
ku39074
Typewritten Text
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

 1

A Requirement-Driven Mechanism for the
Management of Distributed Infrastructures

 S. Khaddaj and B. Makoond

Abstract—The emergence of new service oriented distributed models has raised a number of challenges particularly in relation
to the management of distributed infrastructures in dynamic environments, such as the Cloud with changing availability of
resources, services and quality of services. In such an environment it is very important that users and applications have some
level of assurance that their requirements can be satisfied while trying to optimize the usage of the available resources. This
paper presents a new requirement-driven decision making mechanism that is based on a quality assured load balancer for
distributed computing systems. We evaluate the approach and demonstrate how it can adapt to user requirements and to the
capacity of available resources.

Index Terms—Analytical Hierarchy Process, Distributed Systems, Cloud Computing, Load Balancers, Quality of Service (QoS).

1 INTRODUCTION
The advancement of computing and information
technology has been driven not only by the continu-
ous improvement in hardware infrastructures but

also by the development of new operating environments.
Indeed over a relatively short period of time, there has
been a shift from monolithic infrastructures and applica-
tions, to distributed services mainly in the form of Cloud
Computing [1], [2], [3] and Service Oriented Architecture
(SOA) [4], [5]. However, the shift toward a real utility
computing model requires meeting not only users’ func-
tional requirements but also their non-functional re-
quirements in the form of Quality of Service (QoS), which
is becoming essential with the move toward service orien-
tation.

The universal acceptance of the service oriented ap-
proach and of the continuous decentralisation and distri-
bution of software, hardware, and human resources de-
pends on a number of fundamental factors including the
ability to provide desired QoS on resources assembled
dynamically from enterprises, service providers and cus-
tomer systems. Quality of Service, which in this context
refers to key quality factors and attributes of system in-
frastructure [6], [7], [8], is the ability of an application to
have some level of assurance that user requirements can
be satisfied. It can be seen in the form of Service Level
Agreement (SLA) between clients and suppliers to pro-
vide a service at a specified cost and within a guaranteed
time frame [9], [10]. Moreover, the development of ser-
vice-oriented infrastructures, such as those supporting
the Cloud Computing model, require efficient manage-
ment services with adaptable load distribution capabili-
ties that are driven by user demand.

Although there have been several attempts at design-
ing distributed management systems with QoS driven
scheduling algorithms [11], [12], [13], [14], [15], the major-

ity suffer from the fact that they are mainly system-centric
and do not necessarily meet the wide range of user re-
quirements and their expectations to obtain a high quality
of service, i.e. they are not user-centric, indeed many dis-
tributed systems historically have weighed heavily on
one requirement namely performance and more recently
on availability. Even when decisions and scheduling were
based on multiple requirements (multi-criteria), the con-
structed utility functions were optimised to maximise the
overall utility of distributed systems [16], [17]. Moreover,
most management systems do not support formal dy-
namic validation of meeting user requirements, neither
they are able to predict the expected system behaviours
under a specific working environment. Thus, major chal-
lenges remain in the organisation, management and op-
timisation of distributed infrastructures on the supplier
side (system-centric) while meeting the user’s many and
diverse requirements (user-centric).

This paper proposes a new multi-criteria decision mak-
ing mechanism, called the BipRyt algorithm, for the man-
agement, distribution, control and optimisation of sys-
tems resources within distributed systems and which en-
forces an assured QoS. In fact, it is a combination of two
brokering components; a system centric broker that opti-
mises the supplier’s resources and a user-centric broker
that ensures meeting the user requirements and imple-
menting SLAs. It is an empowerment strategy that pro-
vides autonomy to several parts of a system and its novel-
ties lie in the ability to use a multitude of quality attrib-
utes for decision making, a set of quality guidelines from
the user and applying a reinforcement model to validate
these guidelines, when required.

We start by discussing distributed resource manage-
ment and user requirements. Then, the core components
of the BipRyt algorithm are presented with a focus on
resource allocation and load balancing that are driven by
user requirements. The results of a number of experi-
ments, comparing the BipRyt algorithm with other load
balancing strategies, are analysed. We conclude with
some suggestions for future work.

————————————————
• S. Khaddaj is with School of Computer Science and Mathematics, Kingston

University, Kingston upon Thames, KT1 2EE, UK.
• B. Makoond is with Cognizant Technology Solutions, Haymarket House,

28-29 Haymarket, London SW1Y 4SP, UK.

T

2 RESOURCE MANAGEMENT AND USER
REQUIREMENTS

In order to meet service level agreement demands the
management of system resources requires built-in deci-
sion making mechanisms that not only ensure that user
requirements are met but also that the goals of service
providers and the optimisation of resource usage are real-
ised. However, since resource management encompasses
a wide range of different scenarios, the decision making
for SLAs is a complex procedure, which is particularly
true in Cloud environments. Attempts at the simplifica-
tion of decision-making meant that many SLAs guarantee
some QoS typically availability but not necessarily others
such as response time.

2.1 Resource Management and Load Balancing

Decision making mechanisms for resource manage-
ment and load balancing algorithms have been intensive-
ly studied since the early days of parallel and distributed
systems, with a large number of papers, surveys and
books have been published in the literature [18], [19], [20],
[21], [22], [23]. Recently, a number of these algorithms
have been adopted in virtual infrastructures and Cloud
Computing [24], [25], [26], [27]. Such an extensive re-
search has been driven by the criticality of the load bal-
ancing issue, the vast number of applications and their
diversity, the continuous evolution of the distributed ar-
chitectures with their wide variety and heterogeneousity,
and the developed and commonly used programming
paradigms. The application domains range from science
and engineering to enterprise computing, e.g. from scien-
tific simulation [28] to semantic services [29]. The infra-
structures range from Cluster to Grid and Cloud Compu-
ting [30], and the programming paradigms range from
procedural and object oriented to parallel and service
oriented paradigms [31], [32]. Thus, fundamentally the
choice, and suitability, of load balancing algorithms has
been driven by the applications and underlying architec-
tures. Consequently, some of the developed algorithms
were more suitable for early parallel machines and clus-
ters while others are more suitable for Grids and Clouds.

Over the years there have been many different classifi-
cations of load balancing algorithms, which very broadly
can be categorised as static or dynamic [22], [33], [34],
[36]. In static load balancing, all information regarding all
resources and tasks is known in advance thus workload
distribution is based on the knowledge of the system [37],
[38]. In Dynamic load balancing tasks are allocated to re-
sources as they arrive i.e. dynamically [39], [40]. More
specific load balancing strategies have also been studied
including, centralized or distributed, local or global, co-
operative and non-cooperative, approximate and heuris-
tic, hierarchical etc. [35], [41], [42], and many theories and
techniques were used such as game theory, genetic algo-
rithms and fuzzy logic [43], [44], [45]. There are many
advantages and disadvantages in each of the above strat-
egies, thus adopting any of the algorithms should very
much depend on applications requirements and underly-
ing infrastructure.

However, many decision-making strategies are based
on a single requirement i.e. one quality attribute, regard-
less of its impact on other attributes, for instance: re-
sponse time, least connections, Round Robin etc. Recent-
ly, mechanisms for dealing with energy efficiency re-
quirements have received a lot of attention [46], with ma-
jor constraints on cost and reliability. In addition a num-
ber of works on web services have attempted to deal with
QoS aspects [47], [48], [49] but they have focused on the
SOA paradigm. Other service computing approaches
have focused on multi-criteria requirement capture but
not much on resource management [50], [51]. However,
with the emergence of Cloud Computing, as a new ser-
vice driven distributed computing paradigm, QoS aspects
and SLA have become essential. These include the use of
MAPE (Monitoring, Analysis, Planning, Execution) loop
for the management of cloud infrastructures [57]. Alt-
hough the majority of works have focused on the Infra-
structure as a Service (IaaS) layer some QoS aspects have
also been considered at other layers such Platform as a
Service (PaaS) [62], [63]. But, many challenges remain as
PaaS interacts with both IaaS and SaaS (Software as a Ser-
vice) with considerable focus on the QoS of the infrastruc-
ture [64]. Overall, most QoS works have concentrated on
a limited number of quality attributes mainly availability
and performability and many still rely on the Round Rob-
in load balancer to manage their workload which does
not offer an optimal solution [58], [59], [60], [61]. In sum-
mary, many of the approaches only partially meet user
requirements, and those that attempted to meet multiple
requirements were mainly focused on maximising global
system utilisations while meeting the minimum needs of
user applications and requirements [16], [17].

