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Abstract 

While the redox active backbone of bis(phosphino)ferrocene ligands is often cited as an 

important feature of these ligands in catalytic studies, the structural parameters of 

oxidized bis(phosphino)ferrocene ligands have not been thoroughly studied. The 
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reaction of [Re(CO)3(dippf)Br] (dippf = 1,1′-bis(diiso-propylphosphino)ferrocene) and 

[NO][BF4] in methylene chloride yields the oxidized compound, 

[Re(CO)3(dippf)Br][BF4]. The oxidized species, [Re(CO)3(dippf)Br][BF4], and the 

neutral species, [Re(CO)3(dippf)Br], are compared using X-ray crystallography, cyclic 

voltammetry, visible spectroscopy, IR spectroscopy and zero-field 57Fe Mössbauer 

spectroscopy. In addition, the magnetic moment of the paramagnetic 

[Re(CO)3(dippf)Br][BF4] was measured in the solid state using SQUID magnetometry 

and in solution by the Evans method. The electron transfer reaction of 

[Re(CO)3(dippf)Br][BF4] with acetylferrocene was also examined. For additional 

comparison, the cationic compound, [Re(CO)3(dippc)Br][PF6] (dippc = 1,1ʹ-bis(diiso-

propylphosphino)cobaltocenium), was prepared and characterized by cyclic 

voltammetry, X-ray crystallography, and NMR, IR and visible spectroscopies. Finally, 

DFT was employed to examine the oxidized dippf ligand and the oxidized rhenium 

complex, [Re(CO)3(dippf)Br]+. 

 

Introduction 

 The ligand 1,1ʹ-bis(diphenylphosphino)ferrocene (dppf) is frequently employed in 

a variety of catalytic applications.1-3 The catalytic efficiency, and therefore popularity of 

catalysts containing dppf and its various derivatives has been attributed to both steric and 

electronic factors. For 1,1ʹ-bis(phosphino)ferrocene ligands, steric factors to consider 

include the steric bulk of the substituent groups on phosphorus,4 the large bite angle 

imposed by the ferrocenyl backbone,5 and the ability of the C5 rings to rotate which 

provides flexibility in coordination.6 This last factor has been used to compare 1,1ʹ-
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bis(phosphino)ferrocene ligands to a ball and socket joint6 and has led to the moniker 

molecular ball bearings.7 The two factors governing the electronic properties of these 

ligands are the substituents on the phosphorus atoms and the redox-active ferrocenyl 

backbone.1 It is this last feature that is of particular relevance to this report. 

 The importance of the redox properties of ferrocene and its derivatives has been 

examined in a variety of different studies. A variety of compounds containing ferrocenyl 

moieties have been used as redox-switch catalysts, in which the catalytic activity of a 

compound with a ligand capable of existing in more than one valence state can be altered 

by varying the ligand valence. The activity of a ruthenium catalyst bound to a dendritic 

ferrocenyl cyclotriphosphazene is significantly decreased upon oxidation of the iron 

center.8 Similarly, oxidation of the iron center in the catalyst [Y(phosphen)(OtBu)] 

(phosphen =1,1ʹ-di(2-tert-butyl-6-diphenylphosphiniminophenoxy)ferrocene) completely 

halts the polymerization of α-lactide.9 For catalysts containing bis(phosphino)ferrocene 

ligands, the reduction of methyl viologen was found to be more efficient using 

[Cp*(dppf)RuH][PF6] as compared to [Cp*(dppf)RuH] as the catalyst.10 The reactivities 

of [(Cym)(PP)RuCl][PF6] (Cym = 1-isopropyl-4-methylbenzene; PP = dppf or 1,1ʹ-

bis(diiso-propylphosphino)ferrocene (dippf)) have also been examined and these 

compounds are suggested to be useful redox-switch catalysts.11 

 Lacking from the studies employing bis(phosphino)ferrocene ligands are 

structures of these compounds in both the Fe(II) and Fe(III) valence states. For the free 

ligands, although the Fe(III) species is accessible, it is unlikely to be isolated and 

structurally characterized, as noted in the oxidation of dppf,12 dippf13 and 1,1ʹ-

bis(dicyclohexylphosphino)ferrocene (dcpf)14 (Table 1), which were found to be 
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chemically irreversible due to reactions taking place at the phosphorus atoms following 

oxidation. The related compound, 1,1ʹ-bis(ditert-butylphosphino)ferrocene (dtbpf), 

displays a reversible oxidation for the Fe(II/III) couple,15 but neither valence state has 

been structurally characterized. The only structurally characterized compound in which 

the iron of the ferrocenyl backbone has been oxidized is [dppf]2[Sb4Cl16],
16 although it 

has been suggested that this compound actually be formulated as [dppf]4[Sb4Cl16].
17 The 

use of other chemical oxidants such as hydrogen peroxide,18-19 sulfur18-19 and bromine20 

again led to reactions at the phosphorus atoms as opposed to oxidation of the iron center. 

