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ABSTRACT 

 

We aimed to check the relationships between levels of metals (Ca, Cd, Cu, Fe, Hg and 

Zn) in cancerous and non-cancerous lung tissues and their link to air pollution, 

expressed as particulate patter (PM) concentrations. The study also examines the 

influence on metal concentration in the lung tissue of patients’ sex and the distance of 

their homes from the nearest emitter. We found that the general pattern of ascending 

concentrations in tumor tissue was as follow: Hg < Cd < Cu < Ca < Zn < Fe. In non-

affected lung tissue the order of concentrations of Ca and Fe was reversed. With the 

exception of Cd and Cu, levels of metals were found in higher accumulations in non-

cancerous tissue (e.g. Fe 326.423 and Ca 302.730 μg/g d.w) than in tumorous tissue 

(Fe 150.735 and Ca 15.025 μg/g d.w). Neither the PM10 (PM of a diameter of 10 μm) 

concentration nor sex revealed any connection with metal concentrations. The shorter 

the distance from the emitter, the higher the metal concentrations that tended to be 

observed for almost all metals, but a statistically significant (but weak) relationship 

was noted only for Cu in tumor tissue (rs -0.4869).  
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INTRODUCTION 

 

Since the industrial revolution, a considerable increase in anthropogenic air pollution 

has been noted. Among the polluting substances, dangerous to human health are 

particulate matter (PM) which includes metals, as among others Cd and Hg 
[1, 2]

 along 



with other substances and compounds. A characteristic feature of PM, suspended dust 

with an electrostatic dry, dust ventilation, is the range of variation in its chemical 

composition and scale of diverse size fractions. 
[3]

 Frequent emission of PM10 

(particulate matter of a diameter of 10 μm) is associated mainly with combustion, 

road transport and the urban sprawl. Many studies show that suspended dust in urban 

air has a significant impact on human health and may increase the risk of stroke, 

cardiovascular diseases and respiratory diseases. It may also be a significant risk 

factor for lung cancer and cancerogenesis. 
[4-7]

  

Lung cancer is the major cause of cancer mortality around the world. This is also the 

most common cancerogenic disease since 1985 and since then the number of cases 

has increased by 51%. The disease is more predominant among smokers, but also 

other factors, as air pollution, occupational exposure and diet may increase the risk of 

the disease. 
[8-9]

 Silesia is one of the most polluted areas in Poland and a high 

incidence of cancer has been noted among its inhabitants. The cause of the cancer rate 

in the area is still not fully confirmed, but the link to environmental pollution is 

suspected. 
[10-11]

 Anthropogenic emissions, including energy and industrial production 

are the main source of air pollution in Silesia where the highest number of point 

sources are to be found in Poland. The PM10 level in Silesia is high and shows 

variability depending on the meteorological conditions and degree of urbanization. 
[12]

 

The varying fraction size of dust released from emitters also causes a variation in the 

distance the emissions may travel. 
[3]  

Epidemiological evidence of the relationship between lung cancer and exposure to 

metallic compounds may be found in the literature. 
[13-15]

 Metal contents in lung 

tumors may, moreover, be different from those in non-cancerous tissue. Assessing the 

impact of PM10 exposure on metal concentrations in both cancerous and non-



cancerous tissue types therefore would appear to be of utmost importance. There is, 

however, no comprehensive evaluation of the possible association between these 

factors for cancerous and non-cancerous lung tissue. Since we also know that the 

PM10 concentrations may vary geographically, the other potential link to sources of 

air pollution (e.g. distance from the emitter) to lung tissue investigations should be 

taken into account. Our studies address this lack of research and verify the connection 

mentioned.  

The major aim of the research was to estimate the concentrations of common metals, 

such as calcium (Ca), cadmium (Cd), copper (Cu), iron (Fe), mercury (Hg) and zinc 

(Zn), in cancerous and non-cancerous lung tissue in patients from Silesia. We 

evaluated the differences in metal concentrations according to tissue type, the sex of 

the patient and PM10 pollution in the area the patient lived. We also verified the 

relationship between the levels of metals examined and the distance from the nearest 

emitter, as well as the relationships in concentrations between metals and tissues. 

