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Abstract 

 

Fatty acids (FAs) are used by many organisms as defence mechanism against virulent bacteria. The 

high safety profile and broad spectrum of activity make them potential alternatives to currently used 

topical antibiotics for the treatment of eye infections in neonates. The current study utilized a Design 

of Experiment approach to optimise the quantification of five fatty acids namely; lauric acid, 

tridecanoic acid, myristoleic acid, palmitoleic acid and α-linolenic acid. The significance of the 

influence of the experimental parameters such as volume of catalyst, volume of n-hexane, incubation 

temperature, incubation time and the number of extraction steps on derivatisation was established by 

statistical screening with a factorial approach. Derivatisation was confirmed using Attenuated Total 

Reflectance infra-red (ATR) and 1H NMR spectrum. A gas chromatographic method (GC-FID) was 

developed and validated according to ICH guidelines for the identification and quantification of fatty 

acids. The results were found to be linear over the concentration range studied with coefficient of 

variation greater than 0.99 and high recovery values and low intra-day and inter-day variation values 

for all FAs. Then, different α-linolenic acid based microemulsions (MEs) were prepared using Tween 

80 as surfactant, polyethylene glycol 400 (PEG 400) as co surfactant and water as aqueous phase. The 

developed GC method was used to quantify the FA content in ME formulations. The results indicated 

that the developed GC method is very effective to quantify the FA content in the ME formulations. 

The antimicrobial efficacy of FA based MEs were tested against Staphylococcus aureus. It was 

concluded that the FA based MEs have strong antimicrobial effect against Staphylococcus aureus.  

 

Keywords: Gas Chromatography, GC-FID , Fatty acids, Fatty acid methyl esters (FAME), FAME 

preparation, Method development, Design of Experiment (DoE), Validation characteristics  

 

 

 

 

 

 

 

 

 

 



                                                     List of abbreviations 

          

               Fatty acids                                                                                   FAs                   

               Fatty acid methyl esters                                                           FAMEs 

               Gas chromatography-flame ionization detector                  GC-FID 

               Gas chromatography-mass spectrometry                             GC-MS 

               Gas liquid chromatography                                                      GLC 

               High-performance liquid chromatography                            HPLC               

               Nuclear magnetic resonance spectroscopy                           NMR 

 Attentuated total reflectance                                                   ATR 

 Fourier transform infrared spectroscopy                               FTIR 

                Lauric acid (C12:0)                                                                  LA 

                Tridecanoic acid (C13:0)                                                         TA 

  Myristoleic acid (C14:1)                                                           MOA 

                Palmitoleic acid (C16:1)                                                           POA 

                α-Linolenic acid  (C18:3)                                                           ALA 

                Design of Experiment                                                                DoE 

                Boron trichloride                                                                        BCl3 

                Boron trifluoride                                                                         BF3 
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Introduction 

 

Eye infections in newborns (28 days or younger) are recognised as a severe form of conjunctivitis 

(neonatal conjunctivitis or so called ophthalmia neonatorum). Symptoms include conjunctival 

hyperaemia, inflammation eye lid swelling and yellowish purulent discharge. Infants become infected 

when born to a mother with a sexually transmitted disease caused by chlamydia, herpes, streptococcus 

and Staphylococcus aureus. The first line of treatment for neonatal conjunctivitis of bacterial origin 

involves the use of silver nitrate solution or topical antibiotics such as 1 % tetracycline or 0.5 % 

erythromycin eye ointments [1]. However, the use of broad spectrum ophthalmic ointments is in 

continuous decline mainly because of emergence of bacterial resistance. An ocular prophylaxis or 

treatment of neonatal conjunctivitis based on fatty acids and their derivatives offers a viable 

alternative to conventional antibiotics-based treatment regimens. Fatty acids are widely occurring in 

natural fats and dietary oils and play an important role as nutritious substances and metabolites in 

living organisms. Many fatty acids are considered to have antibacterial and antifungal properties as 

well. In recent years, microbicidal effects of medium- and long-chain fatty acids and their 

corresponding 1-monoglycerides have been studied. They have been found to have a broad spectrum 

of microbicidal activity against enveloped viruses and various Gram positive and Gram negative 

bacteria in vitro, including pathogens such as Neisseria gonorrhoeae, Candida albicans and 

Staphylococcus aureus [2-4]. Because of the potential of FAs in treating eye infections and the 

possibility of formulating them as topical ocular dosage forms, it is important to develop a precise, 

accurate and robust analytical method to quantify them.   

There are several analytical methods commonly used to quantify fatty acids, including gas 

chromatography with flame ionization detector (GC-FID), gas chromatography coupled with mass 

spectrometry (GC-MS), high-performance liquid chromatography (HPLC), nuclear magnetic 

resonance (NMR) spectroscopy, silver-ion high-performance liquid chromatography and silver ion 

thin-layer chromatography [5]. Amongst all of these analytical methods, GC-MS and GC-FID are the 

most popular techniques for analyzing essential oils and food for fatty acid content [6-8].  GC 

provides excellent separation and quantification together with good sensitivity and also offers 

convenience and relatively low cost compared to other methods [9, 10]. GC-FID is a conventional 

method to separate and determine fatty acids in biological samples [11-13]. Although a gas 

chromatography/ mass spectrometry (GC-MS) method has been developed to quantitatively determine 

medium and long chain (C8–C26) fatty acids [14], the GC analysis with flame ionization detection 

(GC-FID) is still the most frequently used method because of its high sensitivity and accuracy [15]. 

Fatty acids can be analysed as free fatty acids (underivatised) or as fatty acid methyl esters 

(derivatised) by gas chromatography [16]. However, fatty acids in their underivatised form have 

higher polarity and tend to form hydrogen bonds that lead to absorption issues, thus making them 

difficult to analyze [17]. The polar carboxyl functional groups must first be neutralized to distinguish 



between the very slight differences exhibited by unsaturated fatty acids so derivatisation in GC is 

commonly undertaken to increase the volatility or decrease the polarity of the analytes of interest for 

resolved peaks with better separation. Therefore, derivatisation is usually required to make fatty acids 

more suitable for qualitative and/or quantitative analysis [18].  

