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Key Points:  

 New Upper Coniacian–Lower Campanian high-resolution carbon and oxygen-isotope 

records for the English Chalk 

 Astronomical calibration and global correlation of the Santonian stage 

 405 kyr insolation forcing of carbon-isotope variations via CaCO3 vs. Corg burial on land 

and in oceanic basins 

Abstract 

High-resolution records of bulk carbonate carbon-isotopes have been generated for the Upper 

Coniacian to Lower Campanian interval of the sections at Seaford Head (southern England) 

and Bottaccione (central Italy). An unambiguous stratigraphic correlation is presented for the 

base and top of the Santonian between the Boreal and Tethyan realms. Orbital forcing of 

carbon- and oxygen-isotopes at Seaford Head points to the Boreal Santonian spanning five 

405 kyr cycles (Sa1 to Sa5). Correlation of the Seaford Head time scale to that of the 

Niobrara Formation (Western Interior Basin) permits anchoring these records to the La2011 

astronomical solution at the Santonian–Campanian (Sa/Ca) boundary, which has been 

recently dated to 84.19±0.38 Ma. Among the five tuning options examined, option 2 places 

the Sa/Ca at the 84.2 Ma 405 kyr insolation minimum and appears as the most likely. This 

solution indicates that minima of the 405 kyr filtered output of the resistivity in the Niobrara 

Formation correlate to 405 kyr insolation minima in the astronomical solution and to maxima 

in the filtered δ
13

C of Seaford Head. We suggest that variance in δ
13

C is driven by climate 

forcing of the proportions of CaCO3 versus organic carbon burial on land and in oceanic 

basins. The astronomical calibration generates a 200 kyr mismatch of the Coniacian–

Santonian boundary age between the Boreal Realm in Europe and the Western Interior, due 

either to diachronism of the lowest occurrence of the inoceramid Cladoceramus 
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undulatoplicatus between the two regions, or to remaining uncertainties of radiometric dating 

and cyclostratigraphic records.  

 

Keywords: Santonian, carbon-isotope stratigraphy, cyclostratigraphy, astronomical 

calibration 

1. Introduction 

 

During the last 10 years, the Late Cretaceous timescale has been improved by 

integration of floating astronomical time scales (ATS), higher resolution biostratigraphic 

frameworks, high-resolution carbon-isotope stratigraphy and more accurate and precise 

radioisotopic dates [Jarvis et al., 2006; Batenburg et al., 2012; Meyers et al., 2012; Gradstein 

et al., 2012; Thibault et al., 2012a, b; Voigt et al., 2012; Sprovieri et al., 2013; Sageman et 

al., 2014]. A recent compilation of Laurin et al. [2015] proposed a new chronology for an 

Albian to Campanian carbon-isotope curve, supported by cyclostratigraphy and radioisotopic 

ages, which revealed the presence of a c. 1.1 myr long-term Milankovitch cycle. The most 

widely used Late Cretaceous δ
13

C reference curve is based on the English Chalk record, and 

this has proved to be a powerful tool for long-distance correlation [Jarvis et al., 2002, 2006, 

2015; Voigt et al., 2010, 2012]. However, the magnitude of post-Turonian carbon-isotope 

variance is relatively small, and therefore the resolution of the English Chalk δ
13

C curve still 

requires improvement and independent confirmation in other sections. Furthermore, there is a 

lack of direct orbital calibration of the English Chalk curve to the 405 kyr Milankovitch 

stable eccentricity target of Laskar (e.g. Laskar et al. [2011]).  
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Correlation problems have been exacerbated by the absence of agreed definitions of the 

Coniacian–Santonian and Santonian–Campanian Stage boundaries. The Coniacian–Santonian 

boundary has now been formalized, with a Global Boundary Stratotype Section and Point 

(GSSP) at Olazaguta, northern Spain [Lamolda et al., 2014]; the defining marker is the 

lowest occurrence of the inoceramid bivalve Cladoceramus undulatoplicatus (Römer), which 

occurs widely in the northern hemisphere. However, detailed correlation with deep-water 

Tethyan successions (which generally lack inoceramid bivalves), where the base of the 

Santonian is traditionally taken at the lowest occurrence of the planktic foraminifera 

Dicarinella asymmetrica (Sigal) [Premoli Silva and Sliter, 1994], is not currently possible. 

There is no formal agreement on either a marker or a type-locality for the Santonian–

Campanian boundary GSSP, for which a series of potential markers have been discussed 

[Birkelund et al., 1984; Gale et al., 1995, 2008], including the base of magnetochron 33R, the 

highest occurrence (HO) of the crinoid Marsupites, the lowest occurrence (LO) of the 

planktic foraminifera Globotruncanita elevata (Brotzen), and the LO of Dicarinella 

asymmetrica. 