2.2 User Requirements Capture

User requirements particularly in terms of QoS have
changed from the early days of distributed computing
when performance, and perhaps scalability, were the
most important factors, and now includes a wider range
of quality factors such as reliability, availability, usability
etc. Thus, QoS-based scheduling became very important
particularly in enterprise applications. However, the
analysis of diverse user requirements is a multi-criteria
problem and require a multi-criteria decision making ap-
proach. In this work we adopt the Analytical Hierarchy
Process, which seems to have replaced other approaches
such as Multi Attribute Utility Theory due to its theoreti-
cal soundness [53], [55]. By using AHP, the requirements
engineer can also confirm the consistency and reliability
of the result and prevent subjective judgment errors.

In summary AHP is used in decision making, 1) to elic-
it preferences for certain objectives comparatively to other
objectives and 2) to give the best (or several best), solu-
tion(s) from a range of potential solutions. As shown in
Figure 1, there are a number of steps in the AHP process:
1. Define the problem with its main objectives.
2. Lay out the elements of the problem as hierarchy.
3. Establish element comparison within matrices.
4. Calculate element priorities and consistency check.
5. Calculate the priorities and produce a priority vector.

 3

Fig. 1. AHP Process Flow

The AHP represents a weight matrix that maps attrib-
utes against attributes using the Saaty scale of prioritiza-
tion (Table 1) for assigning the values of importance to
each attribute. AHP also provides a Consistency Index
(CI) and Consistency Ratio (CR), based on the maximum
eigenvalue (Perron root) of the matrix λmax, to validate
the consistency of the AHP results [53], [54].

Level of
Importance

Description

1 Equal importance
3 Somewhat more important
5 Much more important
7 Very much more important
9 Absolutely more important.

2, 4, 6, 8 Intermediate values

Table 1: The Saaty Rating Scale

Moreover, in order to ensure that the values, which are
assigned to attributes, represent robust and accurate ana-
lytical values, a combination of CI and CR indexes are
factored into the process to ensure that the achieved re-
sults are within an acceptable range of values. However,
the range depends on the number of attributes that are
compared (Table 2).

No of

Attributes
1 2 3 4 5 6 7 8

CI 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41

Table 2: Consistency Index Matrix

Using AHP analysis we are proposing a new multi-
criteria mechanism, namely the BipRyt algorithm, that
takes into account many quality attributes while preserv-
ing the overall quality of the system by continuously as-
sessing the impact of the attributes against each other.
The mechanism establishes its decisions by combining
quality attributes. It is implemented on a new concept
called run time quality assurance which ensures that
quality attributes are preserved at any time and any cost.

3 THE MECHANICS OF THE BIPRYT ALGORITHM
The BipRyt algorithm is a decision-making mechanism
based on the availability of computational resources, as-
sociated rules of usage, and defined rules for a specific

user, group of users or the system as a whole. It is based
the price-driven model [56] and it allows for the optimisa-
tion of resources during the system life cycle. This is
achieved through a rule-based system where the rules can
be local or global. Part of the mechanism’s responsibility
is to manage conflicts among the rules, focusing on the
problems of racing condition and resource starvation, and
hence providing a balance between the two axes. There
are five basic principles in this mechanism:
1. All software components or software agents con-

sumes resources during execution.
2. Each software agent has several resources such as

CPU, memory, and bandwidth. Each resource is as-
sociated with a quality attribute. For example, if the
resource is processor, the associated attribute is CPU
time (processing time), which is measured in ticks or
seconds while an attribute such as memory is meas-
ured in gigabytes.

3. A quality attribute of a resource can be assigned a
numerical value called energy level representing the
level of a resource consumption that are measured at
periodic intervals, for example 50% of CPU time or
75% of memory size.

4. The health of the system depends on the energy lev-
els, which have to be measured and controlled. A
healthy system is attained by avoiding the starvation
or overloading of resources, consumption of which
can be measured using energy levels.

5. The energy levels decrease as the resources are con-
sumed and increase when resources are released.

We now introduce two core modules of BipRyt, namely
the Perceiver and Decider. The Perceiver is the part of the
software agent that collects snapshots of information on the
energy levels of each resource that are consumed at periodic
intervals. The Perceiver, hence, builds up a history of energy
levels for each Quality of Service, which is then fed to the
Decider. The Decider performs some statistical analysis over
the recorded quality attributes and cross references the qual-
ity model with the QoS priority. Depending on the results,
the Decider decides which agent is the healthiest to handle
or process more information in the system.

3.1 Perceiver
Within the system the software agents receive data to be
processed, which consume a defined number of re-
sources. Each software agent has a list of resources and
each resource represents a quality attribute, which has its
own container. The quality attributes are represented in
terms of energy levels, which are held in the quality con-
tainers. These containers have numerical values, which
determine how much energy every agent has for a partic-
ular quality attribute. The list of resources is the same for
all agents (CPU, memory etc.) but the resources’ capaci-
ties can be different for different agents, for example dif-
ferent memory size. Moreover, all agents process the
same quality attributes as derived from user require-
ments, but depending on the available resources the en-
ergy levels, for the same attribute, on different agents
might be different.

Fig. 2. Illustrative model of the Perceiver within each agent

In addition, the containers do not only link the energy
level to a numerical value but also create a number of energy
level areas defining the risk values of meeting, or not meet-
ing, quality requirements. In fact a quality container is parti-
tioned in three distinct areas. There is the Low Risk Area
(LRA), Medium Risk Area (MRA) and the High Risk Area
(HRA). HRA means that the value of a particular quality
attribute has dropped to a level that constitutes a high risk
for the system. For example, if a CPU hits say 90% usage,
this indicates HRA, which is fed to the Decider to avoid
node overloading. On the other hand LRA means that the
value of a given quality attribute has reached a level that
shows a low risk, which is fed to the decider to avoid node
starvation. The objective is to meet user requirements by
avoiding the HRA region through intelligent management
and distribution of workload across the quality attributes. It
is important to note that all agents follow the same model as
shown in Figure 2.

At system run time the energy level rises and drops along
the three risk areas. The Perceiver has the ability to monitor
the energy levels of the quality container, which is repre-
sented through a gauge system, connected to each quality
attribute. When energy is consumed, the indicator on the
gauge moves towards the HRA (left). However, as agents
complete the processing, the energy level increases and add-
ed to the container. This will result to the indicator moving
towards the LRA (right). The Perceiver will record the indi-
cator reading per processed data. When the Decider requests
the information, the Perceiver sends a history of the indica-
tor values, which builds up a feedback system based on the
usage of quality attributes.

3.2 Decider
The decider is the decision-making module of the Bi-

pRyt algorithm, which is at the core of the system’s re-
source management. The success of the decision-making
is based on a number of basic requirements, including not
only the provision of dynamic and efficient services and
resources but also the enforcement of a certain level of
QoS to the users. This responds to the increased QoS pro-
vision requirements, particularly for enterprise and Cloud
applications where there are higher expectations of users
to receive high quality services at an agreed price and
agreed time scale.

