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Abstract

Hamilton’s original work on inclusive fitness theory assumed additivity of2

costs and benefits. Recently it has been argued that an exact version of

Hamilton’s rule for the spread of a pro-social allele (rb > c) holds under non-4

additive payoffs, so long as the cost and benefit terms are defined as partial

regression coefficients rather than payoff parameters. This paper examines6

whether one of the key components of Hamilton’s original theory can be

preserved when the rule is generalized to the non-additive case in this way,8

namely that evolved organisms will behave as if trying to maximize their

inclusive fitness in social encounters.10

Keywords: inclusive fitness, altruism, Hamilton’s rule, game theory12
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1 Introduction

Inclusive fitness theory is a widely-used framework for studying the evolution14

of social behaviour. Hamilton’s original formulation of the theory contains

two distinct though related ideas (Hamilton 1964, 1971). The first is Hamil-16

ton’s rule, the famous criterion (rb > c) for when an allele coding for a

social behaviour will be favoured by selection. This aspect of the theory18

fits with the “gene’s eye” view of evolution. The second is maximization of

inclusive fitness, rather than classical fitness, as the “goal” towards which20

an individual’s social behaviour will appear designed. This aspect fits with

the traditional individualist view of evolution, and is frequently employed by22

behavioural ecologists.

The relation between these two aspects of inclusive fitness theory is not24

fully settled. Much theoretical work has focused solely on the first aspect;

indeed the notion of individuals “trying” to maximize their inclusive fitness26

is often omitted from expositions of kin selection theory. However, recently

Grafen (2006, 2009), Queller (2011) and Gardner et al. (2011) have argued28

for the central importance of inclusive fitness maximization as the “goal” of

individual behaviour; Grafen (2006) provides a population-genetic foundation30

for the idea. This goes some way to reconciling the two aspects of Hamilton’s

theory.32

The work of Grafen, Queller and Gardner et al. suggests an intriguing

link between social evolution and rational choice theory. For in effect, these34
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authors are arguing that inclusive fitness plays the role of a utility function in

rational choice, i.e. it is the quantity that an evolved organism will behave as36

if it is trying to maximize. Thus Gardner et al. (2011) write: “we can imagine

the individual adjusting her inclusive fitness...by altering her behaviour”,38

before choosing an action which brings maximal inclusive fitness (p.1039-

40). This way of thinking about evolution is an instance of what Sober40

(1988) called “the heuristic of personification”, which says that a trait will

be favoured by natural selection if and only if a rational individual, seeking to42

maximize its fitness, would choose that trait over the alternatives. In effect,

Gardner et al. are suggesting that this heuristic is valid in social settings,44

where the trait in question is a social action, so long as “fitness” is defined

as inclusive fitness.46

Our aim here is to propose a particular way of formalizing this “rational

actor heuristic” in the context of social evolution, and to ask how generally48

it applies. This is a pressing question because Grafen’s (2006) argument

that evolution will lead to inclusive fitness maximizing behaviour assumes50

additivity of costs and benefits. This assumption is quite restrictive since in

many social situations, the benefit that a given action confers on a recipient52

may depend on the recipient’s own type (Frank 1998, Lehmann and Rousset

2014a). In our simple model below we find that if the additivity assumption54

is made, then the rational actor heuristic, with inclusive fitness as the indi-

vidual’s utility function, applies neatly. However matters are more complex56

if there is non-additivity.
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Asking whether the rational actor heuristic applies is different from asking58

whether Hamilton’s rule itself applies in non-additive scenarios. This latter

question has been extensively discussed in the literature. The upshot is that60

an exact version of Hamilton’s rule does apply under non-additivity, so long

as the cost and benefit terms are suitably defined (Queller 1992; Frank 1998,62

2013; Gardner et al. 2011); though the biological significance of the resulting

rule has been questioned (Allen et al. 2013, Birch and Okasha 2015, Birch64

2015). However this does not settle the issue about individual maximization

that is our focus here.66

The structure of this paper is as follows. Section 2 studies social evolution

using a simple additive Prisoner’s dilemma, and shows how the rational actor68

heuristic applies to it. Section 3 considers a non-additive variant of the same

model and asks whether a similar conclusion holds. Section 4 discusses the70

results obtained.

2 The case of additive payoffs72

2.1 Additive Prisoner’s dilemma

Consider a simple model of the evolution of social behaviour of the sort used74

in evolutionary game theory. An infinite population of haploid asexual organ-

isms engage in pairwise social interactions in every generation. Organisms76

are of two types, altruists (A) and selfish (S ). A types perform an action that

is costly for themselves but benefits their partner; S types do not perform78
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the action. Type is hard-wired genetically and perfectly inherited.