 

MATERIALS AND METHOD 

 

The patients (n=56) whose data were used in the study were patients of the 

Pulmonology and Thoracic Surgery Center in Bystra, Poland. They represented two 

study groups: one suffering from lung cancer (n=42; non-small cell lung cancer) and 

the other (the control) suffering from non-cancerous pulmonary disease (i.e. chronic 

obstructive pulmonary disease, tuberculosis, idiopathic pulmonary fibrosis; n=14). 

Some patients were smokers, but they were spread evenly among studied groups. 

None of the patient was exposed to PM or metals occupationally. All the patients live 



in the Silesia region which is heavily urbanized and highly populated area. The main 

source of PM10 air pollution here is the energy industry, emission from the residential 

sector, agriculture and emissions from road transport. 

 

Samples and analytical procedure 

 

All the samples were collected between 2013 and 2014 in the hospital while the 

patients were being treated. Patients with non-cancerous disease gave lung tissue 

samples during biopsy. Patients suffering from cancer gave samples of tumors and of 

adjacent non-affected tissue during surgery. After the samples were collected, some 

parts were sent for pathological analyses (unconnected with this study) and the rest 

were used in metal assessment protocol. Those samples were stored at a temperature 

of -20°C. 

The concentrations of the metals, Ca, Cd, Cu, Fe and Zn, were measured in ca. 2 g of 

wet weight, firstly oven-dried (60°C, SUP-100W dryer, WAMED), then mineralized 

with hot nitric acid (65%, Baker Analyzed, JT Baker) in the open mineralization 

system (Velp Scientifica DK20). Mineralized solutions were diluted with ultrapure 

water (18.2 MΩ·cm at 25°C, Direct-Q 3, Merck-Millipore) up to 10 mL and analyzed 

with a flame atomic absorption spectrometer (AAnalyst 200, PerkinElmer). The final 

results, after comparison with the limits of quantification and recalculations, were 

presented as μg of metal per 1 g of the dry sample (μg/g d.w.). Hg measurements were 

taken in the automated Hg analyzer (NIC MA-2) without the external mineralization 

in ca. 100 mg of each sample (with two repetitions). The initial Hg results were 

obtained in μg/g wet weight, but they were then recalculated and also expressed as 



μg/g d.w. 
[16]

 The whole procedure was checked against the certified reference 

material analysis (Table 1). 

 

External data 

 

We investigated the connection between the distance from a patient’s place of 

residence to the nearest big emitter, such as a mine or smelter, and metal 

concentrations in the patient’s tissues. The distance was calculated as the straight line 

between the two points on a map. 

Data regarding the concentrations of PM10 in the air where patients lived were taken 

from the system of air quality monitoring carried out by the Regional Inspectorate for 

Environmental Protection in Katowice. 
[17]

 In accordance with that we have 

distinguished five classes of PM10 (metric tons per year: 2-100; 101-155; 156-220; 

221-410 and 411-3690) in the area studied and in further statistical analysis we 

evaluated the influence of the PM10 factor on the concentrations found in the tissue 

studied. 

 

Statistical analysis 

 

The distribution of the data and variance homogeneity among the study groups were 

checked with the Shapiro-Wilk and Levene tests. 
[18]

 Since deviations from the 

assumptions were observed, factorial ANOVA on ranks were carried out. 
[19]

 The 

relationships between metal concentrations and other parameters were tested with the 

Spearman correlation analysis (rs). In all the statistical tests, the significance level was 



set at 0.05. All the calculations and analyses were performed with StatSoft Statistica 

10 EN and Microsoft Excel 2016 EN for Mac. 

 

RESULTS 

 