Table 1 1,1′-bis(phosphino)metallocene ligands and abbreviations. 

 Ligand R M M valence n 

n+

 

dppf Ph Fe II 0 

dippf iPr Fe II 0 

dippf+ iPr Fe III 1 

dcpf Cy Fe II 0 

dtbpf tBu Fe II 0 

dippc+ iPr Co III 1 

 

 Coordination of the 1,1ʹ-bis(phosphino)ferrocene ligands removes the potential 

complication of reactivity at the phosphorus atoms, thereby allowing the oxidation of the 

iron center to be more readily examined. Numerous studies have examined the oxidative 

electrochemistry of compounds containing dppf,1,12 dippf,13 dcpf14 and dtbpf.15 However, 

there have been relatively few reports of the isolation of these oxidation products which 

are typically obtained via chemical oxidation.  The chemical oxidation of [Pd(dppf)Cl2] 

and [Pt(dppf)Cl2] by [NO][BF4] was found to give green, paramagnetic products.21 A 

second study examined the Mössbauer spectrum of the Fe(III) complex [Pd(dppf)Cl2]
+ 

formed by the reaction of [Pd(dppf)Cl2] with [NO][BF4] after they were unable to isolate 

a product from the reaction of [Au2Cl2(dppf)] with [NO][BF4].
22 Using 
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spectroelectrochemistry and EPR spectroscopy, oxidation of [(Cym)Ru(dppf)Cl][PF6] 

(Cym = 1-isopropyl-4-methylbenzene) was determined to occur at the iron center, 

whereas oxidation of the closely related [Cp*Ru(dppf)H] occurs at ruthenium.23 The 

chemical and spectroelectrochemical oxidation  of [Re(CO)3(dppf)Cl] has also been 

performed, and the Fe(III) product was characterized by IR and UV-Visible 

spectroscopies.24 In addition, the oxidation of the closely related compounds 

[Re(CO)3(dppf)(OTf)] and [Re(CO)3(dppf)(MeCN)][OTf] has recently been examined 

spectroelectrochemically.25 While all of these products have been characterized 

spectroscopically, to our knowledge there are no reported structures in which the 

coordinated 1,1ʹ-bis(phosphino)ferrocene ligand has been oxidized. An analysis of the 

structural and electronic properties of a bis(phosphino)ferrocene ligand in both valence 

states would provide greater insight into the redox-switch catalytic activity of these 

ligands. 

 Previous studies in this laboratory examined the synthesis and 

spectroelectrochemistry of [Re(CO)3(dippf)Br].26 Herein we report the isoelectronic 

[Re(CO)3(dippc)Br][PF6] (dippc = 1,1ʹ-bis(diiso-propylphosphino)cobaltocenium) and 

the oxidized compound, [Re(CO)3(dippf)Br][PF6], containing an Fe(III) center. The 

paramagnetic [Re(CO)3(dippf)Br][PF6] was characterized by SQUID magnetometry and 

the two iron-containing species were examined by 57Fe Mössbauer spectroscopy. X-ray 

crystal structures of all three compounds were obtained and the structural parameters 

were compared. In addition, DFT calculations were performed to examine the spin 

density in [Re(CO)3(dippf)Br][PF6]. 
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Results and discussion 

 The synthesis of [Re(CO)3(dippc)Br][PF6] was carried out using a method similar 

to the reported preparation of [Re(CO)3(dippf)Br].26 The NMR spectral data for 

[Re(CO)3(dippc)Br][PF6] was found to be quite similar to that observed for 

[Re(CO)3(dippf)Br] with the exception of the septet in the 31P{1H} NMR spectrum that 

can be attributed to the [PF6]
-. Similar to [Re(CO)3(dippf)Br]+

, the νCO stretches in the IR 

spectrum of [Re(CO)3(dippc)Br][PF6] are shifted 15-20 cm-1 higher than the bands in 

[Re(CO)3(dippf)Br] (Table 2). An analogous difference was noted in the IR spectra of the 

phenyl substituted complex, [Re(CO)3(dppf)Cl]0/+.24 The νCO stretches in these 

compounds are sensitive to the electron richness at the Re center. The bands shift to 

higher wavenumbers as the donor ability of the phosphine ligands decreases. The 15-20 

cm-1 is consistent upon oxidation of [Re(CO)3(dppf)Cl] and [Re(CO)3(dippf)Br], 

suggesting that the decrease in donor ability of dppf and dippf upon oxidation is similar. 