An organism’s payoff from the social interaction depends on its own type80

and its partner’s type. Payoffs are interpreted as increases in lifetime repro-

ductive fitness over a unit baseline. The social action is assumed to affect82

only the actor and their partner, thus local interaction is assumed absent.

An A type incurs a cost of −c as a result of its action and confers a benefit84

of b on its partner, where c > 0 and b > 0; thus the game is a Prisoner’s

dilemma.86

Payoffs to the actor, referred to as “personal payoffs”, are shown in Table

1. We let V (i, j) denote the payoff to an actor from playing i when her oppo-88

nent plays j, where i, j ∈ {A, S}. Note that payoffs are additive: an altruist

alters their own payoff by −c and their partners’ payoff by b, irrespective of90

the type of their partner.

Partner
A S

Actor
A b− c −c
S b 0

Table 1: Additive Prisoner’s Dilemma

There are three pair-types in the population, AA, AS and SS, whose92

relative frequencies in the initial generation are fAA, fAS and fSS respectively,

where fAA +fAS +fSS = 1. The overall frequency of the A type in the initial94

generation is denoted p, where p = fAA + 1
2
fAS. The change in p over one

generation is denoted ∆p.96

The sign and magnitude of ∆p depend on the rules by which the pairs are
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formed. If pairing is random, then the S type must be fitter overall, so ∆p98

will be negative. However if pairing is assortative then the A type may be

fitter overall; for the benefits of altruistic actions then fall disproportionately100

on other altruists. Random pairing means that the frequency distribution

of the pair-types will be binomial, i.e. fAA = p2, fAS = 2p(1 − p) and102

fSS = (1− p)2.

Where pairing is non-random, a simple regression analysis yields a mea-104

sure of the statistical correlation between social partners. We use the variable

pi to indicate an organism’s own type and p′i to indicate its partner’s type;106

thus pi = 1 if the ith organism is an A, pi = 0 otherwise; and p′i = 1 if the ith

organism is paired with an A, p′i = 0 otherwise. We then compute the linear108

regression of p′i on pi, given by bp′p = Cov(p′, p)/V ar(p), which is a standard

way of defining the r term of Hamilton’s rule. Henceforth we refer to bp′p as110

r.

In the early kin selection literature, r was often defined in genealogical112

terms, e.g. as the probability that actor and partner share an allele that

is identical by descent, yielding the familiar values of 1
2

for full sibs, 1
2

for114

offspring and 1
4

for grandoffspring (see Michod and Hamilton 1980). In some

ways this definition of r is the more natural one for expressing the idea that116

organisms value their relatives’ reproduction in proportion to how closely

related they are. However the statistical definition of r, above, yields a118

version of Hamilton’s rule that is more generally applicable.

In the context of pairwise interactions, r can be conveniently expressed120
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as a difference in conditional probabilities:

r = Pr(partner is A | actor is A) − Pr(partner is A | actor is S)122

It follows that r ranges from −1 (perfect disassortment) to 1 (perfect assort-

ment); when pairing is random, r = 0.124

2.2 Evolutionary analysis

In the Appendix, we show that the change in p over one generation is given126

by:

∆p = (rb− c) · V ar(p)/w (1)

where w is average population fitness. Since V ar(p) is non-negative, this128

tells us that so long as 0 < p < 1, the A type will increase in frequency in the

population whenever rb > c, which is of course Hamilton’s rule. Since b and130

c are fixed parameters of the payoff matrix, this condition for the spread of A

is frequency-independent so long as r itself does not change as the population132

evolves. Constancy of r across generations will sometimes be a reasonable

assumption, for the pattern of assortment in the population, which is what r134

measures, may be determined by biological factors, e.g. dispersal, which are

independent of the social trait that is evolving. This assumption is considered136

further in the Discussion section.

With the constant r assumption, the outcome of the evolutionary process138

is easily determined. If rb > c the A type will spread to fixation; if rb < c the
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S type will spread to fixation; if rb = c there will be no evolutionary change.140

2.3 Rational actor analysis: preliminaries

To apply a rational actor analysis, we transpose our evolutionary model to a142

rational choice context. We consider two players playing a symmetric game.

Each player has two pure strategies, A and S. If a player plays a mixed144

strategy this means that they randomize over their pure strategies; thus πA

denotes the mixed strategy in which A is played with probability πA and S146

with probability 1 − πA. The payoff to a mixed strategy is then simply its

expected payoff.148

Each player has a utility function which measures how desirable they

find the possible outcomes of the game; we assume that both players have150

the same utility function. Each player’s goal is to maximize their utility

function. One possibility is that the utility function is given by the personal152

payoffs in Table 1 above, in which case we write U(i, j) = V (i, j), where

U(i, j) is the utility a player gets from playing i when their partner plays j;154

i, j ∈ {A, S}. There are other possibilities too; see below.