All the metals were found in both tissue types examined. Values lower than the limit 

of quantifications were observed in the frequencies: 12% for Ca, 8% for Cd, 4% for 

Cu, 0% for Fe, 6% for Hg and 3% for Zn. PM10 and sex factors revealed no 

connection with metal concentrations (Table 2). On that basis, the data were polled 

and the results were presented without the division. Additionally, since there were no 

differences in metal concentrations in non-affected lung tissue between patients from 

the group suffering non-cancerous diseases and the group suffering from cancer (the 

Mann Whitney test, the lowest p was noted for Fe 0.2070), all the non-tumor data 

(non-affected tissue) were used in the comparison with the tumor tissue. 

 

Metal concentrations 

 

The general scheme of ascending concentrations in tumor tissue was as follow: Hg < 

Cd < Cu < Ca < Zn < Fe. A similar trend was noted in the case of non-affected lung 

tissue with the exception of Ca whose median concentration was higher than the Zn 

level (Table 2). Concentrations of Ca, Cu, Fe and Hg differed significantly between 

tumor tissue and non-affected tissue ( 

 



Table 3). Higher levels were generally noted in non-affected lung tissue, with the 

exception of Cu whose concentrations were higher in tumorous samples. Of all the 

metals studied Fe achieved the highest median levels in both tissue-types tested 

(150.740 µg/g d.w. for tumor and 326.42 µg/g d.w. for non-affected lung). Unlike Fe, 

the median concentrations were the lowest for Hg (0.0203 µg/g d.w. and 0.0340 µg/g 

d.w. for tumorous and non-affected tissues, respectively). 

  

Correlations between metals tested and distances from emitters  

 

For all the metals studied (with the exception of Ca and Fe in tumor) negative trends 

regarding the distance to the nearest emitter were observed, but almost all of them 

were statistically insignificant ( 

 

Table 3). The only significant, but still weak relationship occurred for Cu 

concentrations in tumor tissues (rs -0.4869, p<0.05, Figure 1, Table 3). 

Statistically significant correlations of metal concentrations between tissues were 

observed (Table 4). The strongest relationships were detected in Cu and Zn 

concentrations in tumors (rs 0.5449). We also noted a significant, but weak correlation 

of Hg concentrations between cancerous and non-cancerous tissue (rs 0.3811).  

 

DISCUSSION 

 

We found that neither sex nor PM10 were differentiating factors in the metal 

concentrations in tumor tissue and non-affected lung tissue. Despite this, we observed 



the negative correlation between environmental pollution (expressed as the distance of 

the nearest emitter to the patient’s city of residence) and Cu concentrations in tumors. 

In other cases, similar trends, albeit statistically insignificant, were noted. We also 

observed several relationships between the concentrations of metals in tissues studied.  

 

Air pollution and metals 

 

Since we know that mining and manufacturing have been major industrial activities in 

Silesia for several decades, the contamination of this region with various pollutants is 

of special importance. 
[20-21]

 We also know that air pollution may be harmful to 

people’s health. Generally, women are more susceptible than men to the harmful 

influence of air quality on respiratory health. It is not yet well explained whether 

observed distinctions are attributable to biological differences (e.g. hormonal 

composition), differences in exposure (e.g. occupational) or to a combination of the 

two. 
[22]

 Our results did not support these hypotheses, since we reported no differences 

between gender groups of patients studied. 

An imbalance in the homeostasis of metals may generate reactive oxygen species 

(ROS) production leading to oxidative stress, and consequently cause pathological 

conditions. 
[23-24]

 Since we know that Fe may be involved in tumor initiation and that 

Zn supported tumor growth, we suppose that the levels of these metals could be 

higher in the tissue before a tumor is diagnosed. 
[25-26]

 Some investigations have 

confirmed that high Fe levels in breast tissue positively correlate with an impending 

risk of cancer. 
[27]

 Declining Zn concentrations were also seen in malignant lung tissue 

when compared to non-affected tissue. 
[28]