In addition, the similar νCO values for [Re(CO)3(dippf)Br]+ and [Re(CO)3(dippc)Br]+ 

signify that the donor ability of dippc+ is comparable to that of dippf+. 

Table 2 Spectroscopic data for solutions of compounds in CH2Cl2. 

 IR 

νCO (cm-1) 

Visiblea 

 λmax (nm) ε (M-1 cm-1) 

dippf    445 110 

[Re(CO)3(dippf)Br]b 2023 (vs) 1939 (m) 1888 (m) 429 150 

[Re(CO)3(dippc)Br][PF6] 2038 (vs) 1957 (m) 1909 (m) 418 250 

[Re(CO)3(dippf)Br][BF4] 2037 (vs) 1959 (m) 1908 (m) 614 100 

[Re(CO)3(dppf)Cl]c 2035 1953 1900 436 159 

[Re(CO)3(dppf)Cl]+c 2047 1972 1920 620 150 
aFor dippf and dippc+ compounds, solutions were 0.2 mM. bReference 26. cReference 24. 

 The reaction of [Re(CO)3(dippf)Br] with slightly more than one equivalent of 

[NO][BF4] yields dark green [Re(CO)3(dippf)Br][BF4] in good yield. The change in the 
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UV-visible (Table 2) spectrum upon oxidation of the iron center to Fe(III) is similar to 

that which was observed for [Re(CO)3(dppf)Cl]0/+.24 The νCO stretches in the IR spectrum 

of [Re(CO)3(dippf)Br]+ are in good agreement with the previously obtained 

spectroelectrochemical data.27 No peak was observed in the 31P{1H} NMR spectrum and 

significant broadening and paramagnetic shifts were observed in the 1H NMR spectrum. 

As suggested by the NMR data, [Re(CO)3(dippf)Br]+ was determined to be paramagnetic. 

Using Evans method, the μeff was determined to be 2.72(6) B.M. at 22.2˚C. The 

temperature dependence of the magnetization was measured at 2-300 K and the μeff 

remained constant (2.61 – 2.80 B.M.) from 50-300 K (Fig. 1).  Curie-Weiss behavior was  

 
Fig. 1 Temperature-dependent SQUID magnetization data for [Re(CO)3(dippf)Br]+ 

plotted as magnetic moment (μeff) vs. T and 1/magnetic susceptibility (M) vs. T (inset). 

 

noted over the temperature range of 50-300 K and the slope of the line gives a μeff of 2.99 

B.M. This value is significantly larger than that expected for a spin-only S = ½ state, but 

is similar to the μeff for ferrocenium,27 [CpFeCp*]+,28 and decamethylferrocenium.29 The 

larger than anticipated μeff values in those systems have been attributed to the cations 

adopting 2E ground states that do not display significant low symmetry distortions27-29 

which is apparently also true for the coordinated dippf+ ligand in [Re(CO)3(dippf)Br]+. 
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To further examine the iron-containing compounds, the 57Fe Mössbauer spectra of 

dippf (Fig. 2a), [Re(CO)3(dippf)Br] (Fig. 2b) and [Re(CO)3(dippf)Br][BF4] (Fig. 2c) were  

 
Fig. 2 Zero-field 57Fe Mössbauer spectra of (a) dippf, (b) [Re(CO)3(dippf)Br], and (c) 

[Re(CO)3(dippf)Br]+. 

 

obtained at 90 K. For dippf, the isomer shift (δ) was determined to be 0.54 mm/s, the 

quadrupole splitting (|ΔEQ|) was 2.34 mm/s, and the full width at half maximum () was 

0.29 mm/s. These values are similar to those obtained for the related phenyl ligand, dppf, 

at comparable temperatures (δ = 0.52 mm/s and |ΔEQ| = 2.33 mm/s at 77 K;21 δ = 0.53 

mm/s and |ΔEQ| = 2.30 mm/s at 80 K30). Upon coordination there is very little change in 

both the δ (0.53 mm/s), |ΔEQ| (2.33 mm/s) and  (0.29 mm/s) values for the iso-propyl 

substituted dippf ligand in [Re(CO)3(dippf)Br]. Metal complexes containing dppf ligands 
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typically show a much greater difference in δ and |ΔEQ| values as compared to free dppf; 

however, the values obtained for [Re(CO)3(dippf)Br] do fall within the range expected 

for octahedral compounds containing a dppf ligand (Supporting Information Fig. 