In order to meet these requirements suitable user re-
quirements components, for QoS evaluating, matching

and enforcing, and scheduling and load balancing com-
ponents, for the management of system resources, are
needed. This can be achieved by a combination of two
brokering modules; a user-centric broker that ensures
meeting the user requirements and a system centric bro-
ker that manages and optimises system resources (Figure
3).

Fig. 3. Illustrative model of the Decider

The user centric broker defines the QoS mapping strat-
egy of requirements from user to resources and continu-
ously communicates with the system centric broker. The
QoS mapping defines the minimum capacities or re-
sources, which are needed to meet user requirements.
Examples are minimum CPU and memory needs, reliabil-
ity, type of traffic, throughput etc. The QoS mapping can
also take into account other user requirements such as
user’s budget and resource prices.

The other part of the decider is the system centric bro-
ker with permission to access directly the raw resources
such as CPU, memory, and bandwidth through the local
management system. It should also regularly communi-
cate with the Perceivers to get updates on their status, the
available resources and level of usage of individual
nodes. The Decider is able to perform some analytical
calculations over the data, gathered from the Perceivers,
upon which decisions are made which are taken into ac-
count when allocation resources to meet user require-
ments.

3.3 The Mechanism
At the initial stage the BipRyt algorithm needs to be
aware of its current operating environment and system
configuration, which in this context consists of the nodes
with parameters such as the number of CPUs, memory
size and bandwidth, representing the system configura-
tion variables. Thus, it starts by recognising and discover-
ing its current system configuration and the status of its
nodes; a process which it repeats continuously thereafter
by gathering data from the Perceivers as shown in Figure
4. When receiving the list of energy levels from the Per-
ceivers, the Decider builds an Energy Matrix (EM) of
agents by quality and populates the array with values
from the list. The Matrix is built to reflect both system
resources and QoS requirements. The Matrix is then nor-
malised followed by the application of AHP.

As mentioned earlier AHP has been extensively used
in the domain of decision-making and the density of its
application is at the requirement and design phases of
many engineering projects including the software devel-

 5

opment life cycle. Our novelty lies in the fact that we have
shifted the capability of the AHP from being a subjective
tool to embedding it into the dynamics of the system to
make decision at runtime. This is a move from AHP being
a planning tool to being a run time quality assurance tool.

Fig. 4. BipRyt data gathering process

Thus, the process of evaluating quality attributes is au-
tomated, which involve the use of qualitative and quanti-
tative tools to help the Decider to evaluate non-functional
requirements, particularly the ones that are Critical to
Quality (CTQ). In order to make the algorithm aware of a
given quality model, the AHP process is integrated with-
in the mechanism, hence within the program. AHP pro-
vides a set of instructions that are automated through a
sequence of actions, which includes building the quality
model, analyzing the model, prioritizing the quality at-
tributes using their AHP weights, calculating Consistency
Index (CI) and Consistency Ratio (CR) using the maxi-
mum eigenvalue (Perron root) of the matrix λmax. Hu-
man input is reduced to choosing a number (1 - 9) from
Table 1 representing the importance of a particular QoS,
which is either extracted (parsed) from an SLA template
or entered directly by the user.

By transferring the responsibility of evaluating the
quality attributes from a design time to run time, the de-
cision-making has been pushed forward through the de-
velopment life cycle, into the system at deployment phas-
es, which result in reducing the modelling uncertainty as
more data became available. The proposed algorithm
embeds the concept within its decision-making matrix. In
doing so the BipRyt algorithm follows a number of steps,
which are triggered when the Decider receives the list of
energy levels per quality attribute per agent. First, the mean
of energy level per quality attribute for each agent is calcu-
lated by the Decider. Then, the Decider builds a mean Ener-
gy Matrix (EM) of agents by quality:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(...)()()(
...............
)(...)()()(
)(...)()()(
)(...)()()(

321

3232313

2322212

1312111

mnnnn

m

m

m

qaeqaeqaeqae

qaeqaeqaeqae
qaeqaeqaeqae
qaeqaeqaeqae

EM

Where e is the energy level per quality attribute q per

agent a , n is the number of agents and m is the number
of attributes per agent. The matrix is then normalised by
order of the quality attributes into the Normalised Energy
Matrix (NE).

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(...)()()(
...............

)(...)()()(
)(...)()()(
)(...)()()(

321

3232313

2322212

1312111

mnnnn

m

m

m

qaneqaneqaneqane

qaneqaneqaneqane
qaneqaneqaneqane
qaneqaneqaneqane

NE

where:

∑
=

×= m

j
ji

jiji

qae
qaeqane

1
)(

1)()(

 for each quality attribute qj .

 Finally, in order to assess which quality is most im-
portant for the system the Decider consults a prioritiza-
tion table, which is fabricated by Analytical Hierarchy
Process.

Fig. 5. BipRyt user requirements AHP process

Thus, the users configure the AHP by prioritizing their
requirements (R) and quality attributes (according to their
point of views). The input table is then processed to give the
weights of quality attributes (W) under AHP (Figure 5). The
outcome shows the relative importance of a quality attribute
compare to the others at assessing time.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

mw

w
w

W
...
2

1

Hence, within the BipRyt operations, each normalised value
of each quality for the agents is multiplied by the corre-
sponding quality value. The new values of quality attributes
are added together for each agent. The sum shows the dis-
tribution load of an agent.

∑
=

×
m

j
jji wqane

1
))((

Due to the fact that the distribution is calculated, based on
the priorities of the users and on the energy levels BipRyt
maximizes the opportunity for a system to conform to the
user’s desires or needs in terms of quality requirements.

It is important to note that AHP plays a core part in the
BipRyt algorithm. In fact, there are many advantages in inte-
grating AHP within the algorithm, many of which have
been discussed earlier. In summary, AHP is used for captur-
ing user requirements, particularly in terms of a multitude of
quality attributes, building a quality model, analyzing the
model and prioritizing the quality attributes, thus helping in
making decisions for the welfare of the system. In addition,
AHP instructions are automated and integrated into the De-
cider’s code base. Thus, the whole process from prioritizing
quality requirements to resource allocation can be automat-
ed and optimized.

3.4 Deployment

Having presented the different aspects of the decision-
making mechanism we move on to the deployment strategy.
As it can be seen in Figure 4 a traditional centralised solution
has been adopted at this point mainly because it exhibits
good decision making since it is capable of ‘seeing’ the glob-
al view of the entire system. Achieving a good decision-
making capability in terms of resource management, while
meeting a multitude of user requirements and QoS, is the
primary aim of this work. Therefore, the comparison is
made with other load balancing algorithms also in a central-
ised mode.

Once the suitability of the proposed algorithm and its
benefits in terms of decision-making is established, it will be
extended into a distributed strategy with multiple BipRyt
deciders. This will address the lack of scalability and fault
tolerance of the centralised approach. Still, with the low cost
of available hardware it is relatively straight forward to im-
plement hardware redundancy for the decider i.e. redun-
dant decider in either active / passive mode or active / ac-
tive mode which can improve the reliability of the system.

But, with distributed decision making and multiple de-
ciders, a cooperation strategy will have to be identified i.e.
are the deciders working cooperatively or non-
cooperatively. In a non-cooperative environment, individual
deciders act autonomously and make decisions regarding
their own user requirements and their own local resources
independently from other deciders and without considera-
tion of the decisions impact on the whole of system. In the
cooperatives case, each decider is responsible for its own
part of the resources and requirements, and is concerned
with making decisions in concert with the other deciders in
order to meet global system requirements.

4 THE ARCHITECTURE MODEL
In this section we explain the generic architectural model
that employs the BipRyt algorithm. BipRyt will manage
the behaviour of the system entities (for instance, the
software agents) and provides a generic decision making
mechanism. Signals (energy levels) from the software
agents (Perceivers) will be recorded by the Decider and
statistically evaluated. Figure 6 illustrates the generic,
abstract architecture and its various components.