A method for preparing methyl esters of fatty acids should be simple, fast and quantitative and should 

not give rise to structural changes and unwanted side reactions [19]. Fatty acid methyl esters 

(FAMEs) are normally prepared by acid catalyzed methanolysis or alkali catalyzed methanolysis. 

Base-catalysed methanolysis uses sodium hydroxide (NaOH) or potassium hydroxide (KOH) in 

methanol. Acid-catalysed methanolysis commonly uses methanolic hydrogen chloride, methanolic 

sulfuric acid or boron trifluoride (BF3) in methanol [20-24]. Boron trifluoride (BF3) in methanol is a 

commonly used acidic catalyst for the esterification of fatty acids for GC analysis but the production 

of methoxy-substituted fatty acids as artefacts was reported during the esterification of unsaturated 

fatty acids with BF3-methanol [25, 26]. Boron trichloride (BCl3) in methanol is also used for the 

esterification of fatty acids for GC analysis [27]. Out of these methods, BCl3 in methanol was found to 

be the most efficient catalyst for the esterification of fatty acids for GC analysis because of the speed 

with which the esterification is affected [28, 29]. Moreover it was reported that the formation of the 

methoxy artefacts with BCl3-methanol is much less compared to BF3-methanol [30]. 

Microemulsions are pharmaceutical preparations consisting of oil, water, surfactant, and co surfactant. 

Microemulsions offer several advantages over other formulations such as enhanced drug solubility, 

good thermodynamic stability, ease of preparation, elegant appearance and increased permeation 

across the cornea [31, 32].  

The current study reports a simple derivatisation method using BCl3-methanol for accurate and 

reliable identification and quantification of a mixture of fatty acids by GC-FID. In this study, fatty 

acid derivatisation was optimised using a quality by design approach. The influence of the 

experimental parameters such as volume of catalyst, volume of n-hexane, incubation temperature, 

incubation time and the number of extraction steps was evaluated by statistical screening with a 

factorial approach.  Different FA based microemulsions (MEs) were prepared. FA was used as an oil 

phase, Tween 80 as surfactant and polyethylene glycol 400 (PEG 400) as co surfactant with water as 

aqueous phase. Finally, antibacterial activity of the FA based MEs was tested against S. aureus.  

 

Materials and methods 

Materials 

 

Lauric acid (LA) 12:0, tridecanoic acid (TA) 13:0, myristoleic acid (MOA) 14:1, palmitoleic acid 

(POA) 16:1, α-linolenic acid (ALA) 18:3 and internal standard (IS) pentadecanoic acid (15:0) were 

purchased from Sigma (Sigma Aldrich, UK); all standards were of purity ≥99% (GC). The 

derivatisation reagent, BCl3-methanol, 12% w/w (12% boron trichloride in methanol), n-hexane 



(HPLC grade; purity; ≥99%), Tween 80, PEG 400 and anhydrous sodium sulphate were also 

purchased from Sigma (Sigma Aldrich, UK).   

Organism 

Fresh cultures of Staphylococcus aureus strain (NCTC06571) were grown on Nutrient agar (Oxoid 

CM 0003, Oxoid Basingstoke, UK) plates at 37 °C for 24 h. The colonies were removed from the 

culture plate with a loop and suspended into a 3 ml Ringer solution until cloudy. The culture was 

mixed well and the standard density was adjusted to 0.5 McFarland (1.5×10
8
 CFU per ml).   

Methods 

Derivatization and GC analysis of FAs 

 

Preparation of fatty acid methyl esters (FAMEs) 

 

A stock solution of the five fatty acids at 1 mg mL
-1

 concentration was prepared by solubilising 10 mg 

of each of the five fatty acids in 10 mL n-hexane. Working standard solutions were prepared by 

diluting a standard stock solution in n-hexane (100 µg mL
-1

), and were subjected to derivatisation 

conditions. In short, fatty acid solutions were treated with various volumes (0.5-2 mL) of BCl3-

methanol (12% w/w). Then samples were heated to 50-60°C for 5-8 min. Then samples were 

extracted with n-hexane (1-2 mL) and water by hand-shaking for 1 min until both layers were clear. 

The layers were allowed to settle and upper (organic) layer was transferred into a clean vial. Then the 

organic layer containing FAMEs was dried by adding 500 mg anhydrous sodium sulphate.   

Gas chromatography (GC) analysis of FAMEs 

 

The FAMEs analysis was performed on a gas chromatography system (Shimadzu GC-2014, Japan) 

equipped with an auto sampler injector (AOC-20i) and a flame ionization detector (SFID1). 

Substances were separated on a capillary column (BPX5, 30 m × 0.25 mm i.d., film thickness 0.25 

μm). The injection volume was 0.5 µl, which was used with a split ratio of 1:50. The injection port 

was heated at 280 °C and a flame-ionization detector operated at 280 
o
C. The oven temperature 

programming used was 180 °C, then increased to 280 °C at 20 °C/min and held for 5 min. The total 

run time was 5 min. Helium at a flow rate of 1.5 mL/min was used as carrier gas. Fatty acids were 

identified and quantified on the basis of their retention times.  

 

Nuclear magnetic resonance (NMR) spectroscopy 

To confirm the formation of FAMEs, the methyl esters derived from fatty acids samples were 

additionally analysed by Attenuated Total Reflectance infrared (ATR) and Nuclear Magnetic 

Resonance (NMR) spectroscopy. 
1
H NMR analyses were performed using a Bruker (Billerica, MA, 

USA) ARX-400 spectrometer under ambient conditions. 1-2 mg of the fatty acids and fatty acid 



methyl esters were dissolved in 1 mL of Deuterated solvent and placed in sample capillary vial up to 

5-10 cm height. Deuterated chloroform (CDCl3) was used as solvent which also served as internal 

reference (shift value of residual proton at 7.27 ppm).  