Once the players’ utility function has been specified, the next step is to156

seek the Nash equilibrium (or equilibria) of the game. (A Nash equilibrium

is a pair of strategies, possibly mixed, one for each player, each of which is158

a best response to the other.) Game theory predicts that if the players are

rational, they will end up at a Nash equilibrium of the game (see for example160

Binmore 2007). We can then ask whether the Nash equilibria of the game
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correspond to the outcomes of the evolutionary process described above. If162

so, we can conclude that evolution will lead organisms to behave as if trying

to maximize the utility function in question.164

This is a natural way of formalizing the rational actor heuristic in a game-

theoretic context. It differs somewhat from Grafen’s (2006) formalization of166

the same idea, which posits “links” between gene-frequency change and indi-

vidual optimization. Our approach allows recovery of Grafen’s main result;168

and by taking optimization to include best-response, i.e. optimal choice con-

ditional on the other player’s choice, extends easily to the non-additive case.170

A similar approach is found in Alger and Weibull (2012) and Lehmann et al.

(2015).172

2.3.1 Utility as inclusive fitness

One possibility to explore is that a player’s utility function depends on their174

partner’s payoff as well as their own. For example, suppose that a player’s

utility for any outcome is given by the quantity: personal payoff plus r times176

partner’s payoff, i.e. U(i, j) = V (i, j) + rV (j, i). Applying this transforma-

tion to the personal payoffs yields Table 2 below, which we refer to as the178

“inclusive fitness payoff matrix”.

Partner
A S

Actor
A (b− c)(r + 1) −c+ rb
S b− rc 0

Table 2: Additive PD with inclusive fitness payoffs
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This transformation was first suggested by Hamilton (1971), and has been180

discussed by Grafen (1979), Bergstrom (1995), Wade and Breden (1980), Day

and Taylor (1998), Taylor and Nowak (2007) and Martens (2015). It is a182

natural formalization of the idea that an actor, in their social behaviour, will

care about their partner’s payoff, discounted by relatedness, as well as their184

own payoff. Clearly, other transformations of the personal payoff matrix are

also conceivable.186

The payoffs in Table 2 do not correspond exactly to the verbal definition

of inclusive fitness in Hamilton (1964), which was: “the personal fitness188

which an individual actually expresses...once it is stripped of all components

which can be considered as due to the individual’s social environment...then190

augmented by certain fractions of the quantities of harm and benefit which

the individual himself causes to the fitnesses of his neighbours...The fractions192

in question are simply the coefficients of relationship” (p. 8). This definition

is sometimes but not always adhered in the literature.194

The discrepancy between Table 2 and Hamilton’s definition arises because

in the left column, the actor’s payoff has not been stripped of the component196

that is due to the partner’s altruistic action (b), and has been augmented

by r times the partner’s entire payoff, rather than the portion of that payoff198

that is caused by the actor (b.) Applying Hamilton’s definition exactly would

lead to the payoff matrix in Table 3 below.200

Note that Table 3 derives from Table 2 by subtraction of the quantity

b − rc from the left column. In game-theoretical terms, Table 3 is thus202
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Partner
A S

Actor
A −c+ rb −c+ rb
S 0 0

Table 3: Additive PD with Hamilton (1964) payoffs

a ”local shift” of Table 2 (and vice-versa), which means that their Nash

equilibria are necessarily identical (Weibull 1995). Therefore, if the players’204

utility function is given by Table 3, game theory predicts exactly the same

outcome(s) as if it were given by Table 2. So although taking Table 2 as206

the definition of inclusive fitness involves an element of “double counting” –

which Hamilton’s definition was designed to avoid – it is harmless.208

In fact there is a positive reason to prefer Table 2 as the definition of

inclusive fitness, in a game-theoretic context. For Hamilton’s definition does210

not generalize easily to non-additive payoffs. With non-additivity it is un-

clear how to decide which component of the actor’s payoff is “caused” by212

its partner’s action and vice-versa (cf. Allen et al. 2013). By contrast, the

definition used in Table 2 – actor payoff plus r times partner payoff – ap-214

plies just as well to the non-additive case. In order not to prejudge the issue

of whether inclusive fitness maximization, or a similar result, obtains under216

non-additivity, this is the definition preferred here.