 User Centric System Centric User Centric
 Broker Broker Broker

Fig. 6. Architectural Model of the BipRyt System

The architecture provides a detailed view of the sys-
tem which reflects the high level view shown in Figure 3,
i.e. the details of the functionality of the inner working of
the Decider as well as the external, to the Decider, com-
ponents. At the top level of the architecture are the exter-
nal components that feed information to the Decider
which includes 1) The Guideline Adviser, representing
the priority values per quality attributes (w), and Quality
Adviser representing the initial suggested qualities (q)
with both advisers representing user requirements in
terms of quality and priority that feed into the user cen-
tric broker of the Decider, and 2) Unaware Component
representing the Perceivers feeding into the system cen-
tric broker of the Decider. Internally, within the decider,
there are a number of different components some of
which are dealing with quality configuration and pro-
cessing user requirements while others such as System
Observer are processing the regular feed from the Per-
ceivers. Finally, at the low level of the architecture is the
External System, which receives the directives in the form
of Control Instructions, from the Decision Maker, which
can trigger a change in the external system behaviour.

 7

4.1 Processing User Requirements
At the top level the Guideline Adviser feeds the sug-

gested priority distribution values to the algorithm. The
suggested priorities are represented by a list of directives
from the Guideline Adviser reflecting its wishes and vi-
sion on how the algorithm should perform and what
quality attributes need to be preserved. This in essence
represents the priority values per quality attribute as de-
fined by the user requirements in the form of a table.

Internally, the Guideline Keeper is responsible for
keeping and maintaining the directives that were re-
ceived from the Guideline Adviser. Directives are fed to
the Keeper in the form of Suggested Priorities, which are
provided to any requesting part of the system through the
Priority Evaluator (PE). The purpose of the PE is to query
Suggested Priorities from the Guideline Keeper and to
evaluate them for correctness, completeness and validity.
The other function of the PE is to modify some or all
items in the Suggested Priorities list according to the de-
cisions made. After any potential correction, PE produces
an ultimate Priority list that is the resulting set of priori-
ties used to make final advices / decisions. It is also PE’s
responsibility to respond and supply the evaluation re-
sults to any requesting part of the system.

Quality Adviser, the second external entity, has the re-
sponsibility of feeding the system with the initial suggest-
ed qualities, which represent the Quality Advisers vision
of the system. Each item supplied by the Quality Adviser
may or may not be accompanied by Suggested Priorities
of the Guideline Advisors.

Internally, the Quality List Keeper is responsible for
keeping and maintaining Suggested Qualities list sup-
plied by the Quality Adviser. It is also the responsibility
of the Quality List Keeper to supply its list of Suggested
Qualities to any requesting part of the system through the
Quality List Evaluator (QLE). The purpose of the QLE is
to query the Suggested Quality list and to evaluate them
for correctness, completeness and validity. The QLE can
modify some or all items in the Suggested Quality list
according to its own observed values, respond and sup-
ply the evaluation results to any requesting part of the
system. Ultimate Quality Attributes are the resulting set
of qualities that the system uses to make its final advice,
derived from the Suggested Qualities.

In summary, user requirements are obtained through
AHP analysis, which is an integral part of the user centric
broker, as tasks arrive. As the identified qualities and pri-
orities are fed through the system, an implicit voting [52],
is deployed by the Quality List Evaluator, Priority List
Evaluator in consultation with the Statistical Analyzer.
Thus, tasks receive different priority levels in the alloca-
tion/scheduling processes with the aim of meeting both
user requirements and efficient utilization of the system.
Like other resource allocation decision-making mecha-
nisms, tasks are submitted through a queueing system.
The resource allocation policy is fundamentally based on
the weighted and ranked quality attributes associated
with the submitted tasks, and their priority values, and
the ranked hardware resources (please see section 4.3 for
further discussion).

4.2 Processing System Resources
At the top level is the Unaware Component, an exter-

nal entity, which belongs to a system that the algorithm is
making decisions for. Unaware Component responds to
requests regarding its current state in terms of energy
levels of quality attributes. Unaware components produce
Observation Value list of qualities and report their usage
to the system. Each item in the Observation Value list
may or may not be accompanied by an entry in the Sug-
gested Qualities provided by Quality Adviser.

Internally, the System Observer is the part of the sys-
tem with the purpose of accepting and requesting Ob-
served Values from one or more Unaware Components.
System Observer responds with its current list of items to
any request from internal components, and performs
normalisation of data gathered which allows operations
on balanced data, thus any further comparisons are per-
formed on equally scaled values. Then, the Normal Quali-
ty Values are supplied by the System Observer to any
component of the system that requests them and used for
further evaluation of external system behaviour.

Statistical Analyser, another internal part of the sys-
tem, requests Observation Values from System Observer
and performs statistical / historical analysis on the data
retrieved. Based on the results of such analysis, the Statis-
tical Analyser adjusts Observation Values in such a way
that they are better tuned to represent current (or future)
consumption of quality attributes, and provide such ob-
servations to any other part of the system. The Adjusted
Quality Values are derived by the Statistical Analyser
from Normal Quality Values representing the view of the
external system and are used for any further calculation
while making decision.

Then, the Entity Evaluator performs evaluation of the
behaviour of the external systems and makes the deci-
sions, which are used to control their behaviours. The
evaluation is carried out using ultimate Priorities, ulti-
mate Quality Attributes and Adjusted Quality Value list
as arguments. The alignment of the different visions of
the system, the combination, and interaction between the
different components are dictated by the BipRyt algo-
rithm inside the Entity Evaluator component.

Finally, the Decision Maker receives the evaluation re-
port from the Entity Evaluator. Then, it produces a list of
directives (Control Instructions) that are used to regulate
the behaviour of the external system.

4.3 Resource Allocation
 Resource management is based on the architectural
model (Figure 6). Requests for resources, based on user
requirements and the target applications, are processed
and resources are allocated. A target application is con-
sidered as a set of independent tasks, {Task1, Task2...
Taskn} each with a set of Requirements {R1, R2... Rn}, and
prioritized Quality attributes {Q1, Q2... Qm}, represented
by a sequence of requests for Resources {RS1, RS2... RSn}
(Figure 7). The Decider allocates tasks to resources, but if
it is unable to allocate the target resource the tasks are put
in a queue based on the prioritization list.

The resource allocation steps are as follow:

1. Identify and process the high-level user requirements
in terms of quality attributes, together with their pri-
ority distribution.

2. Identify and gather system energy levels (CPU time,
memory, bandwidth etc.).

3. Construct the matrices described earlier, including
the Energy Matrix and the AHP weight of quality at-
tributes.

4. Create distribution entries using the statistical analy-
sis of current and historical data.

5. Map the quality attributes from the requirements to
the resources by the Decider, using the priority en-
tries, and allocate tasks to available resources.

6. Check continuously for available resources or any
resources that are about to saturate. If resources are
about to saturate reallocated tasks accordingly.

Fig. 7. A Matching Mechanism

Resource management is based on dynamic load balanc-
ing using various aspects of real-time (current) and his-
torical statistical analysis, which produces a ranking of
the available resources and their capacities (energy lev-
els). In addition, using AHP quality attributes are priori-
tized and ranked. Resources that have a better balance,
for example with minimum capacities that meet user
quality requirements receive the corresponding propor-
tion of the tasks. Apart from the ranking based schedul-
ing mechanism a default scheduling policy FCFS (first
come first serve) is deployed for example for similar rank-
ing. Thus, decision making and scheduling take into ac-
count the multi-objective requirements, therefore creating
a matching mechanism for a balanced tasks allocation
that is both user and system centric. As shown in Figure 7
the scheduling table contains information relating to both
resources and requirements, categorized by their QoS
analysis and resource management, which is based on the
weighted calculation of the QoS that determines the type
of resources to be matched with specific tasks.