Attenuated Total Reflectance infrared (ATR) spectroscopy 

 

Samples were prepared by solubilising 10 mg of each of the five fatty acids in 1 mL of ethanol. Then 

a drop of the sample was placed on a transparent glass disc and allowed to air dry. ATR spectra were 

recorded on Thermo Scientific Nicolet iS5 FT-IR Spectrometer (Madison, WI USA) in the range 

4000−400 cm
−1

. EZ OMNNIC 7.0 software was used to interpret the IR spectrum. 

Design of experiment and data analysis 

  

The optimisation of derivatisation method was carried out through design of experiment (DoE) to 

analyse the effect of different parameters on the derivatisation of fatty acids sample. The experimental 

design and data analysis were performed using statistical software package “Minitab 17” (Minitab 

Inc, UK) [33]. A two-level five factors fractional factorial design (2
5-2

) was applied in this experiment. 

In the present study, the FAMEs derivatisation was optimised by looking at the effect of five 

independent variables namely; volume of catalyst (X1), volume of n-hexane (X2), reaction temperature 

(X3), reaction time (X4) and the number of extraction steps (X5) on one dependent response; peak area 

of the analysed FAMEs using GC-FID. A total of eight experiments were performed prior to 

optimisation based on a two-level five factors fractional factorial design (2
5-2

). The five variables were 

taken at two levels, low and high, which were represented by transformation values of −1 and +1, 

respectively as shown in Table 1. Eight samples were prepared according to the procedure described 

above. In order to minimize the effect of unexplained variability in the response because of external 

factors the experiments were randomized and obtained in triplicate. During the optimisation of the 

derivatisation, GC peaks were identified on the basis of their retention times. Table 2 shows the 8 

combinations of the different levels of the five variables investigated.  

Validation procedure 

 

The optimal derivatisation conditions were applied to validate the GC-FID method. GC–FID method 

was fully validated according to the International Conference on Harmonisation (ICH) guidelines. A 

standard mixture containing five FAs at concentration of 1 mg mL
-1

 was prepared. Five calibration 

standard solutions (200 µg mL
-1 

to 25 µg mL
-1

) were prepared from stock solution by diluting with n-

hexane, and FAMEs were prepared under optimised conditions. The analysis was carried out using 

GC under the same conditions described above. Calibration curves were constructed by plotting the 

relative responses for each analyte versus its concentration. The validation parameters such as 

response linearity, sensitivity, limit of detection (LOD) and quantification (LOQ), recovery and 

precision of the analytical procedure were calculated.  



 

Microemulsion preparation and characterisation 

 

Construction of pseudo‐ternary phase diagram 

 

A pseudo‐ternary phase diagram was constructed to determine  the  concentration  range  of  all  

components (α-linolenic acid (ALA)/surfactant/co-surfactant/water)  in  which  they  form a 

microemulsion. The pseudo-ternary phase diagram was constructed by using the phase diagram by 

micro-plate dilution (PDMPD) method, a novel technique based on the water titration method [34]. 

The surfactant and co-surfactant were mixed at a 1:1 ratio. Different mixtures of FA and 

surfactant/co-surfactant mixtures were prepared at weight ratios of 0.5:9.5,1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 

7:3, 8:2 and 9:1. The microtiter plates were filled by a pipette in accordance with the filling scheme: 

The FA–Tween 80/ PEG 400 (S/CoS) mixture was added starting at A1 with 200 μL up to B8 with 10 

μL, decreasing 10 μL in each well, and then water was added from A2 with 10 μL up to B9 with 200 

μL, increasing 10 μL in each well. The wells C1 up to D8 were filled with the next batch using the 

same procedure. After the plates had been filled, they were sealed and then shaken for 24 h at room 

temperature (25 ◦C). After that, the microplates were characterised by measuring absorbance using 

microplate reader and by making a visual evaluation of the isotropy and the border between the 

homogeneous or the heterogeneous system. 

 

Preparation of microemulsion formulations 

 

According to microemulsion region in the phase diagram, three ME formulations were selected at 

different component ratios. Linolenic acid was used as an oil phase, Tween 80 as surfactant and PEG 

400 as co surfactant with water as aqueous phase. The composition of three ME formulations is given 

in table 4. Linolenic acid was dissolved under stirring in mixture of Tween 80 and PEG 400. Then, the 

appropriate amount of water was added to the mixture drop by drop with continuous stirring. 

 

Characterisation of microemulsions 

 

Droplet size and zeta potential measurement 

The droplet size, polydispersity index (PDI) and zeta potential (ZP) of MEs were measured by 

dynamic light scattering using a Zetasizer (Malvern instruments Ltd., Malvern, U.K). ME samples 

were analysed in triplicate at 25 
0
C. 

 

 

Drug content determination 



 

Concentration and drug content of FA based ME formulations was determined using the developed 

GC method. ME samples were derivatised with BCl3-methanol (12% w/w) under optimised 

conditions.  Then samples were extracted with n-hexane (1-2 mL) by hand-shaking for 1 min until 

both layers were clear. The layers were allowed to settle and the upper (organic) layer was transferred 

into a clean vial. The organic layer containing FAMEs was dried by adding 500 mg of anhydrous 

sodium sulphate.  Then samples were analysed by the developed GC method as described above. 

 

Antibacterial activity of FAs and microemulsions against S. aureus  

 

The antimicrobial activity of five FAs (lauric acid, tridecanoic acid, myristoleic acid, palmitoleic acid, 

α-Linolenic acid), microemulsions and its individual components against S. aureus was checked using 

disc diffusion method. FA solutions (1mM and 5mM) were prepared by solubilising an appropriate 

amount of each FA in 100% ethanol. Blank paper discs (6 mm diameter) were loaded with 10 μl of 

the prepared stock solutions of FAs and microemulsion formulations and allowed to air dry at room 

temperature. Nutrient agar plates were inoculated with bacterial suspension by dipping a sterile 

cotton-wool swab into the suspension and spreading the inoculum evenly over the entire surface of the 

plates by swabbing in three directions. Plates were allowed to dry before applying discs. Then the 

discs containing the test agents were applied to the surfaces of inoculated plates. Plates were inverted 

and incubated at 37 °C for 24 h to allow for bacterial growth. Inhibition zone diameters (IZD) were 

measured in millimetres.   