12



2.4 Rational actor analysis: results218

Suppose firstly that the utility function is personal payoff (Table 1). It is

easy to see that (S, S) is the only Nash equilibrium of the game, since S220

strongly dominates A, i.e. each player does strictly better by playing S

irrespective of their partner’s choice. This familiar result shows that the222

rational actor heuristic fails for this choice of utility function, since it would

have us conclude that altruism can never evolve, which we know to be false.224

What if the utility function is inclusive fitness payoff (Table 2)? In that

case, we can show the following. If rb > c then (A,A) is the unique Nash226

equilibrium; if rb < c then (S, S) is the unique Nash equilibrium; if rb = c

then (A,A) and (S, S) are both Nash equilibria, as is every pair of mixed228

strategies, so game theory makes no prediction about the players’ choices

(See Appendix for proof).230

It follows that with additive payoffs, defining utility as inclusive fitness

makes the rational actor heuristic valid. The condition for the A type to232

evolve, rb > c, is identical to the condition for (A,A) to be the unique Nash

equilibrium of the rational game; and similarly for S (Table 4). This supports234

the idea that evolution will lead organisms to appear as if trying to maximize

their inclusive fitness, just as Hamilton originally argued.236

An equivalent perspective on the situation is this. The quantity (rb− c)

equals the difference in a player’s inclusive fitness payoff between playing238

A and S, irrespective of what its partner does (see Table 2). Thus we can
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rb > c ⇐⇒ A evolves ⇐⇒ (A,A) is unique Nash equilibrium
rb < c ⇐⇒ S evolves ⇐⇒ (S, S) is unique Nash equilibrium
rb = c ⇐⇒ no evolution ⇐⇒ all pairs of strategies, pure and

mixed, are Nash equilbiria

Note: ⇐⇒ means “if and only if”

Table 4: Rational actor heuristic with utility = inclusive fitness

determine whether the A type will evolve by asking whether a rational agent,240

who wants to maximize their inclusive fitness, would choose A over S. In

short, equating utility with inclusive fitness ensures that the rational agent’s242

choice coincides with the “choice” made by natural selection.

2.5 A caveat: uniqueness244

One important caveat is needed. In the above model, the inclusive fitness

payoff matrix (Table 2) is not the unique utility function that yields the246

rb > c condition for action A to be chosen over S. In game theory, the utility

function is only ever unique up to choice of origin and unit; so any affine248

transformation (of the form U ′ = aU + b, where a, b ∈ R, a > 0) will leave

all Nash equilibria of the game unchanged. Furthermore, a “local shift” of250

the utility function, which involves adding a constant to any column of the

utility matrix, will also leave unchanged the Nash equilbiria, as noted above.252

One local shift of the inclusive fitness payoff matrix (Table 2) is of par-

ticular interest. If we add the quantity (rc− rb) to the left-hand column of254

Table 2, we get the matrix in Table 5 below.
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Partner
A S

Actor
A (b− c) −c+ rb
S (1− r)b 0

Table 5: Additive PD with Grafen 1979 payoffs

The payoffs in Table 5 are related to the personal payoffs (Table 1) by256

the transformation U(i, j) = rV (i, i) + (1 − r)V (i, j). This transformation

was first suggested by Grafen (1979), hence the label ‘Grafen 1979 payoff’;258

see Bergstrom (1995), Day and Taylor (1998), Alger and Weibull (2012) for

discussion. By contrast with the inclusive fitness payoffs (Table 2), which260

involve adding r times partner’s payoff to the actor’s personal payoff, the

Grafen 1979 payoffs involve taking an (r, 1 − r) weighted average of the262

personal payoff that would accrue to the actor if their partner had chosen

the same as the actor and if their partner made the choice that they actually264

did.

Since the Grafen 1979 payoff matrix (Table 5) is a local shift of the in-266

clusive fitness payoff matrix (Table 2), the Nash equilibria of the resulting

games are identical; thus the rational actor heuristic works equally well with268

either. (This is because in both cases, (rb − c) is the payoff difference be-

tween playing A and S.) Therefore while our simple model has vindicated270

Hamilton’s claim that evolution will lead organisms to behave as if trying to

maximize their inclusive fitness, it is important to see that inclusive fitness272

(whether defined our way (Table 2) or in Hamilton’s original way (Table 3)),

is not the unique quantity of which this maximization claim is true.274
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3 Non-additive payoffs

To determine whether the above results generalize to the non-additive case,276

we consider a modified Prisoner’s dilemma in which the payoff to an A type

paired with another A type is (b−c+d) rather than (b−c). So the parameter278

d quantifies the deviation from payoff additivity, or synergistic effect, when

two A types are paired together; d can be either positive or negative. The280

resulting payoff structure (Table 6) is sometimes referred to as a ‘synergy

game’ (van Veelen 2009).282

Partner
A S

Actor
A b− c+ d −c
S b 0

Table 6: Non-additive Prisoner’s dilemma (‘synergy game’)

Again, we assume that pairs of organisms are drawn from an infinite

population to play the game; type is genetically hard-wired and mutation is284

absent.