4.4 Decision Making Processes
A state chart diagram describing a life cycle sample of

the decision-making processes is depicted in Figure 8. At
the initial stage, the Decider is idle and waits for activation.
When activated, the Decider broadcasts a request, as a que-
ry, to each Perceiver, which in return sends back a list of
energy levels of a software agent. This process requires a
Perceiver to take a number of energy levels, from the indica-
tor reading of the gauge and push them in a list for each
quality attribute per software agent. The energy levels,
measureable parts, can be used to build and populate the
configurable energy matrix which is then normalised, fol-
lowed by the application of AHP thus reflecting user priori-
ties. Distribution entries, using statistical analysis of current
and historical data, are then created for the resource alloca-
tions and sent to individual agents. The information sent by
the Perceivers is essential for helping the Decider in making
decisions regarding resource allocations. The process is re-
peated at regular interval and is driven by user require-
ments.

Fig. 8. Overview of decision-making processes

5 EXPERIMENTS
At the core of decision making in distributed system
management are the scheduling algorithms used by load
balancers to determine load allocation and distribution.
These range from simple algorithms such as Round Robin
and random choice to more sophisticated load balancers
that take into account additional factors such as response
times and the number of active connections. The primary
aim of the experiments is to evaluate BipRyt and compare
it with other decision-making mechanisms.

Round Robin is an even request distribution algorithm
and the basic principle behind it is to distribute the re-
quest forwards (not the load) evenly. On the other hand
the Response Time algorithm uses the system parameters
to determine the load distribution. The Least Connection
algorithm maintains a list of active connections (or re-
quests) at any given time to each receiver. Any sub-

	 	
Idle

Wait for activation

Build Distribution
Entry per agent

	

Idle
Wait for next activation
	

Command
Send distribution

	

AHP Reference
Map AHP priority
	

Normalise Matrix
Normalise by quality
	

Repeat
for all
agents

time

data received

matrix built

Build Matrix
Fill quality elements
	

No response Denied
Log exception

	

Query
Energy level request

 9

sequential requests are being sent to a receiver that has
the least amount of active requests/connections. Howev-
er, the above decision making mechanisms are mainly
based on a single criteria, therefore it is important to also
compare BipRyt with multi-criteria mechanisms such as
the Utility Model proposed in [16], [17].

The experiments are structured by order of 1) testing
the adaptability of the BipRyt algorithm to the AHP trend
2) comparing the AHP trend adaptability of other load
balancing algorithms, and 3) testing how BipRyt adapts to
system capacity against the four algorithms. In all the
experiments data packet in the form of externally gener-
ated message load is selected for the evaluation because it
is 1) very dynamic to implement, 2) simple and fast to
build historical data, 3) simple to build data analysis
model for the evaluation, and 4) and it can be manipulat-
ed to fix its intended usage purposes, i.e. it is a controlled
environment.

5.1 Experiment 1: Adaptability to AHP Trend

Since BipRyt uses an AHP model, that represents the
user’s quality expectations, to control the behaviour of an
observed system, the aim of the first test is to verify if
BipRyt follows the trend of the AHP configuration (set-
tings), when making decision for a system. The configura-
tion is defined by the user requirements from which the
priorities of the quality attributes are derived.

 The assumptions made for this experiment were that
1) the AHP has three quality attributes which are the
number of messages per second representing throughput
(Q1), the response time (Q2) and the CPU processing load
(Q3); 2) the user requirements defines the priority level; 3)
the overall system has 11 nodes 4) each node has three
quality containers for each quality attribute mentioned
above; 5) each container have three thresholds which cor-
respond to the HRA, MRA, LRA (see section 3.1). There is
an indicator mark that fluctuates across the areas illustrat-
ing how much energy a particular node has to spend for
the specific quality. This means that the more hits to the
high-risk area for a given quality attribute, the less capa-
ble the system is to preserve the concerned attribute.

Fig. 9. AHP Configuration 1

In this experiment AHP is used to calculate the quality
priority values (Normalized Weight in Figure 9), with the
obtained values are Q1 = 0.6, Q2 = 0.2, Q3 = 0.2 (see sec-
tions 2.2 and 3.3). The system is then exercised for this
particular configuration, and we refer to this as configura-
tion 1. After a run of 175650 messages received by the
system, the quality priority of the AHP was changed to a

new configuration, configuration 2 (Figure 10).
The new obtained values are Q1 = 0.2, Q2 = 0.6, Q3 =

0.2, and the system was exercised again for another run of
175650 incoming messages. As mentioned earlier (section
2.2), the applied AHP process, which is based on user
requirements and priorities, provides a Consistency Index
(CI) and a Consistency Ratio (CR) to validate the con-
sistency of the AHP results. The rule dictates that CI has
to be below 15% and CR below 10% for the AHP to be
truthful, which is the case for both configuration 1 and
configuration 2 with λmax = 3.

Fig. 10. AHP Configuration 2

As the reader can see, the test was dichotomised into
two configuration setups, and for each of them, we exam-
ine the distribution of the mark of each quality attribute
of each node across the 3 areas of risks. We observed that
for configuration 1, where Q1 is of highest priority, the
number of HRA hits for Q1, using BipRyt algorithm, is
kept to 161 hits over 175650 messages resulting to a per-
centage yield of 0.091%, which is very small. Further-
more, when the BipRyt algorithm was exercised for con-
figuration 2, where Q2 is of highest priority, we observe
that the number of HRA hits for Q2 is kept to 182 hits
over 175650 messaged resulting to a percentage yield of
0.10%, (see Figure 11).

Fig. 11. BipRyt Adaptability to AHP Trend

The same setup was used to test the adaptability of Re-
sponse Time algorithm to the AHP trend on both configu-
rations 1 and 2, (Figure 12). The results show that the Re-
sponse Time algorithm preserves the quality attribute Q2,
response time, regardless of the AHP quality priority. For
instance in the setup of configuration 1, Q1 has highest
priority, yet the algorithm still preserves Q2.

Fig. 12. Response Time Adaptability to AHP Trend

The same setup was used to test the adaptability of
Least Connections algorithm to the AHP trend on both
configurations 1 and 2, (see Figure 13). Since the Least
Connections algorithm does not directly depend on the
three quality attributes chosen for the experiments, the al-
gorithm does not adapt to the AHP trend.

Fig. 13. Least Connections Adaptability to AHP Trend

In order to make some baseline comparison a test was
carried out using Round Robin. Only configuration 1 was
used since the algorithm, due to its nature, does not de-
pend on the chosen quality attributes.

Fig. 14. Round Robin Adaptability to AHP Trend

As shown in Figure 14 the number of hits to the HRA
has considerably increased with Round Robin, for example
the number of HRA hits for Q1 is kept to 50744 hits over
175650 messages resulting to a percentage yield of around
29%, which is almost 1/3 of the message population.

Finally, the same setup was used to test the adaptability
of the multi-criteria Utility Model [16], [17] to the AHP
trend on both configurations 1 and 2, (see Figure 15). Since

the Utility Model algorithm focuses on maximizing global
system utilization, while meeting the minimum needs of
user requirements, the algorithm behaviour is similar, to a
certain extent, to Response Time; however, it adapts better
to Q1 but worse to Q2. Overall, it does adapt only partially
to the AHP trend.

Fig. 15. Utility Model Adaptability to AHP Trend

Overall the results show that BipRyt adapts better to
AHP trends than the other algorithms. However, since the
Response Time algorithm was designed specifically to op-
erate on response time (Q2) it preserves Q2 better than the
BipRyt algorithm for configuration 2 where Q2 is of highest
priority. In fact, BipRyt with configuration Q1=0, Q2=1,
Q3=0, behaves in a similar way to Response time. Moreo-
ver, Response Time’s overall number of hits is still much
lower than that of Round Robin, since response time (Q2)
does positively influence the other quality attributes, for
example it does indirectly reflect CPU time due to the fact
that if a given node responds faster to a request, this means
that the CPU load is lower.