The δ
13

C record plays an important role in the resolution of these debates, as both stage 

boundaries appear to exhibit positive excursions that constitute robust additional stratigraphic 

markers [Jarvis et al., 2002, 2006; Voigt et al., 2010]. Here, we present a correlation of new 

high-resolution carbon-isotope datasets through the Santonian and Lower Campanian of the 

Boreal (Seaford Head, England) and Tethyan (Gubbio, Italy) realms (Fig. 1, supplementary 

material), and provide the first attempt to calibrate the new Boreal Santonian δ
13

C curve to 

the recent Astronomical Time Scale (ATS) of the Niobrara Formation in the U.S. Western 

Interior Basin [Sageman et al., 2014]. This study brings new insights into the presence of 

condensed levels and potential hiatuses in existing European records, and provides evidence 
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of the position of the Santonian–Campanian boundary in the standard Tethyan magneto- and 

biostratigraphic record of Gubbio.  

 

2. Material and methods 

2.1. Study sections 

2.1.1. Seaford Head, East Sussex, England 

Seaford Head is situated on the East Sussex coast between Brighton and Eastbourne, and the 

cliff section exposes a continuous succession of soft, white nannofossil chalks of Coniacian 

to Campanian age, typical of this interval in the central Anglo-Paris Basin [Mortimore, 1986; 

Mortimore and Pomerol, 1987]. The whole succession is well dated by calcitic macrofossils 

[Mortimore, 1986] and by calcareous nannofossil and foraminifera biostratigraphy (mostly 

benthic, [Hampton et al., 2007]). Jenkyns et al. [1994] published the first bulk oxygen and 

carbon stable-isotope data for the Middle Santonian to Lower Campanian of the section. 

Jarvis et al. [2006] provided a new summary log for Seaford Head that is adopted here (Fig. 

2), and presented at higher resolution in Appendix 1. As previously described by Mortimore 

[1986], Jenkyns et al. [1994], Jarvis et al. [2006] and Hampton et al. [2007], the 

lithostratigraphy of the section is well established and includes a large number of 

characteristic regional named marker beds, mostly corresponding to marly chalk beds, 

distinctive flint layers and beds of fossils (Fig. 2, Appendix 1). The section was previously 

considered as a potential candidate GSSP for the Coniacian–Santonian and Santonian–

Campanian boundaries, and thus constitutes an excellent stratigraphic standard for the 

Santonian of NW Europe [Hancock and Gale, 1996; Lamolda and Hancock, 1996].  



 

 
© 2016 American Geophysical Union. All rights reserved. 

A new bulk carbonate carbon and oxygen stable-isotope record from 364 samples taken at 25 

cm intervals is presented here for the uppermost Coniacian to lowermost Campanian 

succession (91 m thick; 50.7610°N 0.1149°E – 50.7636°N 0.1108°E). 

 

2.1.2. Bottacione Gorge, Gubbio, Umbria, Italy 

The two classic sections of the Bottaccione Gorge and Contessa Highway near the 

medieval city of Gubbio (central Italy) constitute the standard reference for the Upper 

Cretaceous to Paleocene of the Tethys, thanks to their sequence of polarity magnetozones 

correlated to calcareous nannofossil and planktic foraminifer zonations. These sections have 

also been considered as potential stratotypes or reference sections for the definition of the 

Santonian–Campanian and Campanian–Maastrichtian boundaries [Monechi and Thierstein, 

1985; Gardin et al., 2001, 2012; Petrizzo et al., 2011].  

Sprovieri et al. [2013] and Coccioni and Premoli-Silva [2015] recently presented syntheses 

for the Upper Albian–Maastrichtian of the Gubbio succession, compiling planktonic 

foraminifera and calcareous nannofossil biostratigraphy, magnetostratigraphy and high-

resolution carbon-isotope stratigraphy. However, the published carbon-isotope records of the 

Santonian at Gubbio [Jenkyns et al., 1994; Sprovieri et al., 2013] still lack a sufficiently high 

resolution to permit unambiguous correlation of the uppermost Coniacian to lowermost 

Campanian carbon-isotope excursions to those recognized in NW Europe.  

In the present study, new bulk carbonate carbon-isotope records of the Upper Coniacian to 

Lower Campanian of the Bottaccione section have been generated, two along the road 

(43.3621°N 12.5825°E 571 m altitude) and one along the river. Our ‗Road‘ section records 

comprise two new data sets: a low-resolution set of 108 samples spanning the Middle 
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Coniacian – Upper Campanian (104 m thick section) supplied by Prof. Isabella Premoli Silva, 

collected at approximately 1 m intervals; and a high-resolution set of 78 samples taken every 

25 cm across the Santonian–Campanian boundary interval (19.25 m, thick). The new ‗River‘ 

section is located opposite the road section in the Bottaccione Gorge valley. The upper 

Coniacian to lowermost Campanian part of the succession is exposed along the valley wall 

(43.3626°N 12.5820°E – 43.3630°N 12.5824°E) and continues with a small gap of exposure 

in the creek for the higher Campanian part (43.3630°N 12.5826°E – 43.3635°N 12.5830°E). 

The River section data comprise 326 samples taken at 25-cm resolution through the Middle 

Coniacian–Upper Campanian (total thickness: 88.5 m), except for the interval between 226 

and 233 m, which was inaccessible. 