S1).1,22,30 It is well-known that the Mössbauer spectrum of ferrocenium ions display 

paramagnetic relaxation, which in turn gives rise to a single broad absorption line.31 

Oxidation of [Re(CO)3(dippf)Br] gave a significant change in the 57Fe Mössbauer 

spectrum where a doublet is no longer discernible and instead a broad ( = 0.89 mm/s) 

singlet, indicative of Fe(III) character, with δ and |ΔEQ| values of 0.57 mm/s and 0 mm/s 

is observed. These differences are similar to the oxidation of [Pd(dppf)Cl2], which had 

values of δ = 0.51 mm/s and |ΔEQ| = 2.24 mm/s for the Fe(II) before oxidation and 

displays a broad singlet with δ = 0.55 mm/s and |ΔEQ| = 0 mm/s for the Fe(III) after 

oxidation.22 

 DFT calculations support the presence of Fe(III) in [Re(CO)3(dippf)Br]+. The spin 

density for [Re(CO)3(dippf)Br]+ is localized mainly on the FeCp2 unit (> 98 % in 

Mulliken and Natural Orbital spin densities at the UB3LYP level, with 77 and 78 % 

respectively located on the Fe atom) (Fig. 3). This is very similar to the calculated spin  

 

Fig. 3 Plot of spin density for [Re(CO)3(dippf)Br]+ calculated with UB3LYP, shown as 

an isosurface of 0.0004 au. 
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density for dippf+ which is almost completely localized on the FeCp2 unit as well 

(Supporting Information, Fig. S2). 

The structures of [Re(CO)3(dippf)Br] (Fig. 4), [Re(CO)3(dippf)Br][BF4] (Fig. 5) 

and [Re(CO)3(dippc)Br][PF6] (Fig. 6) were obtained  at 100(2) K and selected bond 

lengths and angles are presented (Table 3). While similar, the structure of 

[Re(CO)3(dippf)Br] reported herein deviates very slightly from the previously reported 

room temperature structure.32 The largest differences are the Br-Re-P and τ angles which 

are, respectively, approximately 6˚ and 2˚ smaller in the room temperature structure. 

Oxidation of the dippf ligand does not cause significant changes to the geometry around 

the rhenium atom. The bond lengths associated with the carbonyl ligands trans to the 

phosphorus atoms do not vary much, Δd(Re-C) = +0.006 Å and Δd(C-O) = +0.002 Å, 

 

Fig. 4 ORTEP drawing of [Re(CO)3(dippf)Br]. Thermal ellipsoids are drawn at the 50% 

probability level and the H atoms were omitted for clarity. 
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Fig. 5 ORTEP drawing of [Re(CO)3(dippf)Br][BF4]. Thermal ellipsoids are drawn at the 

50% probability level and the H atoms and [BF4]
- were omitted for clarity. Only one of 

the crystallographically independent molecules is shown. 

 

 
Fig. 6 ORTEP drawing of [Re(CO)3(dippc)Br][PF6]. Thermal ellipsoids are drawn at the 

50% probability level and the H atoms and [PF6]
- were omitted for clarity. 
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upon oxidation of the dippf ligand. These changes are similar in magnitude to those 

observed for [(C5H4NH2)Mn(CO)3]
0/+ and calculated for [CpRe(CO)3]

0/+, in which 

oxidation occurs at the Group 7 metal center.33-34
 Changing the dippf ligand to the less 

electron donating dppf35 or dippc+ ligands results in similar differences; for the carbonyl 

ligands trans to the phosphorus atoms, the Δd(Re-C) = +0.002 Å and 0.012 Å while 

Δd(C-O) = -0.004 Å and -0.005 Å, respectively. Minimal changes are also observed upon 

reduction of the cobalt center from Co(III) to Co(II) in [Re(CO)4(dppc)]+2 (dppc = 1,1ʹ-

bis(diphenylphosphino)cobaltocenium), as Δd(Re-C) = +0.001 Å and Δd(C-O) = -0.010 

Å for the carbonyl ligands trans to the phosphorus atoms.36 

Table 3 Select bond lengths (Å), bond angles (˚) and structural parameters for 

[Re(CO)3(dippf)Br], [Re(CO)3(dippf)Br][BF4] and [Re(CO)3(dippc)Br][PF6]. 
 [Re(CO)3(dippf)Br] [Re(CO)3(dippf)Br][BF4] [Re(CO)3(dippc)Br][PF6] 

C-O (trans to P) 1.146a 1.148b 1.141a 

C-O (trans to Br) 1.098(4) 1.156b 1.153(7) 

Re-C (trans to P) 1.940a 1.946b 1.952a 

Re-C (trans to Br) 1.895(3) 1.900b 1.902(5) 