Using Least Connections the distribution of the HRA
hits resembles the Round Robin, but in a lower order of
magnitude. The reason for lower hits is again, due to the
fact that Least Connections may also influence attributes
such as CPU time and response time, but not always. For
example, when the load is distributed based on least con-
nections, the next requests are forwarded to the node with
the least connections, hence less messages are being pro-
cessed on that node, preserving CPU time. As a result, the
number of HRA hits for CPU time is reduced.

While the Utility Model follows to a certain degree the
Response time, it is better than Response time at meeting
overall criteria. But, BipRyt still adapt better than the Utili-
ty Model to user requirements and AHP trend in both con-
figuration 1 and 2. In summary, the BipRyt algorithm max-
imises the opportunity for a system to conform to the user’s
priorities for example in the first configuration Q1, which
has the highest priority, has the best percentage yield.
However, this changes in configuration 2 when Q2 has
the highest priority and the best yield. It is clear that simi-
lar results will be achieved if we deploy another configu-
ration Q1 = 0.2, Q2 = 0.2, Q3 = 0.6, with now Q3 yielding
the best result this time.

 11

5.2 Experiment 2: Adaptability to the Capacity of
Infrastructure

The aim of this experiment is to check the overall adapta-
bility of BipRyt, Response Time, Least Connections,
Round Robin load and the Utility Model balancing algo-
rithms to the Capacity of the Infrastructure, and to ana-
lyze how each of them distributes the load with heteroge-
neous nodes capacities. To achieve this we designed 11
queues, with different configurations and different capac-
ities (Table 3). Each queue has different buffer size, which
represents the memory capacity of the node. We incorpo-
rated a processing function to emulate latency within the
logic of each queue, which is triggered when a message is
loaded into the buffer. We also simulated input/output
by defining write requests to a mySQL database when a
message is being processed, and we deployed the queue
applications on 11 nodes.

Nodes
Queue
System

Buffer
Size

0 S0Q0 940000
1 S1Q1 860000
2 S2Q2 780000
3 S3Q3 600000
4 S4Q4 520000
5 S5Q5 470000
6 S6Q6 360000
7 S7Q7 220000
8 S8Q8 110000
9 S9Q9 90000

10 S10Q10 80000
Table 3: System Configuration

As before we started by obtaining the quality priority
from the AHP. So in the experiment we have 3 quality
attributes, which are CPU Time (Q1), memory usage (Q2)
and number of database I/O (Q3). The obtained quality
priorities are Q1 = 0.3, Q2 = 0.6 and Q3 = 0.1, and provi-
sioned the BipRyt algorithm.

Firstly, the system runs whilst the maximum buffer
capacity of individual queues per nodes is adjusted until
there is no hit to the high-risk area of the quality contain-
er, given a fix number of messages per second. Next, we
performed the calibration of the system overall capacity
by adding the individual load capacity together. Having
calibrated the nodes capacities, the system runs for 10
minutes starting with the BipRyt algorithm, then, Re-
sponse Time, Least Connections, Round Robin and finish-
ing with the Utility Model. At the end of each run, the
number of hits to the high-risk areas for the quality at-
tributes and buffer population, which defines the
memory available, or message load for each node are rec-
orded. In all the experiments the maximum capacity of
memory and the actual distribution of messages are rep-
resented by the normalized values of the proportion of
buffer sizes and number of messages in relation to their
total aggregated values.

When the system was exercised with the BipRyt algo-
rithm, in 10 minutes, 464038 messages were distributed to

the nodes. As it can be observed in Figure 16, BipRyt intel-
ligently balances the incoming load as per maximum capa-
bility of the nodes. The actual distribution follows the trend
of the node capacity, implying that the system is efficient
with negligible number of node message starvation and
little packet loss. Packet loss is reached when the number
of message sent to a node is greater than the buffer size of a
given queue.

Fig. 16. BipRyt Distribution vs. System Capacity

When the system was exercised with the Response Time
algorithm, in 10 minutes, 1494335 messages were distribut-
ed to the nodes. The graph in Figure 17 shows that the Re-
sponse Time algorithm does attempt to follow the trend of
the nodes’ maximum capacities. However, the difference
between the nodes’ maximum capabilities and the actual
distribution of Response Time is still a bit larger than the
difference of the BipRyt algorithm, meaning that there is
still more occurrences of message starvation and packet
loss. This is because the BipRyt algorithm directly pre-
serves the message load in terms of the quality attribute
memory available. Whereas the Response Time algorithm
indirectly preserves the message load by managing the
quality attribute response time which indirectly influences
the quality attribute memory usage.

Fig. 17. Response Time Distribution vs. System Capacity

When the system was exercised with the Least Connec-
tions algorithm, in 10 minutes, 1583827 messages were dis-
tributed to the nodes. The graph in Figure 18 shows that
the trend of the actual distribution for the Least Connec-
tions does not follow the trend of the nodes’ maximum
capacities. This is because Least Connections is not directly
influenced by the three quality attributes defined for this
experiment. Unlike Response Time, Least Connections has
little impact on memory usage and CPU Time. Indeed
Least Connections is not a good measure for CPU Time
and load, since one node may have 5 connections of 2 meg-
abytes each and a second one, having 2 connections of 20
megabytes load each and due to the fact that the algorithm

base its decision on the number of connections rather than
load per connections, it does not provide a good measure
on the quality attributes CPU load or memory usage.
Hence the Least Connections failed to adapt its distribution
of message to the maximum capabilities of the nodes, but
still provides a better solution than Round Robin.

Fig. 18. Least Connections Distribution vs. System Capacity

As Figure 19 illustrates, due to its simplistic nature, the
Round Robin algorithm distributes the load uniformly re-
gardless to the quality attributes and the maximum capaci-
ties of the nodes. So at some point in time, Round Robin
will starve some the nodes with highest capacity and over-
load the weakest. In such an environment, wherein nodes
have different load capacities, Round Robin is very ineffi-
cient especially for packet loss. In 10 minutes, with Round
Robin, 1698771 messages were distributed to the nodes but
many of the packets where rejected by the low performing
nodes.

Fig. 19. Round Robin Distribution vs. System Capacity

Finally, the same setup was used to check the overall
adaptability of the multi-criteria Utility Model to the Ca-
pacity of the Infrastructure. As shown in Figure 20 the Util-
ity Model follows the system capacity trends, however, it is
still less adaptable than BipRyt, which has lower message
rejection and node starvation.

Fig. 20. The Utility Model Distribution vs. System Capacity

A number of further experiments were carried out to
evaluate and compare the performance of the different
algorithms starting with Figure 21 showing the number of
messages per second, representing throughput, that were
dispatched by the different load balancers. This shows
clearly that Round Robin (RR) has the highest rate, since it
has the least overheads due to its simplicity, followed by
Least Connections (LC), Response time (RT), Utility Model
(UM) and BipRyt (BR).

Fig. 21. Dispatching rate of the five algorithms

However, message rejection rates also follow the same
order i.e. Round Robin has the highest rejection rate and
BipRyt the lowest (Figure 22). Clearly, similar results can
be obtained when node starvation rate is considered.

Fig. 22. Rejected messages rate of the five algorithms

Moreover, in order to evaluate the true cost associated
with each of the algorithms rejected messages have to be
taken into account and processed. Thus, in the next exper-
iment the algorithms are evaluated with rejected messages
returning back to the load balancer buffer queue for pro-
cessing (Figure 23). This shows that, despite the additional
processing time noted in Figure 21, when rejection rate is
taken into account BipRyt shows the best performance fol-
lowed by the Utility Model, Response Time, Least Connec-
tions and Round Robin. This reflects the benefits of the
algorithm particularly in heterogeneous environment.