 

Results and Discussion  

 

Investigating the influence of various factors on fatty acid derivatisation  

 

Various parameters such as catalyst volume, solvent volume, reaction temperature, reaction time, and 

number of extraction steps were investigated to select the optimum conditions in order to obtain a 

high degree of accuracy, sensitivity and reliability for the determination and quantification of the five 

fatty acids. The results of the partial factorial design are summarized in Suppl. Table 1 and expressed 

as peak areas of the five fatty acids. The coefficient values and probability of significance (P-value) 

are also shown in Suppl. Table 2.   

Effect of reaction temperature and time on fatty acid derivatisation  

 

Reaction temperature and time are important aspects in esterification of fatty acids and are closely 

related to each other. In order to determine optimum reaction temperature and time, the samples were 

heated at different temperatures (50-60°C) for different time intervals (5-8 min). The results showed 



that an increase in the reaction temperature and reaction time results in an increase in the degree of 

esterification for most of the fatty acids and this was reflected on the peak area of the analysed 

samples. Nonetheless, the effect of both the reaction temperature and incubation time was 

insignificant (p > 0.05) for all the analysed samples (Suppl. Table 2). 

Several studies in the literature have reported that the temperature causes significant changes in the 

fatty acid composition in cooking oil. Moreover, high temperature can alter the geometry and position 

of double bonds in fatty acids [35, 36]. It was reported that the formation of additional conjugated 

linolenic acid isomers and artefacts was lower at 40 °C than methylation at 60 °C and 80 °C though 

the base and acid-catalysed methylation at 40 °C resulted in a lower derivatisation yield [37]. The 

study concluded that increasing the reaction temperature is associated with an increase in the degree 

of esterification of the most of the fatty acids. On the other hand, increasing the reaction time was 

associated with an increase in the peak area for short chain fatty acids; lauric acid C12:0 and 

tridecanoic acid C13:0. This effect was reverted upon increasing the chain of the fatty acids and 

increasing the degree of unsaturation. On contrary to the previous study, our results did not show any 

significant effect of esterification temperature or reaction time on the yield of derivatization [37]. 

Nonetheless, the selected conditions evaded any artefacts formations as confirmed by the ATR and 

NMR data.  

 

Effect of volume of catalyst (BCl3-methanol) on fatty acid derivatisation 

 

Many studies evaluated the effect of catalyst type on the esterification of fatty acids, for instance the 

study conducted by Araujo et al. assessed the effect of boron trihalide type on methylation of fatty 

acids and the study concluded that the two halides used BF3 and BCl3 have no significant effect [38]. 

Nevertheless, the study has not investigated the effect of the volume of the catalyst used. Besides, the 

unsaturated fatty acids reported to produce methoxy artefacts by addition of methanol across the 

double bond in the presence of high concentrations of acidic catalysts [27]. The volume of catalyst 

may significantly affect the derivatisation results. In order to understand how the volume of BCl3-

methanol will affect the degree of derivatisation and artefacts formation, catalyst volumes between 

0.5-2 mL were studied (Suppl. Table 2). These results indicate that peak area of all five fatty acids is 

not affected by volume of catalyst used (p > 0.05) and has no effect on the effective methylation area 

as suggested by Araujo et al. [38].  

 

Effect of volume of solvent (n-hexane) on fatty acid derivatisation 

 

In the current study, the effect of n-hexane volumes; 1 and 2 mL on the peak areas of the formed 

FAMEs was investigated. The results showed that the peak area of four fatty acids is significantly 

affected (p value < 0.05 for C12:0, C13:0, C14:1 and C18:3) by the volume of n-hexane (Suppl. Table 



2). In contrast, C16:0 showed no significant changes in peak area (p > 0.05) by changing the volume 

of n-hexane. n-hexane was reported as the solvent of choice for extraction of fatty acids [38]. Table 3 

showed that increasing the volume of n-hexane was associated with a dramatic drop in the formation 

of the FAMEs. Probably, increasing n-hexane volume is associated with decreasing the effective 

methylation area which in turn decreases the formation of FAMEs which is soluble in the n-hexane 

layer. The results come in line with Araujo et al. findings [38].  

 

Effect of number of extraction steps on fatty acid derivatisation 

 

 Another important factor that may significantly affect the derivatisation results is the number of 

extraction steps. For this reason, it was decided to check whether two step or four step extraction 

process would improve the efficiency of derivatisation. The results showed (Suppl. Table 2) that peak 

area of four fatty acids C12:0, C13:0, C14:1 and C18:3 is significantly affected (p < 0.05) by 

changing the number of extraction steps whereas C16:0 shows no significant changes in peak area (p 

> 0.05) by changing the number of extraction steps. Coefficient values demonstrated that the peak 

area of fatty acids is negatively correlated to the number of extraction steps. This suggests that as the 

number of extraction steps decrease the FAMEs concentration increase and vice versa.  

 

All the aforementioned variables did not show any significant effect on the extraction of palmitoleic 

acid (C16:1). This could be attributed to the lower solubility of palmitoleic acid in n-hexane and this 

could possibly be due to its higher melting point compared to other unsaturated fatty acids including 

myristoleic acid and α-linolenic acid. The fatty acid’s structure has an influence on its melting point. 

The behaviour of fatty acids depends on their unique hydrocarbon tails. Fatty acids with long, 

unsaturated tails tend to be less soluble and have higher melting points than those with shorter, 

saturated tails. However, the presence of cis double bonds in unsaturated fatty acids is associated with 

an increased solubility and decreased melting points of unsaturated fatty acids [39]. Moreover, the 

solubility of fatty acids decreases with carbon chain length and increases with the degree of 

unsaturation (number of double bonds) [40]. Both palmitoleic acid C16:1 (cis-Δ9) and myristoleic 

acid C14:1 (cis-Δ9) contain one double bond in their tail that occurs between carbons 9 and 10 but the 

carbon chain length of palmitoleic acid is higher than that of myristoleic acid so this could be the 

reason for lower solubility of palmitoleic acid in n-hexane as compared to myristoleic acid, whereas 

higher solubility of α-linolenic acid C18:3(cis-Δ9, cis-Δ12, cis-Δ15) in n-hexane could be due to the 

presence of three double bonds in its tail (degree of unsaturation).  