Re-P 2.522a 2.524b 2.5216a 

Re-Br 2.6213(8) 2.6066b 2.6226(7) 

M-X 1.6412a 1.688b 1.634 

Re…M 4.5614(6) 4.461b 4.4875(10) 

Re-C-O (trans to P) 174.76a 175.16b 174.6a 

Re-C-O (trans to Br) 177.0(3) 176.2b 176.0(5) 

P-Re-P 96.31(2) 96.76b 95.49(4) 

Br-Re-P 92.82a 88.18b 88.21 

XA-M-XB
 176.47(8) 174.72b 175.49(11) 

c 12.13(18) 0.88b 2.2(3) 

d 3.55(11) 6.10b 5.15(19) 

P
e -0.166a -0.089b -0.067a 

%Vbur 47.0 46.8(2)f 46.4 
aAverage value. bAverage value for two crystallographically independent molecules in 

the unit cell. cThe torsion angle CA-XA-XB-CB where C is the carbon atom bonded to 

phosphorus and X is the centroid. dThe dihedral angle between the two C5 rings. 
eDeviation of the P atom from the C5 plane; a positive value means the P is closer to the 

Fe. fAverage deviation from the mean.  

 

 While oxidation of the dippf ligand appears to have little effect on the carbonyl 

ligands, there is an impact on the P-Re-P angle, which increases by 0.45˚ upon oxidation. 

This is likely due to the increased distance between the iron and the C5 rings of the dippf 
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ligand upon oxidation. The distance between the iron atom and the centroid of the C5 ring 

(Fe-X) in ferrocene increases by 0.044 Å upon oxidation.37 A slightly larger increase is 

noted in this system. Likewise, the Co-X distance in cobaltocenium is 0.025 Å shorter 

than the corresponding Fe-X distance in ferrocene.38 A slightly shorter metal to centroid 

distance is found in [Re(CO)3(dippc)Br]+ compared to that of [Re(CO)3(dippf)Br], which 

would account for the 0.82˚ smaller P-Re-P angle observed in [Re(CO)3(dippc)Br]+. 

DFT-calculated structures generally agree with these observations, albeit with larger 

differences in M-centroid distances, a table of structural metrics can be found in the ESI, 

Table S1, alongside full computational details. Table S1 also shows the calculated 

structure for the cobaltocene complex [Re(CO)3(dippc)Br], which shows structural 

changes cf. the cobaltocenium form in line with expectations, i.e. a contraction of M-

centroid distances.  

The steric bulk of phosphine ligands can be quantified using the percent buried 

volume (%Vbur).
39 Using the SambVca software40 and previously recommended 

guidelines,39 the %Vbur values for five bidentate phosphines (PP) were calculated for 

[Re(CO)3(PP)Br] complexes from the crystal structures. In addition to the ligands 

investigated in this report (Table 1), the %Vbur for dppf33 and 1,1ʹ-

bis(dimethylphosphino)methane41 (dmpm) were calculated to be 45.2(3) and 33.9 

respectively. The %Vbur for dippf, dippf+ and dippc+ are essentially indistinguishable. For 

dppf, dippf and dppm, the %Vbur values for the [Re(CO)3(PP)Br] compounds are 

approximately 3% smaller than the values that were calculated for the corresponding 

[Mn(CO)3(PP)Br] compounds, likely due to the greater size of the Re atom as compared 

to Mn.26 
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The electrochemistry of these compounds was also examined. Previously, the 

oxidation of [Re(CO)3(dippf)Br] was examined and found to give a reversible wave with 

E˚ = 0.32 V vs. FcH0/+.26 Under similar conditions, the reduction of [Re(CO)3(dippf)Br]+ 

displays a reversible wave (irev/ifor = 0.96, ΔEp = 80 mV) at 0.32 V vs. FcH0/+ as 

anticipated. The reduction of [Re(CO)3(dippc)Br]+ (Fig. 7) also displays a single  

  

Fig. 7 CV scan for the reduction of 1.0 M [Re(CO)3(dippc)Br][PF6] in CH2Cl2 with 

[NBu4][PF6] as the supporting electrolyte at 100 mV/s. 