 This may explain the observation of higher 

Fe and Zn levels in lung tissue. We also suppose that higher Ca levels in the non-



affected tissue studied may be linked with subsequent cancer development because 

Ca
2+ 

overload induces mitochondrial dysfunction, as well as increasing ROS 

production and cellular damage. 
[29]

 Transition metals such as Hg under pathological 

conditions additionally accumulate in target organs, lead to ROS generation and lipid 

peroxidation, promoting oncogenesis. 
[30]

 This may explain the higher Hg 

concentrations detected in non-cancerous lung tissue, which is also consistent with 

other studies. 
[31]

 

Generally, we observed higher concentrations of metal (with the exception of Cd and 

Cu) in non-affected lung tissue. Higher Cu levels in tumor tissue may be explained by 

the fact that Cu-thionein may promote angiogenesis throughout the supplementation 

of Cu ions for enzymes involved in the formation of new blood vessels 
[32]

 as one 

stage of the process of carcinogenesis. The mechanism of the accumulation of Cd in 

tumor tissue, already known in the literature, is unclear, but it may be linked with the 

increasing total accumulation according to age and the effect of cumulative exposure 

from various sources, such as environmental pollution, occupational exposure and 

lifestyle. 
[33-34] 

 

Correlations 

 

Negative weak trends between the levels of metals in non-affected and in cancerous 

lung tissue and distance from emitters were found. These results pointed to the 

tendency that the further from the source of pollution, the lower the metal levels 

detected. The same tendency has already been observed in plants and crabs. 
[34-35]

 The 

strongest, but still weak correlation we observed linked the distance with Cu 

concentrations in tumor tissue (Figure 1). Cu is one of the main products of smelting 



and its concentrations in the tissues decrease as the distance from the source increases. 

[36]
 This along with our observation may be very useful in biomonitoring, but one 

should bear in mind that emitters such as mines and smelters are not the only cause of 

air pollution. Today a great many point sources of air pollution exist, such as on-road 

mobile sources (e.g. cars and buses), non-road mobile sources (e.g. trains, aircraft,) 

and immobile sources (e.g. household coal boilers). All these carriers add to the 

general air pollution and affect organisms (including the stimulation of 

cancerogenesis). 
[37]

 Factors such as occupational exposure or daily movement may 

influence the inference and the method may thus be useful for large areas, such as 

provinces or areas with a very few, but centralized emitters. 

Zn plays a role in regulating Cu levels in the body which may explain the correlation 

we noted between them. 
[38]

 Essential elements protect against intoxication by other 

metals, and this may explain the significant relationship between Cd and Cu. 
[39]

 We 

also saw the positive correlations Zn-Fe and Zn-Ca. Correlations between metals in 

the same organs may represent evidence of similar distribution of those metals 

throughout the system. 
[39]

 Interestingly, Cobanoglu 
[40]

 found a negative relationship 

between Zn and Fe levels in cancerous lung tissue, which contradicts Yoo’s 
[39]

 and 

our results.  

We observed a significant, positive correlation between Hg levels in tumors and in 

non-cancerous tissue. Tumors grow inside the lung tissue and may even be considered 

to be changed tissue, so this could explain the relationship observed. This hypothesis, 

however, needs further examination.  

 



CONCLUSIONS 

 

The study revealed that the PM10 factor seems to have no direct relationship with the 

levels of metal in the tissues studied. The tendency that the shorter the distance from 

the emitter, the higher the metal concentrations in target organs, however, was 

observed for copper in tumor tissue (rs -0.4870). Non-cancerous tissue seems to reach 

higher levels of metals in comparison with tumorous tissue. This may suggest that the 

metals studied, if found at elevated concentrations, may promote cancerogenesis and 

air contamination may be a co-factor behind cancerogenesis. The results also indicate 

the importance of the distance of the emitter as a tool in evaluating exposure, however 

a stronger relationship is to be observed for areas with very few, but centralized 

emitters, or large areas, such as provinces. 
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Table 1. Characteristics of the analytical method used: limits of quantification (LoQ) 

in the mineralized solutions [mg/L], recoveries for certified reference material (CRM) 

analyses (n=11) with relative standard deviations (RSD) between replicates 

Metal Wave λ [nm] LoQ CRM** Recovery [%] RSD [%] 