 

Optimization of fatty acid derivatisation  

 



Pareto charts (Fig.1) also confirmed that the peak area of four fatty acids namely C12:0, C13:0, C14:1 

and C18:3 was significantly affected by both factors B and E volume of n-hexane and number of 

extraction steps respectively as they have passed the red line and are considered as significant factors. 

Although C13:0 shows only slight changes (p = 0.043) in the peak area whereas the Pareto chart for 

C16:0 shows that peak area is not affected by any of these factors as none of the factors are extending 

beyond the reference line. It is noted that none of the two-way interactions are significant indicating 

the effect of the process variable on the peak area is independent of the level of the others.   

Optimization was also performed using 3D surface plots as shown in Fig. 2. These plots show how the 

volume of n-hexane and number of extraction steps affected the peak area of fatty acids. The 3D 

surface plots showed that the volume of n-hexane and the number of extraction steps have negative 

effect on the peak area of fatty acids where peak area increased as the volume of n-hexane and 

number of extraction steps decreased. This means that the fatty acids samples should be extracted in 

two steps rather than four steps (the peak area was higher when samples were extracted in 2 steps 

rather than 4 steps) with 1 mL rather than 2 mL volume of n-hexane (the peak area is higher at 1 mL 

than it is at 2 mL volume of n-hexane).  

 

According to the response surface analysis, equations (1 to 5) were generated and could be used to 

describe the effect of five selected variables on the peak area of fatty acids. The response surface 

analysis and the generated equations could be used to predict the peak area of the FAMEs and could 

be used to optimise the esterification conditions. Accordingly, the final optimum conditions that result 

in the most desirable value of the response (peak area of FAs) were found to be 0.5 mL volume of 

BCl3-methanol, 60 °C reaction temperature, 5 min reaction time and two extraction steps using 1 mL 

of n-hexane. These results indicated that the reaction temperature needs to be maximized to increase 

the peak area of all five FAs, whereas volume of catalyst, volume of n-hexane, reaction time and 

number of extraction steps needed to be kept low in order to achieve an optimal response. The 

significance of each parameter has been added and summarized in Suppl. Table 2. 

 

Y1 = 3487 - 109.1 X1 - 811.9 X2 + 146.4 X3 + 98.38 X4 - 725.9 X5 + 34.38 X2*X3 + 186.6 X2*X5  [1] 

 

Y2 = 3382 - 175.6 X1 - 796.1 X2 + 94.63 X3 + 35.13 X4 - 609.1 X5 - 2.125 X2*X3 + 185.6 X2*X5   [2] 

 

Y3 = 3560 - 13.63 X1 - 806.9 X2 - 33.63 X3 - 27.12 X4 - 525.9 X5 - 56.62 X2*X3 - 21.88 X2*X5       [3] 

 

Y4 = 4442 + 119.1 X1 - 1019 X2 + 247.6 X3 - 535.4 X4 - 339.6 X5 - 448.9 X2*X3 - 221.1 X2*X5      [4] 

 

Y5 = 4756 + 137.7 X1 - 844.5 X2 + 24.75 X3 - 340.5 X4 - 933.8 X5 - 177.0 X2*X3 + 134.0 X2*X5    [5] 



 

ATR and 
1
H NMR analysis  

 

Formation of FAMEs was further confirmed by ATR and 
1
H NMR analyses. Both spectroscopic 

methods confirmed the changes in the structure of fatty acids after derivatisation and indicated the 

presence of esters in the samples without the formation of any artefacts. Formation of methyl esters 

can be confirmed by two characteristically strong absorption bands, methylene absorbance bands 

(wavenumber 1) and carbonyl stretching bands C=O (wavenumber 2) (Suppl. Fig. 1a-5a) [41]. 

ATR spectra of five fatty acids (C12:0, C13:0, C14:1, C16:1 and C18:3) and their methyl esters are 

shown in Suppl. Fig. 1a-5a. Fatty acids exhibited a strong O-H stretching band at 2850 cm
-1

 and a 

strong band at 1710 cm
-1

, due to the carbonyl bond C=O in free fatty acids. In methyl esters, 

methylene absorbance bands occurred at approximately 2920 cm
-1

 and carbonyl stretching bands C=O 

were shifted to approximately 1740 cm
-1

. This indicates the conversion of fatty acids into their methyl 

esters. 

The 
1
H NMR spectra of the five fatty acids (C12:0, C13:0, C14:1, C16:1 and C18:3) and their methyl 

esters are shown in Suppl. Fig. 1b-5b. The characteristic intense peak of methyl ester protons was 

observed as a singlet at 3.622 ppm. This peak is the distinct peak for the confirmation of methyl 

esters. Other peaks appeared as triplet at 0.88 ppm caused by terminal methyl protons, a strong signal 

at 1.07–1.46 ppm related to methylene protons, a triplet and a multiplet at approximately 2.34 ppm 

and 1.64 ppm, caused by two CH2 protons each, namely those α to the carboxyl group (C-2) and β to 

the carboxyl group (C-3) respectively. For C14:1 or C16:1 (unsaturated fatty acids), the signals of 

unsaturated protons appeared at approximately 5.40 ppm with integration value of two. A major peak 

was observed at about 2.00 ppm assigned to four allylic protons (at C4 and C7). In linolenic acid 

(C18:3) spectrum (Suppl. Fig. 5b), three double bonds (9c,12c,15c) did not cause any new peaks 

compared to myristoleic acid or palmitoleic acid, only changes in the integration values. The 

theoretical integration value of the olefinic protons increased to six while that of the large CH2 peak 

decreased further to 8. However, the linolenic acid spectrum showed two inner allylic methylene 

groups ( CH CH CH2 CH CH CH2 CH CH ) appearing at 2.8 ppm. Moreover, 

the peak of terminal methyl protons shifted downfield slightly, to about 0.98 ppm. Besides, BF3 in 

methanol has been reported to produce methoxy-substituted fatty acids as artefacts during the 

esterification of unsaturated fatty acids [26]. ATR and HNMR data showed that fatty acids 

derivatisation with BCl3-methanol was significantly efficient as no methoxy artefact with unsaturated 

fatty acids were identified.  