Fig. 23. Processing rate of the five algorithms

 13

6 CONCLUSIONS
This paper presented a multi-criteria decision making
mechanism, which has been designed for the manage-
ment, distribution and optimization of systems resources.
The novelty of the BipRyt algorithm lies in the ability to
use a quality model based on a multitude of quality re-
quirements. The algorithm was incorporated into a gener-
ic architecture, which can be integrated into any load bal-
ancer or scheduler components for distributed systems.

Moreover, during the design and implementation of
the BipRyt algorithm, we observed that techniques such
as the Analytical Hierarchy Process provide instructions
that can be automated through a sequence of actions.
Hence, the mechanism has been constructed to represent
both run time quality assurance and dynamic quality en-
forcer. BipRyt takes into account the user’s perspective of
the quality model, and ensures the system follows the
quality trend of the user. Thus, it preserves the quality
attributes while avoiding nodes overloading or starvation.

To validate the functionality of BipRyt in enforcing a
defined quality model, we presented a case study that
implements this algorithm as a decision-making mecha-
nism. We tested BipRyt against the Round Robin, Re-
sponse Time, Least Connections and Utility Model strate-
gies. The results showed that BipRyt efficiently distribut-
ed the workload especially in heterogeneous network,
with different capability nodes. However, the use of mul-
tiple deciders and the impact of larger and potentially
conflicting quality requirements in non-controlled envi-
ronments will be considered in future work.

REFERENCES
[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,

“Cloud Computing and Emerging IT Platforms: Vision, Hype,
and Reality for Delivering Computing as the 5th Utility”, Future
Generation Computer Systems, vol. 25, no. 6, pp. 599-616, 2009.

[2] T. Rings, G. Caryer, J. Gallop, J. Grabowski, T. Kovacikova, S.
Schulz and I. Stokes-Rees, “Grid and Cloud Computing: Op-
portunities for Integration with the Next Generation Network”,
J Grid Computing, vol. 7, no. 3, pp. 1572-9814, 2009.

[3] M. Armbrust, “Above the Clouds: A Berkeley View of Cloud
Computing”, Tech. Rep. UCB/EECS-2009-28, EECS Depart-
ment, U.C. Berkeley, 2009.

[4] Thomas Erl, “Service-Oriented Architecture: Concepts, Technology,
and Design”, Prentice Hall, NJ, USA, 2005

[5] Josuttis, N M., “SOA in Practice”, O’Reilly. 2007
[6] G. Horgan and S. Khaddaj, "Use of an Adaptable Quality Model

in a Production Support Environment", Systems and Software,
vol. 82, pp. 730–738, 2009.

[7] S. Khaddaj, "Quality of Service Issues in Distributed Compo-
nent Based Environments", Algorithms and Computational Tech-
nology, vol. 4, pp. 523-531, 2010.

[8] S. Khaddaj and G. Horgan, "The Evaluation of Software Quality
Factors in Very Large Information Systems", E-Journal of Infor-
mation Systems Evaluation, vol. 7, pp. 43-48, 2004.

[9] S. Khaddaj and H Nguyen, "Cloud Computing: The Management
of Service Level Agreements", SEEC’1010, pp. 24-31, 2010.

[10] V. Stantchev and C. Schröpfer, “Negotiating and Enforcing QoS
and SLAs in Grid and Cloud Computing”, GPC, pp. 25-35, 2009.

[11] Z. Wu, X. Liu, Z. Ni, D. Yuan and Y. Yang, “A market-oriented
hierarchical scheduling strategy in cloud workflow systems”,
The Journal of Supercomputing, Springer 2011.

[12] B. Q. Cao, B. Li and Q. M. Xia, “A Service-Oriented QoS-
Assured and Multi-Agent Cloud Computing Architecture”
Cloud Computing, Springer Berlin / Heidelberg, 2009.

[13] J. Al-Ali, A. Hafid, F. Rana and W. Walker, “QoS Adaptation in
Service Oriented Grids”, International Workshop on Middleware
for Grid Computing at ACM/IFIP Middleware, 2003.

[14] D. A. Menascé, H. Ruan and H. Gomaa, “QoS Management in
Service-Oriented Architectures”, Performance Evaluation, vol. 64,
no. 7–8, pp. 646–663, Elsevier Science Publishers, 2007.

[15] H Nguyen and S. Khaddaj, "A QoS Based Load Balancing Frame-
work for Large Scale Elastic Distributed Systems”, DCABES’11, pp.
135 – 140, IEEE Computer Society, 2011.

[16] C. Li and L. Li, “Utility-Based QoS Optimisation Strategy for
Multi-Criteria Scheduling on the Grid”, Journal of Parallel and
Distributed Computing, vol. 67, pp. 142-153, 2007.

[17] G. Tang, H. Li, and S. Yao, “The Multi-dimensional QoS Resources
Optimization Based on the Grid Banking Model”, HPCA 2009, pp.
369–376, Springer, 2010.

[18] R. Buyya, “High Performance Cluster Computing: Architectures and
Systems, Volume 1”, Prentice Hill PTR, 1999.

[19] B. A. Shirazi, et al., “Scheduling and Load Balancing in Parallel and
Distributed Systems” Wiley-IEEE Computer Society Press, 1995.

[20] J. Westbrook, "Load Balancing for Response Time", Annual Euro-
pean Symposium on Algorithms, pp. 355-368, 1995.

[21] F. Dong and S. G. Akl, “Scheduling Algorithms for Grid Compu-
ting: State of the Art and Open Problems”, Technical Report No.
2006-504, Queen’s University, Canada, 2006.

[22] T. Casavant, and J. Kuhl, “A Taxonomy of Scheduling in Gen-
eral-purpose Distributed Computing Systems”, IEEE Transac-
tions on Software Engineering, vol. 14, no. 2, pp.141-154, 1988.

[23] C. Xu and F. C.M. Lau, “Load Balancing in Parallel Computers:
Theory and Practice”, Springer, 1997.

[24] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
“Virtual Infrastructure Management in Private and Hybrid
Clouds “, IEEE Internet Computing, vol. 13, pp. 14 – 22, 2009.

[25] M. Randles, et al., “A Comparative Study into Distributed Load
Balancing Algorithms for Cloud Computing”, Advanced Infor-
mation Networking and Applications, pp. 551-556, 2010.

[26] A. Singh, M. Korupolu, and D. Mohapatra, “Server-storage virtu-
alization: integration and load balancing in data centers”,
ACM/IEEE conference on Supercomputing, 2008.

[27] Y. Fang, F. Wang, and J. Ge, “A Task Scheduling Algorithm Based
on Load Balancing in Cloud Computing”, Web Information Sys-
tems and Mining, Lecture Notes in Computer Science, vol.
6318, pp. 271-277, Springer, 2010.

[28] N. Haider, S. Khaddaj, M. Wilby, and D. Vvedensky, “Parallel
Monte Carlo Simulations of Epitaxial Growth”, Computers in
Physics, vol. 9, no. 1, pp. 85-96. 1995.

[29] B. Mrohs, “OWL-SF – A Distributed Semantic Service Framework”,
Proceedings of the Workshop on Context Awareness for Proac-
tive Systems, pp. 67-79, HIIT Publication, 2005.

[30] I. Foster, Y. Zhao, I. Raicu and S. Lu, “Cloud Computing and Grid
Computing 360-Degree Compared”, GCE 08, USA, 2008.

[31] M. Gabbrielli, “Programming Languages: Principles and Para-
digms”, Springer, 2010.

[32] M. V. Zelkowitz, “Advances in Computers: New Programming
Paradigms”, Academic Press, 2005.