3.1 Evolutionary analysis286

As before, ∆p denotes the change in frequency of the A type over a genera-

tion. Unsurprisingly, rb > c is no longer the condition for ∆p to be positive.288

However an exact version of Hamilton’s rule can be recovered by suitably

defining the cost and benefit terms, as emphasized by Gardner et al. (2011),290

whose approach we follow here. (A different approach, not discussed here,
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incorporates non-additive payoffs into Hamilton’s rule by a weak selection292

approximation; see for example Lehmann and Rousset 2014b).

For each individual i, we let wi denote its actual reproductive fitness294

(number of offspring). We then write wi as a linear regression on pi and p′i:

wi = α + bwp.p′pi + bwp′.pp
′
i + ei (2)

where α is baseline fitness; bwp.p′ is the partial regression of an individual’s296

fitness on their own type, controlling for their partner’s type; bwp′.p is the

partial regression of an individual’s fitness on their partner’s type, controlling298

for their own type; and ei is the residual. These partial regression coefficients

quantify the average effect (sensu Fisher 1930) of the actor’s action, and their300

partner’s action’s, on the actor’s fitness.

Following Hamilton (1964), instead of considering the effect on the actor’s302

fitness of their partner’s action bwp′.p, we can consider the effect on their

partner’s fitness of the actor’s action, denoted bw′p.p′ . These two partial304

regression coefficients are numerically identical (Taylor et al. 2007). (This

is the well-known switch from ‘neighbour-modulated’ to ‘inclusive’ fitness.)306

Following Gardner et al. (2011), we denote the bwp.p′ and bw′p.p′ coefficients

as −C and B respectively.308

Importantly, equation (2) can be fitted whether or not the true relation

between w, pi and p′i is linear. In the non-additive case under considera-310

tion that relation is non-linear (since d > 0), which implies that the partial

regression coefficients −C and B will be functions of population-wide gene312
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frequencies, and liable to change as the population evolves. Therefore un-

like c and b, which are fixed payoff parameters, −C and B are population314

variables.

Following Gardner et al. (2007, p. 219), we can write explicit expressions316

for −C and B in terms of r, p, and the parameters of the payoff matrix b, c

and d. This yields:318

−C = (−c) + (d) · [r + p(1− r)]/[1 + r] (3)

B = (b) + (d) · [r + p(1− r)]/[1 + r] (4)

We can then derive the following expression for evolutionary change:320

∆p = (rB − C) · V ar(p)/w (5)

where w is average population fitness (see Appendix). Equation (5) tells us

that when 0 < p < 1, the A type will increase in frequency if and only if322

rB > C. This is a generalized version of Hamilton’s rule, applicable whether

payoffs are additive or not.324

The quantity (rB−C), whose sign determines whether altruism spreads,

can be computed by adding equation (3) to r times equation (4). After326

simplifying this yields:

rB − C = (rb− c) + d[r + p(1− r)] (6)

Note that (rB − C) is a function of p, so satisfaction of rB > C in gen-328
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eration t does not imply its satisfaction in generation t+ 1. Selection is thus

frequency-dependent, and neither type will necessarily spread to fixation. A330

polymorphic equilibrium will obtain when p = [c − r(b + d)]/d[1 − r]; the

stability of this equilibrium depends on the sign of d. The full evolutionary332

dynamics are summarized in Table 7 below; see Appendix for proof.

Case 1: r < 1, d > 0
(i) rb− c+ rd ≥ 0 A evolves to fixation
(ii) rb− c+ d ≤ 0 S evolves to fixation
(iii) rb− c+ d > 0 > rb− c+ rd unstable polymorphism

at p = [c− r(b+ d)]/d[1− r]
Case 2: r < 1, d < 0
(i) rb− c+ d ≥ 0 A evolves to fixation
(ii) rb− c+ rd ≤ 0 S evolves to fixation
(iii) rb− c+ d < 0 < rb− c+ rd stable polymorphism

at p = [c− r(b+ d)]/d[1− r]
Case 3: r = 1
(i) b− c+ d > 0 A evolves to fixation
(ii) b− c+ d < 0 S evolves to fixation
(iii) b− c+ d = 0 no evolutionary change