Method Validation  

Calibration curves and response linearity 

As observed from the data (Table 3), the results were found to be linear over the concentration range 

of 25 µg mL
-1 

to 200 µg mL
-1

  with coefficient of variations (R
2
) greater than 0.9938 for all the fatty 

acids. 

Limit of detection (LOD) and quantification (LOQ) 

 

Limit of detection (LOD) and limit of quantitation (LOQ) were calculated from the slope of the 

linearity curve and standard deviation of line (also known as standard error of the predicted y-value 

for each x in the regression) by using equations 6 and 7; 

 LOD = 3.3*R/S [6] 

 LOQ = 10*R/S [7] 

Where R is the standard deviation of the response and S is the slope of the calibration curve. As 

observed from Table 3 the limit of detection was within the range of 8 µg mL
-1   

to 15 µg mL
-1 

and the 

limit of quantification was in the range of 24 µg mL
-1  

to 46 µg mL
-1  

for the selected five fatty acids. 

Precision and accuracy 

 

The precision and accuracy were evaluated through repeatability (intra-day) and reproducibility (inter-

day) experiments. In order to check the precision and accuracy of the method, five standard 

concentrations were selected for each of the five FA (10, 50, 100, 150and 200 µg mL
-1

). The 

repeatability (intra-day) of the method was determined from six (n = 6) complete analyses of each 

sample under the same conditions in a day, and the reproducibility (inter-day) was determined from 

six (n = 6) complete analyses of each sample repeated three consecutive days. The values of the 

repeatability and reproducibility were expressed as relative standard deviation (RSD %). The accuracy 

of the method was evaluated through the recovery percentage (R %).  

As shown in Table 3, values for (intraday RSD) ranged between 2.49% and 5.11% for all five fatty 

acids and the values for (inter-day RSD) ranged between 3.02% and 4.71%. The mean recovery 

percentage ranged from 97.45% to 100.38% for all fatty acids.  

The method validation results indicate that the developed method is linear and reproducible whereas 

variation between intra- and inter-day values is lower for all fatty acids. Moreover, recovery values 

are higher (almost approaching 100%) for all fatty acids. Thus, these results indicate that the 

developed method is precise and accurate. Therefore, this method would be reliable to analyse a 

mixture of saturated and unsaturated fatty acids simultaneously.  

The developed analytical method was used to quantify FA content in FA based ME formulation. 

 

Development and characterization of FA microemulsion 

 



Construction of pseudo-ternary phase diagram 

 

The pseudo‐ternary phase diagram of the α- linolenic acid/Tween 80: PEG 400/water is shown in Fig 

4. Ternary phase diagrams were constructed by taking 1:1 ratio of Tween 80 and PEG400. Tween 80 

as non-ionic surfactant is widely applied in pharmaceutical preparations including ophthalmic 

preparations [42]. PEG 400 as hydrophilic co-solvents and/or co-surfactants is used to reduce the 

interface tension and increase the fluidity of the oil-water interface, thereby increasing the entropy of 

the system [43]. The shaded area of the phase diagram shows the ME region, whereas the non-shaded 

area displays the turbid region. Based on the phase diagram, three microemulsion formulations were 

selected from the ME region for anti‐bacterial studies. The composition of the three microemulsion 

formulations is given in Table 4. 

Characterization of selected Microemulsion Formulations 

 

The results of droplet size, polydispersity index (PDI), zeta potential and drug content measurements 

are shown in Table 4. The mean droplet size of the prepared microemulsions ranged between 281.9± 

1.41and 350.5± 3.45 nm, which was slightly higher than the usual microemulsion droplet size range 

of 20–200 nm. The higher droplet size could be due to the particle aggregation. The droplet size of F2 

was less compared to F1 and F3. This could be due to the higher water concentration in F2 which 

lowers the viscosity and facilitate the formation of small particles. The PDI value for all formulations 

was less than 1 which is desirable with a lower the PDI value signifying a higher the uniformity of the 

droplet size in the formulation [44]. The drug content in the optimized formulations was measured 

using the developed GC method. The amount of the drug in the optimized formulations was around 

97% and 98% of the added amount which indicates that the developed GC method is precise and 

accurate to quantify the FA content in the ME formulation.   

 

Antibacterial activity of FAs and microemulsions against S. aureus  

 

In this study, five fatty acids (LA, TA, MOA, POA, ALA) of various carboxyl lengths were 

investigated for their antimicrobial activity against S. aureus. After the initial screening, FAs were 

found with significant antimicrobial activity. The diameters of the zones of inhibition of the FAs are 

presented in Table 5. Overall, long-chain unsaturated FAs (MOA, POA, ALA) were more effective 

against S. aureus than the medium-chain saturated FAs (LA, TA). This trend is in agreement with the 

results of several other investigators who observed that unsaturated FAs have greater potency than 

saturated FAs [45, 46]. Amongst the long-chain unsaturated FAs, α-linolenic acid was selected for 

FA-based formulation because of its significant antimicrobial activity and cost effectiveness. 



Before manufacturing FA formulations, an optimised analytical method was developed and validated 

to quantify fatty acids in the ophthalmic dosage form (microemulsion). 