[33] H.J. Braun et al., “A Comparison of Eleven Static Heuristics for
Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems”, Journal of Parallel and Distrib-
uted Computing, vol. 61, no. 6, pp.810–837, 2001.

[34] M.H. Willebeek-LeMair, “Strategies for Dynamic Load Balanc-
ing on Highly Parallel Computers”, IEEE Transactions on Parallel
and Distributed Systems, vol. 4, no. 9, pp. 979 – 993, 1993.

[35] M, Arora, S.K. Das and R. Biswas, “A Decentralized Scheduling
and Load Balancing Algorithm for Heterogeneous Grid Environ-
ments”, ICPPW'02, pp. 499–505, Vancouver, Canada, 2002,

[36] G. Sabin, et al., “Scheduling of Parallel Jobs in a Heterogeneous
Multi-Site Environment”, 9th International Workshop on Job
Scheduling Strategies for Parallel Processing, USA, 2003.

[37] S.Y. You, H.Y. Kim, D. H. Hwang and S. C. Kim, “Task Schedul-
ing Algorithm in GRID Considering Heterogeneous Environment”,
PDPTA '04, pp. 240-245, Nevada, USA, 2004.

[38] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load
sharing in homogeneous distributed systems,” IEEE Transaction
of Software Engineering, vol. 12, no. 5, pp. 662-675, 1986.

[39] A. M. Alakeel, “A Guide to dynamic Load balancing in Distrib-
uted Computer Systems”, International Journal of Computer Sci-
ence and Network Security, vol. 10, no. 6, pp. 153-160, 2010.

[40] M. Zaki, W. Li, and S. Parthasarathy, “Customized dynamic
load balancing for a network of workstations”, Journal of Parallel
and Distributed Computing, 1997.

[41] T. Kunz, “The Influence of Different Workload Descriptions on
a Heuristic Load Balancing Scheme,” IEEE Transactions on Soft-
ware Engineering, vol. 17, no. 7, pp. 725-730, 1991.

[42] J. Cao, et al. “A framework of using cooperating mobile agents
to achieve load sharing in distributed web server groups”, Fu-
ture Generation Computer Systems, vol. 20, pp. 591-603, 2004.

[43] D. Grosu and A. T. Chronopoulos, “Noncooperative Load Bal-
ancing in Distributed Systems”, Journal of Parallel and Distributed
Computing, vol. 65, no. 9, pp. 1022-1034, 2005.

[44] A. Y. Zomaya, and Y. The, “Observations on using genetic algo-
rithms for dynamic load-balancing,” IEEE Transaction on Parallel
and Distributed Systems, vol. 12, no. 9, pp. 899-911, 2001.

[45] D. Ong and S. Khaddaj, “Intelligent framework for the management
of distributed architectures”, SEAI/NPDC 2010, CPS Publishing,
London, U.K, 2010.

[46] Y. C. Lee and A. Y. Zomaya, “Energy Conscious Scheduling for
Distributed Computing Systems under Different Operating
Conditions”, IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 22, no. 8, pp 1374 – 1381, 2011.

[47] V. Stantev, “Effects of Replication on Web Service Performance
in WebSphere”, International Computer Science Institute,
Berkeley, California, 2008.

[48] R, Cakubescu et al., “Dynamic QoS Management and Optimi-
zation in Service-Based Systems”, IEEE Transactions on Software
Engineering, vol. 37, no. 3, pp 387-409, 2011.

[49] D. Adagna and B Pernici, “Adaptive Service Composition in
Flexible Processes”, IEEE Transactions on Software Engineering,
vol. 33, no. 6, pp 369-384, 2007.

[50] W. Ma, L. Liu, H. Xie, H. Zhang and J. Yin, “Preference Model
Driven Services Selection”, Advanced Information Systems Engi-
neering, vol. 5565, pp. 216-230, Springer, 2009.

[51] H. Xie, L. Liu L and J. Yang, “i*-prefer: Optimizing Requirements
Elicitation Process Based on Actor Preferences”, SAC '09 Proceed-
ings of the 2009 ACM symposium on Applied Computing, pp.
347-354. ACM, 2009.

[52] A. Streit, “Evaluation of an Unfair Decider Mechanism for the Self-
Tuning dynP Job Scheduler”, IPDPS’04, 2004.

[53] T.L. Saaty, “The Analytic Hierarchy Process”, McGraw-Hill, 1980.
[54] J. Karlsson, “Software Requirements Prioritizing”, ICRE'96,

IEEE Computer Society, pp. 110-116, USA, 1996.
[55] E. H. Forman and S. I. Gass, “The Analytic Hierarchy Process:

An Exposition”, Operations Research, vol. 49, pp. 469-486, 2001.
[56] R. Buyya, “Economic Models for Resource Management and

Scheduling in Grid Computing”, Concurrency and Computation,
vol. 14, 1507–1542, 2002.

[57] M. Maurer et al., “Revealing the MAPE Loop for the Autonomic
Management of Cloud Infrastructures”, IEEE Symposium on
Computers and Communications, pp. 147-152, 2011.

[58] N. Bansal, A. Awasthi and S. Bansal, “Task Scheduling Algo-
rithms with Multiple Factor in Cloud Computing Environ-
ment”, Advances in Intelligent Systems and Computing, Vol. 433,
pp 619-627, 2016.

[59] M. Masdari, et al. “Towards Workflow Scheduling in Cloud
Computing: A Comprehensive Analysis”, Journal of Network and
Computer Applications, Vol. 66, pp. 64–82, 2016.

[60] S. Singh and I Chana, “A Survey on Resource Scheduling in
Cloud Computing: Issues and Challenges”, Journal of Grid Com-
puting, vol. 14, no 2, pp. 217-264, 2016.

[61] A. Abdelmaboud, et al., “Quality of Service Approaches in
Cloud Computing: A Systematic Mapping Study”, Journal of
Systems and Software, Vol. 101, pp. 159–179, 2015.

[62] C. Tse-Shih, et al. "Platform-as-a-Service Architecture for Parallel
Video Analysis in Clouds" Advances in Intelligent Systems and
Applications, vol. 2, pp. 619-626, Springer, 2013.

[63] C. Bunch, et al., “A Pluggable Autoscaling Service for Open Cloud
PaaS Systems”, UCC ‘12, pp. 191 – 194, IEEE, 2012.

[64] M. Boniface, et al., “Platform-as-a-Service Architecture for Real-
Time Quality of Service Management in Clouds”, International
Conference on Internet and Web Applications and Services, pp.
155 – 160, IEEE Publication, 2010.

Souheil Khaddaj is a Professor of Computer Science at the School of
Computer Science and Mathematics, Kingston University - London,
where he leads the Component & Distributed Systems Research
Group (CODIS). He completed his PhD at the Centre of Parallel
Computing, Queen Mary College. His research interests include
distributed computing, service orientation and big data. He has been
involved in the development of novel technologies for numerous
scientific and business applications. His research interests also in-
clude advanced software engineering techniques and quality assur-
ance. Professor Khaddaj has been involved in a large number of
national and international research projects and various industrial
partnerships. He also chaired many international conferences and he
has been a keynote speaker at numerous international events. Pro-
fessor Khaddaj has authored/co-authored over 200 technical papers
and he has also edited/co-edited a number of books and special
issues.

Bippin Makoond received his PhD from Kingston University. Cur-
rently he is the Managing Director and Founder of ZDLC Cognizant
Technology Solutions, who functions as the Global Innovation Lead
for the company's Banking and Financial Services practice. His re-
search interests include quality engineering and service oriented
distributed systems. He published many papers in Journals and
Conferences. He also holds 3 patents within the domain of Wireless
Distributed Systems and is a visiting scholar at Kingston University.

	Blank Page