 

reversible wave (irev/ifor = 0.96, ΔEp = 77 mV) with E˚ = -1.02 V vs. FcH0/+. The potential 

at which reduction of [Re(CO)3(dippc)Br]+ occurs is 0.11 V more negative than the 

reported reduction potential for [Re(CO)3(dppc)Br]+ in acetonitrile (-0.91 V vs. FcH0/+).36 

This 0.11 V difference is precisely the same difference observed for the reduction 

potentials of the free ligands, dppc+ and dippc+ (-1.14 and -1.25 V vs. FcH0/+ 

respectively) in methylene chloride.42 This suggests that the observed wave can be 

attributed to the reduction of Co(III) to Co(II). A correlation between the redox potentials 

of compounds containing 1,1ʹ-bis(phosphino)ferrocene and 1,1ʹ-

bis(phosphino)cobaltocenium ligands has been developed.43 This correlation predicts a 

reduction potential of -0.98 V vs. FcH0/+ for [Re(CO)3(dippc)Br]+, which is in good 
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agreement with the experimentally determined value. We have also explored calculating 

the one-electron redox potentials at the same level of theory as the reported geometry 

optimizations, following the previously described procedures.44 These results, discussed 

more fully in the ESI, suggest that the cobaltocene couples are generally easier to oxidize 

than their ferrocene equivalents and that metallocene derivatization appears to make 

oxidation easier compared to the unsubstituted metallocene, while the rhenium 

complexation of these ligands raises the energy difference again. 

The reaction of [Re(CO)3(dippf)Br][BF4] with acetylferrocene in CH2Cl2 (E˚ = 

0.27 V vs. FcH0/+)45 was performed in order to explore the electron transfer reactions of 

[Re(CO)3(dippf)Br][BF4]. An IR spectrum was obtained immediately after combining 

equimolar solutions of the two reagents. The νCO region of the spectrum contained three 

peaks for the neutral [Re(CO)3(dippf)Br] as well as a peak at 1700 cm-1 attributable to 

acetylferrocenium; a peak at 1667 cm-1 for acetylferrocene was noticeably absent 

(Supporting Information Fig. S3-S5).46  

 

Conclusions 

Oxidation of [Re(CO)3(dippf)Br] can be carried out using [NO][BF4] as a chemical 

oxidant. Zero-field 57Fe Mössbauer spectroscopy was performed, and it was found that 

oxidation occurs at the iron center of the coordinated dippf ligand. The structures of 

[Re(CO)3(dippf)Br] and [Re(CO)3(dippf)Br]+ were determined, and there are minimal 

changes that occur in the structure upon oxidation. In particular, small increases in the 

Fe-C distances and the P-Re-P angle were noted. This suggests that 

bis(phosphino)ferrocene ligands can be best described as spring-loaded molecular ball 



 16 

bearings, as not only do they have the ability to rotate about the C5 rings, but the ligands 

also possess the ability to access different valences states, which allows for variability in 

the size of the ligand backbone. The reaction of [Re(CO)3(dippf)Br]+ with 

acetylferrocene suggests a quick electron transfer between the two compounds. For 

additional comparison, the cobalt analog [Re(CO)3(dippc)Br]+ was prepared and was 

found to be similar to [Re(CO)3(dippf)Br]+ in terms of electron donor ability. 

Computational methods found that the redox potentials for the rhenium compounds as 

well as for the free phosphines and the metallocenes from which the compounds are 

derived follow the expected trends for ease of oxidation.  

  

Experimental 

 General experimental methods 

All preparative reactions were performed using standard Schlenk techniques under 

an atmosphere of argon. Methylene chloride (CH2Cl2), diethyl ether (Et2O), and hexanes 

were purified using a two-column Solv-tek system.47 Chloroform was dried over molecular 

sieves and degassed prior to use. Reagents were used without additional purification unless 

otherwise noted. Ferrocene (FcH), dippf, diiso-propylchlorophosphine, decacarbonyl 

dirhenium [Re2(CO)10] and nitrosonium tetrafluoroborate ([NO][BF4]) were purchased 

from Strem. The FcH were sublimed prior to use. Tetrabutylammonium 

hexafluorophosphate ([NBu4][PF6]), ammonium hexafluorophosphate, dicyclopentadiene, 

n-BuLi (1.6 M in hexanes), hexachloroethane, cobalt(II) chloride hexahydrate 

(CoCl2•6H2O), acetylferrocene and bromine were purchased from Aldrich. The 

[NBu4][PF6] and CoCl2•6H2O were dried at 100 ˚C under vacuum. The compounds 
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[Re(CO)5Br],48 [Re(CO)3Br(dippf)]26 and [dippc][PF6]
49 were prepared according to the 

literature procedure. NMR spectra were obtained in CDCl3 using a JEOL Eclipse 400 FT-

NMR. The 1H NMR spectra were referenced using internal TMS and the 31P{1H} NMR 

spectra were referenced using external 85% H3PO4. IR spectra were recorded on a 

Matteson Satellite FT-IR. UV-Vis spectroscopy was performed on a Varian Cary Bio 300 

UV-Vis spectrophotometer. Elemental analyses were performed by Quantitative 

Technologies, Inc. 