Table 7: Evolutionary dynamics of non-additive PD

The general version of Hamilton’s rule embodied in equation (5) raises334

interesting interpretive questions. Some have argued that the rule in this

form has little explanatory value (Nowak et al. 2011, Allen et al. 2013);336

while others have seen the generality of the rule as an advantage, a proof that

inclusive fitness theory does not rely on restrictive assumptions (Gardner et338

al. 2011). This debate has been analyzed elsewhere (Birch 2015, Birch and

Okasha 2015) and is not the focus here.340
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Instead our question is this. Given that equation (5) is true, and given the

resulting evolutionary dynamics, can the rational actor heuristic be applied?342

Will evolution lead organisms to behave as if maximizing a utility function,

and if so what is it?344

Importantly, the answer to this question cannot simply be read off equa-

tion (5). In the additive case there was a simple link between Hamilton’s rule346

and a utility function with the desired property: rb−c > 0 was the condition

for the A type to spread, and (rb− c) the utility difference between playing348

A and S. One might hope to extrapolate this to the non-additive case by

simply replacing (rb− c) with (rB −C) in Table 2. However since B and C350

are functions of p, they cannot meaningfully feature in the utility function.

The reason is as follows. The point of the rational actor heuristic is to352

find a link between gene-frequency dynamics and a “goal” that organisms

behave as if they are trying to achieve. Such a link would be trivial if the354

“goal” were allowed to change as gene frequencies change. For the heuristic

to have any value, the goal must remain fixed. So our task is to find a utility356

function whose arguments are restricted to the payoff parameters (b, c and

d), and the relatedness coefficient r, which makes the rational actor heuristic358

work.

3.2 Rational actor analysis360

To address this question, we again transpose the evolutionary model to a

rational choice context and study the Nash equilibria of the resulting game.362
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Suppose firstly that the utility function is given by the inclusive fitness payoff

transformation, i.e. personal payoff plus r times partner payoff. This yields364

the payoffs in Table 8 below.

Partner
A S

Actor
A (b− c+ d)(r + 1) −c+ rb
S b− rc 0

Table 8: Non-additive PD with inclusive fitness payoffs

The Nash equilibria are then as follows:366

(A,A) is a Nash equilibrium if and only if rb− c+ d(r + 1) ≥ 0

(S, S) is a Nash equilibrium if and only if rb− c ≤ 0

(πA, πA) is a mixed strategy Nash equilibrium where πA

= (c− rb)/d(1 + r), so long as 0 < πA < 1.

It follows that, unlike in the additive case, the rational actor heuristic

does not work when utility is defined as inclusive fitness. The condition for368

(A,A) to be a Nash equilibrium is not identical to the condition for A to

evolve to fixation; similarly for S. Furthermore, the condition for there to be370

a mixed-strategy Nash equilibrium is not the same as the condition for there

to be a polymorphism. So it is not true that at evolutionary equilibrium,372

organisms will behave as if trying to maximize their inclusive fitness.

Can we find a utility function modulo which the rational actor heuristic374

works? The answer is yes. The Grafen 1979 payoff matrix, which to recall
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is derived from the personal payoff matrix by the transformation U(i, j) =376

rV (i, i) + (1 − r)V (i, j), does the trick. This yields the payoffs in Table 9

below.378

Partner
A S

Actor
A (b− c+ d) −c+ rb+ rd
S (1− r)b 0

Table 9: Non-additive PD with Grafen 1979 payoffs

The Nash equilibria are then as follows:

(A,A) is a Nash equilibrium if and only if rb− c+ d ≥ 0

(S, S) is a Nash equilibrium if and only if rb− c+ rd ≤ 0

(πA, πA) is a mixed strategy Nash equilibrium, where πA

= (c− r(b+ d))/d(1− r), so long as 0 < πA < 1.

This restores the rational actor heuristic. In particular, if (A,A) is the380

only pure-strategy Nash equilibrium, then A evolves to fixation; if (S, S)

is the only pure-strategy equilibrium, then S evolves to fixation. If there382

is a mixed-strategy Nash equilibrium but no pure strategy equilibria, the

population evolves to a stable polymorphism; if there is a mixed-strategy384

Nash equilibrium and both (A,A) and (S, S) are pure-strategy equilibria,

then there is an unstable polymorphism; in both cases, the weights on A and386

S in the mixed-strategy Nash equilibrium equal the proportions of A and

S in the polymorphism. Thus there is a tight correspondence between the388
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Nash equilibria and the evolutionary dynamics, summarized in Table 10 (see

Appendix for proof)390

(A,A) is only pure N.E. =⇒ A evolves to fixation
(S, S) is only pure N.E. =⇒ S evolves to fixation
(πA, πA) is only N.E. ⇐⇒ stable polymorphism at p = πA
(πA, πA), (A,A), (S, S) all N.E. ⇐⇒ unstable polymorphism at p = πA

Note: πA = (c− r(b+ d)/d(1− r))

