bly covering the initial time series representation, followed by
temporal pyramid alignment, and the final, serialised represen-
tation of the descriptor vector.

Let S be a set of time series data, such that S =
{S1, . . . , SN}, S ∈ RN×T for a video in matrix form, where
N is the length of the per-frame feature vector, and T is the
number of frames. A time series Sn = [sn(1), . . . , sn(T )] is
the nth feature across 1, . . . , T frames, where sn(t) denotes
nth feature at frame t. The time series data S consists of a set
of time segments as S = [S1

i , . . . , S2i

i ] at level i. A set of tem-
poral filters with multiple pooling operators is applied to each
time segment [tmin, tmax] and produces a single feature vector
for each segment via concatenation.

As Figure 2 illustrates, we use three pooling operators, that
is max pooling, sum pooling, and spectral pooling. The first
two are defined respectively as

Omax(Sn) = max
t=tmin···tmax

sn(t) (1)

Osum(Sn) =
tmax∑

t=tmin

sn(t). (2)

Spectral pooling is used to perform dimensionality reduction
of the time series Sn in the frequency domain by the discrete
cosine transform and then truncating the representation. The
pooling operator takes the absolute value of the j lowest fre-
quency components of the frequency coefficients D, in order



Figure 2. Per-frame Feature Representation, Temporal Pyramid Pooling and its Feature Representation. This schematic
shows the temporal subdivision of data into various pyramidal levels (middle) and the concatenation of resulting features (e.g.
max, sum and DCT) into a descriptor vector (right).

to help remove high frequency noise

Odct(Sn) = |M1:jSn| , (3)

where M is the discrete cosine transformation matrix.

2.2 Recurrency

We pose the energy expenditure estimation problem as a se-
quential and supervised regression task. We train a support
vector regressor to predict calorie values from the given fea-
tures over a training set. The sliding window method naturally
converts the sequential supervised learning problem into the
classical supervised learning problem, which maps each input
window of width w to an individual output value yt. The win-
dow contains the current and the previous w − 1 observations.
The window features are assembled by temporal pooling from
the time series S = {St−w+1, . . . , St}.

The energy values for a particular time are highly depen-
dent on the energy expenditure history, thus the sliding win-
dow methods can be extended by including recurrent informa-
tion. In our system, these are most directly expressed by pre-
vious calorific predictions during operation. Thus, employing
recurrent sliding windows offers an option to not only use the
features within a window, but also take the most recent d pre-
dictions {ŷt−d, . . . , ŷt−1} into consideration to help predict yt.
During learning, as suggested in [9], the ground truth labels in
the training set are used in place of recurrent values.

3 Experimental Results
3.1 Dataset and Parameter Settings
In order to quantify performance of the proposed approach, we
conducted experiments on the SPHERE-calorie dataset1 [21].
It is a very challenging dataset for calorific expenditure estima-
tion collected within a home environment covering daily living
activities. The dataset consists of an RGB-D video sequences
captured by a Asus Xtion camera mounted at the corner of a
living room and ground truth readings from a COSMED K4b2

1The dataset is released on SPHERE website http://www.
irc-sphere.ac.uk/work-package-2/calorie

[1] portable metabolic measurement system. The dataset was
generated over 20 sessions by 10 subjects with varying anthro-
pometric measurements containing up to 11 common house-
hold activity categories per session. Each session lasts around
30 minutes, and totalling around 10 hours recording time. To
reflect variations in transitions between activity levels, we con-
sider 9 different combinations of three activity intensities in
each session.

Colour and depth images were acquired at a rate of 30Hz.
The calorimeter gives readings per breath, which occur approx-
imately every 3 seconds. Figure 3 shows a detailed example of
calorimeter readings and associated sample RGB images from
the dataset, together with activity intensity levels. The raw
breath data is noisy (in red), and so we apply an average filter
with a span of approximately 20 breaths (in blue). The partic-
ipants were asked to perform the scripted activities based on
their own living habits without any extra instructions.

The categories and their associated MET values (in brack-
ets) are: sit still (1.3), stand still (1.3), lying down (1.3), read-
ing (1.5), walking (2.0), wiping table (2.3), cleaning floor stain
(3.0), vacuuming (3.3), sweeping floor (3.3), squatting (5.0),
upper body exercise (4.0).