General synthetic chemical procedures 

[Re(CO)3(dippf)Br][BF4]. [Re(CO)3(dippf)Br] (0.1204 g, 0.1568 mmol) and 

[NO][BF4] (0.0214 g, 0.1833 mmol) were placed in a flask, degassed, and dissolved in 10 

mL of CH2Cl2. The reaction mixture was stirred for 30 minutes during which time the 

color shifted from yellow to green-yellow. The volume of the solution was reduced to 

approximately 1 mL and then 10 mL of Et2O were added. The solution was placed in the 

freezer for 30 minutes during which time a green solid precipitated. The solution was 

filtered and the solid was recrystallized from CH2Cl2 and Et2O. After filtering, the 

product was dried in vacuo and 0.1021 g (85% yield) of the product was obtained as a 

green solid. 31P{1H} NMR: δ (ppm) no signal observed. 1H NMR: δ (ppm) 16.18 (br, s), 

12.33 (br, s), 5.61 (br, s), 1.30 (br, s). The μeff was determined using Evans method by 

placing a sealed capillary tube containing CDCl3 into a sample of 

[Re(CO)3(dippf)Br][BF4] with a known concentration in CDCl3. The reported value is the 

average of solutions with three different concentrations and the number in parenthesis is 

the average deviation from the mean. Anal. Calcd for C25H36BBrF4FeO3P2Re: C, 35.11; 

H, 4.24. Found: C, 34.89; H, 4.14. 



 18 

[Re(CO)3(dippc)Br][PF6]. [Re(CO)5Br] (0.0387 g, 0.0953 mmol) and 

[dippc][PF6] (0.0525 g, 0.0927 mmol) were placed in a flask and degassed. Chloroform 

(30 mL) was added and the bright orange solution was brought to reflux. The reaction 

refluxed over night during which time the solution turned a darker orange color. Upon 

cooling to room temperature, the solution was filtered via cannula. The solvent was then 

removed in vacuo and the resulting residue was recrystallized by dissolving the solid in 3 

mL of CH2Cl2 and then layering that solution with 10 mL of hexanes. The solution was 

then placed in a freezer overnight. The product precipitated from solution and the 

solution was filtered via cannula. The product was washed two times with 5 mL of Et2O 

and dried in vacuo. The product was collected as a bright orange solid (0.0494 g, 58% 

yield). 31P{1H} NMR: δ (ppm) 8.53 (s), -143.7 (septet, 1JP-F = 714 Hz). 1H NMR: δ (ppm) 

6.39 (br s, 2H, C5H4-), 6.02 (br s, 2H, C5H4-), 5.93 (br s, 2H, C5H4-), 5.87 (br s, 2H, 

C5H4-), 2.94 (m, 2H, -CH(CH3)2), 2.66 (m, 2H, -CH(CH3)2), 1.32 (m, 24H, -CH3). Anal. 

Calcd for C25H36BrCoF6O3P3Re: C, 32.76; H, 3.96. Found: C, 32.70; H, 3.92. 

Reaction of [Re(CO)3(dippf)Br][BF4] with acetylferrocene. Acetylferrocene 

(0.0027 g, 0.012 mmol) was dissolved in CH2Cl2 (0.5 mL). In a separate flask, 

[Re(CO)3(dippf)Br][BF4] (0.0103 g, 0.012 mmol) was dissolved in CH2Cl2 (0.5 mL). The 

solutions were combined resulting in a dark green solution. An IR spectrum was obtained 

immediately after mixing the solutions. 

X-ray diffraction studies 

Crystals of [Re(CO)3(dippf)Br], [Re(CO)3(dippf)Br][BF4] and 

[Re(CO)3(dippc)Br][PF6] were obtained by vapor diffusion of Et2O into a CH2Cl2 

solution of the respective compound. Single crystals were selected and mounted using 
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NVH immersion oil onto a glass fiber, a nylon fiber or a nylon loop and cooled to the 

data collection temperature of 100(2) K with a stream of dry nitrogen gas. Data were 

collected on a Bruker-AXS Kappa APEX II CCD diffractometer with 0.71073 Å Mo-K 

radiation. Unit cell parameters were obtained from 60 data frames, 0.5º , from three 

different sections of the Ewald sphere and complete data collection strategies were 

determined for each crystal using the APEX2 suite.50 Each data set was refined using 

SAINT+51 and treated with SADABS absorption corrections based on redundant multi-

scan data.52 The structures were solved by direct methods or intrinsic phasing and refined 

by least squares method on F2 using the SHELXL program package within APEX2.53 All 

non-hydrogen atoms were refined with anisotropic displacement parameters and all 

hydrogen atoms were treated as idealized contributions, unless otherwise noted.  