Table 10: Rational actor heuristic, utility = Grafen 1979 payoff

The upshot is that with non-additive payoffs, the rational actor heuristic

will work so long as the utility function is defined as Grafen 1979 payoff,392

rather than inclusive fitness payoff. Again any affine transformation of the

Grafen 1979 payoff matrix, or any local shift, will also preserve the correspon-394

dences above. Note that, unlike in the additive case, the Grafen 1979 payoff

matrix (Table 9) is not a local shift of the inclusive fitness payoff matrix396

(Table 8). This is why the rational actor heuristic fails if utility is defined as

inclusive fitness in the non-additive case.398

4 Discussion

Hamilton’s original formulation of inclusive fitness theory assumed additivity400

of costs and benefits. A number of authors have emphasized that an exact

version of Hamilton’s rule holds with non-additive payoffs, so long as the −C402

and B terms are suitably defined. Here we have focused on the relevance of

payoff additivity not for Hamilton’s rule itself, but for Hamilton’s (logically404

23



distinct) claim that evolution will lead organisms to behave as if trying to

maximize their inclusive fitness, understood here to mean personal payoff406

plus r times partner payoff.

In a recent critique, Allen et al. (2013) observe that arguments for inclu-408

sive fitness maximization all rely on payoff additivity, and that where selec-

tion is frequency-dependent, fitness maximization need not generally occur.410

They write: “evolution does not, in general, lead to the maximization of

inclusive fitness or any other quantity” (p. 20138).412

Our analysis partly supports this conclusion. Here we have understood

maximization to include best-response, so that the presence of frequency-414

dependence does not automatically preclude a maximization principle from

holding; and we have allowed the utility function to be any function of the416

payoff parameters b, c and d and the relatedness coefficient r. At the evo-

lutionary equilibrium of our simple non-additive model, it is not true that418

organisms behave as if trying to maximize their inclusive fitness payoff. How-

ever there is a somewhat similar quantity – Grafen 1979 payoff – that organ-420

isms do behave as if they are trying to maximize.

It is an open question whether our positive result – maximization of422

Grafen 1979 payoff – extends to more complicated models of social evolu-

tion, e.g. that incorporate local interaction, multiple social partners, or class424

structure, or to more realistic genetic architectures than haploid inheritance.

There is no guarantee that it does, as such models typically lead to more426

complicated evolutionary dynamics than those assumed here. As has been
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emphasized before, a valid maximization argument must always deduce the428

quantity being maximized, if any, from the underlying evolutionary dynamics

(Mylius and Diekmann 1995).430

Also, we have assumed that the coefficient of relatedness, r, remains con-

stant as the population evolves. Without this assumption, it makes little432

sense to allow the utility function to depend on r, as this would be tanta-

mount to positing a changing “goal” so would again trivialize the rational434

actor heuristic. In some inclusive fitness models, r is in fact a dynamic vari-

able rather than a constant (e.g. van Baalen and Rand 1998), so it cannot be436

assumed that our results, or ones like them, can be derived for these models.

Our negative result, that maximization of inclusive fitness only holds438

with additive payoffs, is in line with previous results by Bergstrom (1995)

and Lehmann and Rousset (2014a); it supports some of the claims made440

by opponents of inclusive fitness theory such as Allen and Nowak (2015).

The key logical point to note is that although a version of Hamilton’s rule is442

indeed a fully general evolutionary principle, as Gardner et al. (2011) stress,

no principle about individual maximization can be deduced directly from this444

form of the rule. Whether such a principle holds, and if so what the quantity

being maximized is, needs to be shown on a case-by-case basis.446

Finally, what are the implications for biological practice? Behavioural

ecologists have often used inclusive fitness maximization as a way to interpret448

observed behaviour in the field, in line with Hamilton’s original suggestion.

Our analysis suggests that this will not always be possible. If an observed450
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social behaviour fails to maximize an individual’s inclusive fitness, defined as

personal payoff plus r times partner’s payoff, the behaviour may nonetheless452

be adaptive and the population at an evolutionary equilibrium. Moreover

the quantity we have called “Grafen 1979 payoff” will serve the needs of the454

behavioural ecologist seeking to identify the “goal” of evolved behaviour in

a broader range of cases than will inclusive fitness itself.456

Acknowledgements

Thanks to Ken Binmore, Bengt Autzen, Jonathan Birch, Steve Frank, Herb458

Gintis, Alan Grafen, Andy Gardner and two anonymous referees for their

comments and discussion. This work was supported by the European Re-460

search Council Seventh Framework Program (FP7/20072013), ERC Grant

agreement no. 295449.462

26



References

Alger, I. & Weibull, J. W. 2012. A generalization of Hamilton’s rule–love others464

how much? J. Theor. Biol. 299: 42-54.