The individual components (Linolenic acid, Tween 80 and PEG 400) and three formulated MEs were 

tested against S. aureus (Table 5). The results showed that S. aureus was susceptible to the three ME 

formulations and all individual components (Linolenic acid, PEG 400 and Tween 80). The results of 

the antimicrobial activity of PEG 400 are in agreement with the findings of Vaamonde et al. and 

Chirfe et al. [47] who found that concentrated PEG 400 solutions have significant antibacterial 

activity against various pathogenic bacteria, including Klebsiella pneumoniae, Pseudomonas 

aeruginosa, Escherichia coli, and Staphylococcus aureus [47]. F3 (16.5% FA and 79% S/CoS) 

exhibited a high antibacterial zone compared to F1 (4% FA and 91.5% S/CoS) which showed medium 

antibacterial zone and F2 (3.5% FA & 78% S/CoS) which showed lowest antibacterial zone. Thus, F3 

showed a strong inhibitory effect compared to F1 and F2. This could be due to the high concentration 

of Linolenic acid in F3. F2 showed a lowest inhibitory effect compared to F1 and F3, though there 

was a slight difference between F1 (4%) and F2 (3.5%) in terms of concentration of FA. So this 

change in the antibacterial effect might be due to the high concentration of Tween 80 and PEG 400 in 

F1 (91.5%) as compared to F2 (78%). This could also be due to the high concentration of water in F2 

(18.5%) as compared to F1 and F3 (4.5% water) which causes significant changes in the structure of 

ME that affects its antibacterial properties [48].   

Conclusion  

 

The present study describes the formulation of a FA based microemulsions comprising of α-linolenic 

acid as oil phase, Tween 80 as surfactant, PEG 400 as co-surfactant, and water as aqueous phase. The 

study developed a GC-FID method to detect five different FAs and to quantify the FA content in 

microemulsion (ME) formulations. Fatty acids were derivatised using BCl3-methanol as derivatisation 

reagent and formation of FAMEs was confirmed by ATR and 
1
HNMR analyses. FAMEs were 

analysed by GC-FID with a high degree of accuracy, sensitivity and reliability. Moreover, the 

optimisation of the derivatization method was carried out through a design of experiment (DoE) 

approach. The results indicated that the developed GC method is very effective for simultaneous 

detection of five FAs and to quantify the FA content in the microemulsion formulations. The 

antimicrobial efficacy of FA based microemulsions was tested against S. aureus. It was concluded that 

the FA based microemulsions have strong antimicrobial effect against S. aureus. These results clearly 

indicate that the developed FA based microemulsions can be used for potential treatment of 

ophthalmia neonatorum. 
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 Fig 1: Pareto chart showing the effect of variables on the peak area of C12:0 (lauric acid; a), C14:1 

(myrisoleic acid; b),  C18:3 (α-linolenic acid; c), C13:0 (tridecanoic acid; d), C16:1 (palmitoleic acid; e) 

where volume of catalyst X1 (A), volume of n-hexane X2 (B), reaction temperature X3 (C), reaction time 

X4 (D) and the number of extraction steps X5 (E) 

 

 



 

 

 

 

 

Fig. 2: 3D surface plots of significant (p < 0.05) interaction effects of volume of n-hexane and number of 

extraction steps time on the peak area of C12:0, C13:0, C14:1 and C18:3. 
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Fig. 3: GC-FID chromatogram of fatty acids [Peak before 1= Hexane, Peak 1= lauric acid (C12:0), Peak 

2= tridecanoic acid (C13:0), Peak 3= myristoleic acid (C14:1), Peak 4= palmitoleic acid (C16:1), Peak 5= 

pentadecanoic acid (C15:0), Peak  6= α-linolenic acid (C18:3)] 

 

 

 

 

 

 

 

 

 

 



 

Fig. 4: Pseudo-ternary phase diagram of α-linolenic acid, Tween 80 and PEG 400 (S/CoS mix 1:1) and 

water 

 

                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



List of Tables 

 

 

Table 1: Independent variables, their actual and coded values 

 

                                                              Independent variables 

 

 

Coded value 

Volume of 

catalyst (X1) 

mL 

Volume of n-

hexane (X2) 

mL 

Reaction temp 

(X3) 

°C 

Reaction time 

(X4) 

Min 

Extraction 

steps (X5) 

 

-1 0.5 1 50 5 2 

1 2 2 60 8 4 

 

 

 

Table 2: Experimental design showing the various independent variables used in the optimization of 

derivatisation method 

 

Sample 

number 

 

X1 

 

X2 

 

X3 

 

X4 

 

X5 

 

1 1 1 1 1 1 

2 1 -1 1 -1 1 

3 1 -1 -1 -1 -1 

4 1 1 -1 1 -1 

5 -1 -1 1 1 -1 

6 -1 1 -1 -1 1 

7 -1 1 1 -1 -1 

8 -1 -1 -1 1 1 

 

 

 

 

 

 



Table 3: Equations, correlation coefficients, intra-day and inter-day variation and recovery percentage 

for five fatty acids.  

a 
The mean value of RSD established from six (n = 6) complete analyses of each sample in a day. 

 
b 
The mean value of RSD established from six complete analyses repeated three consecutive days. 

c
 The mean of recovery percentage established from the complete analysis in triplicate of FAMEs standard 

fortified with a standard working solution at three concentrations. 

Table 4: Composition and optimization parameters of selected formulations 

 

 

 

 

Fatty acids 

 

Calibration curve 

equation 

Regression 

Coefficient 

(R
2
) 

 

 

LOD 

 

 

LOQ 

(n=6) 

Intra-day, 

RSD%
 a 

(n=6+6+6) 

Inter-day, 

RSD% 
b 

 

Accuracy 

R% 
c 

 

C12:0 

 

y = 68166x + 666.51 

 

0.9938 

 

0.015 

 

0.046 

 

2.49 

 

3.44 

 

97.98 

 

C13:0 

 

y = 69869x + 458.17 

 

0.9959 

 

0.012 

 

0.038 

 

2.66 

 

4.71 

 

97.45 

 

C14:1 

 

y = 78575x + 533.73 

 

0.9966 

 

0.011 

 

0.034 

 

4.31 

 

3.02 

 

98.64 

 

C16:1 

 

y = 88538x + 96.649 

 

0.9989 

 

0.0064 

 

0.019 

 

2.88 

 

3.57 

 

100.38 

 

C18:3 

 

y = 77175x + 827.61 

 

0.9983 

 

0.008 

 

0.024 

 

5.11 

 

3.73 

 

98.42 

Formulation 

 

 

Composition 

 

Particle size 

± SD 

(nm) 

 

PDI 

± SD 

 

Zeta 

potential 

(mV) 

Drug content 

mg/mL 

 

Drug content 

% 

 
FA % S/CoS % Water% 

F1 4 91.5 4.5 350.50± 3.45 0.102±0.012 0.0850±0.016 38.88±1.03 97.2 

F2 3.5 78 18.5 281.90±1.41 0.194±0.023 -0.170±0.022 33.95±1.24 97 

F3 16.5 79 4.5 315.80±1.56 0.482±0.052 -0.136±0.054 161.95±2.47 98.2 



Table 5: Means of inhibition growth diameter obtained by disc diffusion method using three selected FA 

based ME formulations and individual components against Staphylococcus aureus mean ± SD% (n = 3). 