We compare the proposed method RM to the direct map-
ping method DM and the Metabolic Equivalent Task method
MET. DM is formalised as Yt = f(Xt), where Yt is the tar-
get calorie value regardless of activity at time t, and Xt con-
tains the associated feature vector over a window. The goal is
to find a function f(�) that best predicts Yt from training data
Xt. MET, one of the widely used methods for recording of
the intensity of a physical activity by clinicians and physio-
therapists, assumes that the clusters of activity are known. A
MET value is assigned to each cluster, together with anthropo-
metric characteristics of individuals. The amount of activity-
specific energy expended can then be estimated as energy =
0.0175(kcal/kg/min)× weight(kg)×MET values [4].

According to [4], activity can be categorized into three dif-
ferent intensity levels based on either MET values for each ac-
tivity or the average energy consumed per minute. Table 1 out-
lines the activity intensity levels and their associated energy ex-
penditure ranges. In our experiments, activity intensity levels

http://www.irc-sphere.ac.uk/work-package-2/calorie
http://www.irc-sphere.ac.uk/work-package-2/calorie


Figure 3. Ground Truth Example Sequence. Raw per breath data (red), smoothed COSMED-K4b2 calorimeter readings (blue),
predicted calorie values using MET table (green), and sample colour images corresponding to the activities performed by the
subject. Activity intensity levels are quantised into three levels based on ground truth readings (gray bars).

are quantised based on the ground truth readings (see Figure 3)
instead of using MET values. This is because a fixed number is
assigned to each activity which may overlook the drift during
activity and transition between activities.

We use a linear support vector regressor for predicting calo-
rie values from training data. The libsvm [7] implementation
was used in the experiments. For testing, we apply leave-one-
subject-out cross validation on the dataset.

This process iterates through all subjects, and the average
testing errors of all iterations are reported. We use the root-
mean-squared error (RMSE) as a standard evaluation metric
for the deviation of estimated calories from the ground truth.

MET values kcal/min
Light < 3.0 < 3.5

Moderate 3.0 - 6.0 3.5 - 7
Vigorous > 6.0 > 7

Table 1. Physical Activity Intensity Levels. The table shows
intensity levels and their associated energy expenditure ranges.

3.2 Quantitative Evaluation
Temporal Window Size - The accuracy of predicted calorie
values is affected by the number of previous frames used for
making the prediction. For the first set of experiments, we use
the direct mapping method DM to investigate the relation be-
tween window length and calorie prediction errors.

All the sequences are tested with three different window
sizes w = {450, 900, 1800}, corresponding to a 15, 30 and 60
seconds time slot. Table 2 illustrates the average RMSEs for
calorie prediction of different window length w.

The results clearly show that calorie values are better pre-
dicted when the larger window (60 seconds) is applied. This
may be attributed to the fact that human body adaptation causes
an adjustment [12] of energy uptake over significant time du-
rations, and thus access to previous measurements becomes a
vital cue for accurately predicting current consumption.

Evaluation of recurrent system layout - We set the direct

mapping method DM with window size w = 1800 as our base-
line method. To evaluate the use of recurrency, we now test
two recurrent sliding window approaches to explicitly encode
previous energy estimates. The first one (RM1) uses the most
recent predictions of the baseline method as input together with
both visual features to predict current calorie value. Thus, it im-
plements indirect recurrency utilising the predicted values from
the baseline as recent predictions. The second one (RM2) im-
plements full recurrency, i.e. it uses its own output as recurrent
input together with visual features.

Table 3 shows the effect of using recurrent information.
The best results for each activity are highlighted. In general,
RM1 outperforms the other approaches for most activities. As
expected, a recurrent method captures information that was not
only being captured by the current sliding window. However,
the full recurrency, RM2, suffers from significant drift and pro-
duces the worst results for half of the activities and also overall.
We select RM1 as the “the proposed method RM” in the fol-
lowing sections.