Ca 422.70 0.514 SRM1577b 100.3 2.1 

Cd 228.80 0.010 SRM1577b 106.8 2.7 

Cu 324.80 0.035 SRM1577b 92.2 1.3 

Fe 248.30 0.415 SRM1577b 92.3 6.2 

Hg 253.70 0.208* BCR-463 99.2 1.7 

Zn 213.90 0.024 SRM1577b 108.1 2.4 
* LoQ value for Hg expressed as ng per sample. 
** SRM1577b - bovine liver, National Institute of Standards & Technology, USA; BCR-463 – tuna fish, Joint 
Research Centre, Institute for Reference Materials and Measurement, Belgium). 

 

 

 

Table 2. Concentrations of metals (μg/g d.w.) and the significance of sex and PM10 

factors (factorial ANOVA on ranks) in tumor and non-affected lung tissue of patients 

studied 

 n Median Minimum Maximum Q1 Q3 
Sex 

factor p 

PM10 

factor p 

Ca tumor 36 15.025 0.000 377.767 0.000 76.167 0.2334 0.1563 

Cd tumor 36 1.239 0.000 8.108 0.728 3.096 0.9023 0.4669 

Cu tumor 30 9.151 3.700 18.633 7.819 11.239 0.4935 0.7413 

Fe tumor 36 150.735 38.265 1021.244 97.497 220.476 0.9821 0.7579 

Hg tumor 40 0.020 0.000 0.299 0.010 0.034 0.3374 0.4137 

Zn tumor 36 77.382 0.000 233.449 58.602 93.511 0.1808 0.2107 

Ca lung 38 302.730 53.557 6420.290 142.765 660.225 0.6720 0.3036 

Cd lung 38 1.084 0.000 11.111 0.160 3.182 0.2696 0.2559 

Cu lung 38 5.474 0.000 49.684 4.680 6.960 0.4030 0.9122 

Fe lung 38 326.423 105.378 3251.029 217.729 571.977 0.3129 0.2925 

Hg lung 53 0.034 0.000 0.606 0.027 0.046 0.5863 0.5310 

Zn lung 38 79.990 29.576 204.545 60.927 99.849 0.3873 0.3107 

Q1 – lower quartile, Q2 – higher quartile. 

 

 



Table 3. The differences in metal concentrations between tumor tissue and non-

affected lung tissue (Mann Whitney test; p) in the population studied and the 

correlations between metal concentrations and distance from the emitter (Spearman 

correlation rs) 

 
Tumor vs lung 

concentrations p 

Distance with tumor 

concentrations rs 

Distance with lung 

concentrations rs 

Ca  <0.0001 0.1452 -0.1032 

Cd  0.6302 -0.0596 -0.2018 

Cu  <0.0001 -0.4870 -0.1353 

Fe  <0.0001 0.0389 -0.1529 

Hg  <0.0001 -0.0047 -0.0907 

Zn  0.7610 -0.2966 -0.0146 

Underlining indicates statistically significant differences and correlations. 

 

 

Table 4. Significant Spearman correlations (rs) between metal concentrations in 

tissues studied 

Correlation rs 

Ca lung vs Zn lung 0.4264 

Ca tumor vs Cd tumor 0.4411 

Cu tumor vs Zn tumor 0.5449 

Fe lung vs Zn tumor 0.3977 

Hg lung vs Hg tumor 0.3811 

 



 

 

Figure 1.  



FIGURE CAPTION 

Figure 1. Statistically significant correlation between levels of copper in tumor tissue 

and distance from the nearest emitter. 