 

Formulation Zone of inhibition (mm) 

F1 12.5 ± 0.7  

F2 10.5 ± 0.7  

F3 25.5 ± 0.7 

FAs and Active ingredients 

Tween 80 16.0 ±1.4  

PEG 400 8.5 ± 0.7  

Lauric acid C12:0 at 1mM 

Lauric acid C12:0 at 5mM 

6.5 ± 0.2 

10.2 ± 0.2 

Tridecanoic acid C13:0 at 1mM 

Tridecanoic acid C13:0 at 5mM 

7.2 ± 0.3 

13.5 ± 0.6 

Myristoleic acid C14:1 at 1mM 

Myristoleic acid C14:1 at 5mM 

6.5 ± 0.5 

10.2 ± 0.5 

Palmitoleic acid C16:1 at 1mM 

Palmitoleic acid C16:1 at 5mM 

9.5 ± 0.6 

11.5 ± 0.6 

α-linolenic acid C18:3 at 1mM 

α-linolenic acid C18:3 at 5mM 

7.5 ± 0.6 

12.3 ± 0.7 

 

 

 

 

 

 



Supplementary data: 

 

Suppl. Fig. 1: ATR (a) and 
1
H NMR (b) spectra of lauric acid and its methyl ester  

 

 

Suppl. Fig. 2: ATR (a) and 
1
H NMR (b) spectra of tridecanoic acid and its methyl ester  

 

 



 

Suppl. Fig. 3: ATR (a) and 
1
H NMR (b) spectra of myristoleic acid and its methyl ester  

 

Suppl. Fig. 4: ATR (a) and 
1
H NMR (b) spectra of palmitoleic acid and its methyl ester 

 

 

 



 

Suppl. Fig. 5: ATR (a) and 
1
H NMR (b) spectra of α-linolenic acid and its methyl ester 

 

 

Suppl. Table 1. Experimental results of peak areas of five fatty acids (mean ± SD% (n = 3)). 

 

Sample 

number 

Peak area 

C12:0 (Y1) 

Peak area C13:0 

(Y2) 

Peak area C14:1 

(Y3) 

Peak area  

C16:1 (Y4) 

Peak area 

C18:3 (Y5) 

1 2306±5.29 2114±4.35 2074±7.18 2245±2.20 2757±5.40 

2 3291±3.40 3269±2.41 3899±2.87 6694±1.96 5213±1.61 

3 4892±2.18 4665±1.90 4861±1.75 5538±2.02 6945±1.50 

4 3023±3.40 2776±0.81 3350±0.64 3769±0.88 4661±2.64 

5 5531±2.76 5280±1.42 4880±2.02 5622±1.57 6392±2.46 

6 1966±6.25 2210±3.94 2336±4.92 3480±2.64 3467±0.56 

7 3406±3.99 3242±1.54 3251±1.03 4199±2.52 4762±2.27 

8 3482±3.30 3497±3.77 3826±2.48 3992±1.01 3853±3.11 

 

                                    

 

 



Suppl. Table 2: Estimated effect, coefficients and P-values for fatty acid 

 

*volume of catalyst (X1), volume of n-hexane (X2), reaction temperature (X3), reaction time (X4) and the 

number of extraction steps (X5) 

 

Term 
constant 

     Effect    Coef DF Sum of 
square 

Mean of 
square 

T-
value 

   P-value 

C12:0 (Y1)        
X1  -218.2  -109.1 1 95266 95266 -0.81 0.501 
X2 -1623.8  -811.9 1 5273128 5273128 -6.05 0.026 
X3   292.7   146.4 1 171405 171405 1.09 0.389 
X4   196.7    98.4 1 77421 77421 0.73 0.540 
X5 -1451.8  -725.9 1 4215156 4215156 -5.41 0.033 
C13:0 (Y2)        
X1  -351.2  -175.6 1 246753 246753 -1.34 0.313 
X2 -1592.3  -796.1 1 5070520 5070520 -6.07 0.026 
X3   189.3   94.6 1 71631 71631 0.72 0.546 
X4   70.2    35.1 1 9870 9870 0.27 0.814 
X5 -1218.3  -609.1 1 2968266 2968266 -4.64 0.043 
C14:1 (Y3)        
X1  -27.3  -13.6 1 1485 1485 -0.32 0.781 
X2 -1613.8  -806.9 1 5208378 5208378 -18.80 0.003 
X3   -67.3   -33.6 1 9045 9045 -0.78 0.515 
X4   -54.3    -27.1 1 5886 5886 -0.63 0.592 
X5 -1051.7  -525.9 1 2212356 2212356 -12.25 0.007 
C16:1 (Y4)        
X1   238  119 1 113526 113526  0.34 0.768 
X2 -2038  -1019 1 8308926 8308926 -2.88 0.102 
X3   495   248 1 490545 490545 0.70 0.556 
X4 -1071  -535 1 2293011 2293011 -1.51 0.269 
X5 -679  -340 1 922761 922761 -0.96 0.438 
C18:3 (Y5)        
X1 275.5  137.7 1 151800 151800 0.88 0.473 
X2 -1689.0  -844.5 1 5705442 5705442 -5.38 0.033 
X3   49.5   24.7 1 4901 4901 0.16 0.889 
X4 -681.0  -340.5 1 927522 927522 -2.17 0.162 
X5 -1867.5  -933.8 1 6975112 6975112 -5.95 0.027 
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