Model Comparison - Table 6 provides the results for each
sequence of the dataset individually. We report estimation ac-
curacy and also the correlation between the ground truth and
the observed values. The proposed RM achieves higher ac-
curacy and correlation in more sequences than DM and MET
based methods, and obtains better rates on average. In addition,
we compare performance to a system using complex visual
features (VF in short) [21] instead of bounding box features
only. VF produces, as expected, better prediction results in
most cases, however, RM operates more than 400 times faster
than VF as detailed in the next section.

Looking at coarse categories of calorific expenditure, Ta-
ble 4 lists overall results for the accuracy of predicting activity
intensity levels only. For this task it is worth noticing that the
proposed RM is able to produce comparable results to VF.

Processing Time - To analyse the efficiency of the proposed
method further, we compare the processing time of feature con-
struction procedures in RM and in VF where the average run-
time of each frame though all subjects is reported. All the re-



w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
450 0.68 0.76 0.92 0.84 1.44 1.79 1.26 2.78 2.96 1.53 1.17 1.40
900 0.65 0.72 0.92 0.83 1.45 1.77 1.22 2.55 2.86 1.53 1.15 1.36

1800 0.60 0.68 0.90 0.80 1.40 1.77 1.20 2.33 2.56 1.56 1.07 1.33
Table 2. Temporal Window Size and Calorific Expenditure Prediction. Calorific expenditure prediction error (RMSE) with
different window length. The best results in each activity are in bold.

stand sit walk wipe vacuum sweep lying exercise stretch clean read overall
DM 0.60 0.68 0.90 0.80 1.40 1.77 1.20 2.33 2.56 1.56 1.07 1.33
RM1 0.57 0.62 0.87 0.80 1.39 1.66 1.11 2.30 2.21 1.48 0.95 1.24
RM2 0.58 0.62 0.82 0.96 1.31 1.81 1.33 3.67 2.57 1.17 1.17 1.40

Table 3. Activities and Calorific Expenditure Prediction. Average calorific expenditure prediction errors (RMSE) for each
activity with different learning approaches. The best results in each activity are in bold.

RM DM MET VF
Light 86.65 90.68 89.60 85.02

Moderate 83.81 72.58 54.21 86.99
Vigorous 79.91 59.32 40.24 86.32
Overall 84.79 81.85 75.94 85.38

Table 4. Estimation of Activity Intensity Levels. Recogni-
tion accuracy (%) of activity intensity levels. The table shows
the performance of the proposed real-time method RM, com-
pared to other approaches.

feature
extraction (ms)

temporal
pooling (ms) overall (ms)

RM 7.213E-04 1.4 1.4
VF 446.6 3.3 449.9

Table 5. Runtime Performance Results. Average computa-
tional costs (in milliseconds) for each frame processed by the
VF and DM methods.

sults are produced using Matlab on a workstation with an In-
tel i7-3770S CPU 3.1GHz processor and 8Gb RAM. Table 5
shows the average computational costs for feature extraction,
temporal pooling and overall costs of each frame.

Extracting complex visual features is time consuming, with
VF running on average at 449.9 millisecond per frame, which
is insufficient for performing in real-time. The light-weight
pooled bounding box features in RM obtain a processing rate
450 times faster than that achieved in VF, requiring only 1.4
milliseconds per frame.

Considering these values, the required processing time for
RM is lower than state-of-the-art trackers such as KCF [11] or
real-time RGB-D trackers such as [6], which run respectively
on average at 6 and 25 millisecond per frame. Thus, the pro-
posed method can readily fit into real-time monitoring systems.
Indeed, the proposed method has been successfully tested in the
real-time multi-camera video platform of the SPHERE sensor
network system [25].

4 Conclusion
This paper presented a real-time vision system for a contact-
free estimation of calorific expenditure estimation in daily liv-
ing scenarios. The proposed method used pooled temporal

pyramids of bounding box features, and subsequently built a
recurrent sliding window approach upon it. We demonstrated
the effectiveness and efficiency of the proposed method via de-
tailed experiments on accuracy and runtime performance in a
comparative study.

The proposed method shows its ability to outperform the
widely used METs estimation approach in estimating calorie
expenditure, and to provide results in the same region of accu-
racy of an approach using complex visual features in estimating
activity intensity levels, at a fraction of the computational cost.
Future work will include investigating fusion approaches for
improving prediction results based on both visual and inertial
sensors.
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