Data for [Re(CO)3(dippf)Br] were collected on a yellow block (0.30 x 0.20 x 0.15 

mm3).  The data set consisting of 123464 reflections (11759 unique, Rint = 0.0403) was 

collected over  = 1.395 to 34.969°. Systematic absences were consistent with the 

centrosymmetric, monoclinic space group C2/c. The asymmetric unit contains one 

molecule of [Re(CO)3(dippf)Br].  One of the P(iPr)2 moieties was disordered and 

modeled over two positions with the aid of similarity restraints on 1,2- and 1,3-distances 

as well as on anisotropic displacement parameters. The goodness of fit on F2 was 1.057 

with R1 = 2.83% [I>2(I)], wR2 = 6.27% (all data) and with a largest difference peak and 

hole of 1.883 and –3.135 e/Å3. 

Data for [Re(CO)3(dippf)Br][BF4] were collected on a green plate (0.20 x 0.125 x 

0.08 mm3). The data set consisting of 179573 reflections (24769 unique, Rint = 0.0936) 

was collected over  = 2.254 to 34.338°. Systematic absences were consistent with the 
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non-centrosymmetric, orthorhombic space group Pca21. The asymmetric unit contains 

two [Re(CO)3(dippf)Br] + cations and two BF4
- anions. One [BF4]

- anion was disordered 

over two positions and modeled with the aid of similarity restraints on 1,2- and 1,3-

distances, as well as on anisotropic displacement parameters. The overlapping boron 

atoms were constrained to have identical anisotropic displacement parameters. Evaluation 

of the Flack parameter suggested refinement as a racemic twin and the twin ratio was 

freely refined to 72:28. The goodness of fit on F2 was 1.082 with R1 = 4.56% [I>2(I)], 

wR2 = 9.43% (all data) and with a largest difference peak and hole of 3.096 and –2.654 

e/Å3. 

Data for [Re(CO)3(dippc)Br][PF6]  were collected on a yellow plate (0.30 x 0.15 x 

0.02 mm3). The data set consisting of 106516reflections (9823 unique, Rint = 0.0715) was 

collected over  = 2.227 to 30.999°. Systematic absences were consistent with the 

centrosymmetric, orthorhombic space group Pbca. The asymmetric unit contains one 

[Re(CO)3(dippc)Br]+ cation and one [PF6]
- anion. The goodness of fit on F2 was 1.209 

with R1 = 4.57% [I>2(I)], wR2 = 9.33% (all data) and with a largest difference peak and 

hole of 2.137 and –1.685 e/Å3. 

Electrochemistry Procedure 

A CH Instruments Model CHI260D potentiostat at room temperature (21 ± 1 oC) 

was employed for all cyclic voltammetry experiments. All experiments were performed 

under an atmosphere of argon.  The concentration of the analytes was 1.0 mM in 

methylene chloride (10.0 mL) and the supporting electrolyte was 0.1 M [NBu4][PF6]. 

Experiments were performed with a glassy carbon working electrode (1.0 mm disk) that 

was polished with 1.0 m then 0.25 m diamond paste and rinsed with methylene 
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chloride prior to use. The experiments also employed a platinum wire counter electrode 

and a non-aqueous Ag/AgCl pseudo-reference electrode that was separated from the 

solution by a frit. Ferrocene was added at the end of the experiments and used as an 

internal reference. Data were background subtracted. Experiments were conducted at 

scan rates of 50 mV/s and 100 – 1000 mV/s in 100 mV/s increments. All data are 

reported at a scan rate of 100 mV/s. 

Magnetic Susceptibility Measurements 

Magnetic measurements were recorded using a Quantum Design MPMS 3 

SQUID magnetometer at 0.1 T. The magnetic susceptibility was adjusted for diamagnetic 

contributions using Pascal’s constants. 

Zero-field 57Fe Mössbauer Spectroscopy  

Spectra were collected by restraining the samples in Paratone-N oil. The data 

were measured with a constant acceleration spectrometer (SEE Co., Minneapolis, MN). 

Isomer shifts are given relative to -Fe metal at 298 K. An in-house package written by 

Evan R. King in Igor Pro (Wavemetrics) was used for data analysis. 
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Oxidation of [Re(CO)3(dippf)Br] (dippf = 1,1ʹ-bis(diiso-propylphosphino)ferrocene) 

yields [Re(CO)3(dippf)Br]+, the first structurally characterized complex of a coordinated 

bis(phosphino)ferrocenium ligand.  
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