Allen B., & Nowak M.A. 2015. Games among relatives revisited. J. Theor. Biol.466

194: 391-407.

Allen B., Nowak M.A., & Wilson, E.O. 2013. Limitations of inclusive fitness.468

Proc. Natl. Acad. Sci. USA 110: 21035-20139.

Bergstrom, T. 1995. On the evolution of altruistic ethical rules for siblings. Am.470

Econ. Rev. 85: 58-81.

Binmore, K. 2007. Playing for Real. Oxford University Press, Oxford.472

Birch J. 2015. Hamilton’s rule and its discontents Brit. J. Philos. Sci., in press.

Birch J. & Okasha, S. 2015. Kin selection and its critics. Bioscience 65: 22-32.474

Day, T. & Taylor, P.D. 1998. Unifying genetic and game theoretic models of kin

selection for continuous traits. J. Theor. Biol. 194: 391-407.476

Fisher R.A. 1930. The Genetical Theory of Natural Selection. Clarendon Press,

Oxford.478

Frank S.A. 1998. Foundations of Social Evolution. Princeton University Press,

Princeton, New Jersey.480

Frank S.A. 2013. Natural selection VII. History and interpretation of kin

selection theory. J. Evol. Biol. 26: 1151-1184.482

Gardner A., West S.A., & Barton, N. 2007. The relation between multilocus

27



population genetics and social evolution theory. Am. Nat. 169: 207-226.484

Gardner A., West S.A., & Wild, G. 2011. The genetical theory of kin selection.

J. Evol. Biol. 24: 1020-1043.486

Grafen A. 1979. The hawk-dove game played between relatives. Anim. Behav.

27: 905-907.488

Grafen A. 2006. Optimization of inclusive fitness. J. Theor. Biol. 238: 541-563.

Grafen A. 2009. Formalizing Darwinism and inclusive fitness theory. Phil. Trans.490

R. Soc. B : 364: 3135-3141.

Hamilton W.D. 1964. The genetical evolution of social behaviour. J. Theor.492

Biol. 7: 1-52.

Hamilton W.D. 1971. Selection of selfish and altruistic behaviour in some494

extreme models. In: Narrow Roads of Gene Land Volume 1, pp. 198-228. W. H.

Freeman, New York.496

Lehmann L., Alger, I. and Weibull, J. 2015. Does evolution lead to maximizing

behaviour. Evolution 69: 1858-1873.498

Lehmann L., & Rousset, F. 2014a. Fitness, inclusive fitness and optimization.

Biol. Philos. 29: 181-195.500

Lehmann L., & Rousset, F. 2014b. The genetical theory of social behaviour.

Phil. Trans. R. Soc. B 369: 20130357.502

Martens, J. 2015. Hamilton meets causal decision theory. Brit. J. Philos. Sci., in

press.504

Michod, R. & Hamilton, W.D. 1980. Coefficients of relationship in sociobiology.

28



Nature 288: 694-697.506

Mylius, S.D., & Diekmann, O. 1995. On evolutionarily stable life histories,

optimization and the need to be specific about density dependence. Oikos 74:508

218-224.

Nowak, M.A. & Tarnita, C.E. & Wilson, E.O. 2011. Nowak et. al. reply. Nature510

471: E9-E10.

Price, G.R. 1970. Selection and covariance. Nature 227: 520-521.512

Queller D.C. 1992. A general model for kin selection. Evolution 46: 376-380.

Queller D.C. 2011. Expanded social fitness and Hamilton’s rule for kin, kith and514

kind. Proc. Natl. Acad. Sci. USA 108: 10792-10799.

Sober, E. 1988. Three differences between evolution and deliberation. In:516

Modeling Rationality, Morality and Evolution (P. Danielson, ed.), pp. 408-422.

Oxford University Press, Oxford.518

Taylor C., & Nowak, M.A. 2007. Transforming the dilemma. Evolution 61:

2281-2292.520

Taylor P.D., Wild, G. & Gardner, A. 2007. Direct fitness or inclusive fitness:

how shall we model kin selection? J. Evol. Biol. 20: 301-309.522

van Baalen, M. & Rand, D.A. 2007. The unit of selection in viscous populations

and the evolution of altruism. J. Theor. Biol. 193: 631-648.524

van Veelen M. 2009. Group selection, kin selection, altruism and cooperation:

when inclusive fitness is right and when it can be wrong. J. Theor. Biol. 259:526

589-600.

29



Wade, M., & Breden, F. 1980. The evolution of cheating and selfish behaviour.528

Behav. Ecol. Sociobiol. 7: 167-72.

Weibull J. 1995. Evolutionary Game Theory. MIT Press, Massachusetts.530

30