2.2. Stratigraphic revisions 

The macrofossil biostratigraphy of the Seaford Head section is revised here using our 

own records from the section, and is correlated at a bed scale to the lithostratigraphy (Fig. 2, 

Appendices 1 and 2). Calcareous nannofossil and foraminifer data have been derived from 

Hampton et al. [2007]. For Seaford Head and the other English sections discussed below, we 

use the modified North Sea UC nannofossil scheme of Fritsen [1999]. In this study, the 

adopted nomenclature for biostratigraphic events is the use of lowest occurrences (LO) and 

highest occurrences (HO) instead of the commonly used first and last occurrences, 

respectively. This is because this adopted nomenclature does not imply any notion of time 

and applies strictly to stratigraphic layers of particular sections or areas. Despite not being 

officially ratified by the International Commission on Stratigraphy, we adopted an upper case 

notation for Lower, Middle and Upper stage subdivisions of Late Cretaceous stages, 

following the style of the Geologic Time Scale 2012 (Gradstein et al., 2012) but also because 

such a notation gives room for further informal subdivisions (e.g. lower Lower, upper Lower, 
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etc.). For practical reasons, we did not follow the recommendations of Holden et al. (2011) 

and adopted a clear distinction between time (ka, Ma) and time span units (kyr, myr).    

Hampton et al. [2007] placed the base of UC14iii at Seaford Head at the HO of 

Cylindralithus crassus (Fig. 3), according to the scheme of Fritsen [1999]. The LO of 

Monomarginatus quaternarius situated 2 meters above the HO of C. crassus can be used as a 

marker for the base of UC15 sensu Burnett et al. [1998]. According to Burnett et al. [1998], 

the base of UC15 is defined by the LO of Misceomarginatus pleniporus, a rare species which 

is almost undistinguishable from M. quaternarius in moderately preserved material, and 

considered to be a possible synonym of the latter species. Burnett et al. [1998] regarded the 

LO of M. quaternarius as a secondary marker for the base of UC15, and it is recommended 

here as the best marker for the base of this zone in the Boreal realm, as this species is present 

in a large part of the Chalk sea: in England, in the Danish Basin and in North Germany 

[Schönfeld et al., 1996; Hampton et al., 2007; Thibault et al., 2012b; Fig. 3]. Accordingly, the 

LO of M. quaternarius at Trunch indicates the base of UC15 (Fig. 3). The definition of the 

base UC15 by the HO of Saepiovirgata biferula (a rare holococcolith species) used in the 

Fritsen [1999] scheme should rather be applied strictly to North Sea sites where M. 

quaternarius appears to be absent. 

The calcareous nannofossil zonation at Gubbio has been revised using the standard UC
TP

 

zonation of Burnett et al. [1998] for Tethyan and intermediate provinces, based on original 

data on biohorizons given in Monechi and Thierstein [1985], Gardin et al. [2001] and in the 

recent compilation of Coccioni and Premoli-Silva [2015]. For the Lägerdorf reference section 

in NW Germany [Schulz et al., 1984], discussed below, we applied the standard UC
BP

 

zonation of Burnett et al. [1998] for the Boreal Realm based on original data on biohorizons 

given in Schönfeld et al. [1996].  
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2.3. Methods 

2.3.1. Bulk oxygen and carbon stable isotopes 

At Seaford Head, samples of ~1 kg were collected during 2006 at 25 cm intervals 

through a 91 m thick section. Subsamples of around 50 g were crushed to < 3 mm chips in 

clean thick-walled plastic bags, using a metal plate and hammer. The chips were hand ground 

to a fine powder in an agate pestle and mortar. Carbon and oxygen stable-isotope analyses of 

the bulk carbonate fraction (δ
13

C, δ
18

O) in 250 μg of powdered samples were performed in 

the stable-isotope laboratory of the Department of Earth Sciences, Oxford University, using a 

VG Isogas Prism II mass spectrometer with an on-line VG Isocarb common acid bath 

preparation system. Samples were first cleaned using hydrogen peroxide and acetone and 

dried at 60°C for at least 30 minutes. In the instrument they were reacted with purified 

phosphoric acid at 90°C. Calibration to the Vienna Peedee belemnite (VPDB) standard via 

NBS-19 was made daily using the Oxford in-house (NOCZ) Carrara marble standard. Data 

are reported in delta (δ) notation as per mil (‰) relative to VPDB. Reproducibility of 

replicate standards was better than 0.1‰ for δ
13

C and δ
18

O. 

At Bottaccione, samples were collected along two sections, the Road and the River, during 

two different field campaigns. Uppermost Santonian to Lower Campanian strata of the road 

section were sampled at 25 cm spacing in 2008. The River section, which exposes the 

uppermost Coniacian to lowermost Upper Campanian, was sampled at 25 cm spacing in 2008 

and 2010. A complementary low-resolution set of Coniacian – Lower Campanian samples 

from Bottaccione Road, spaced at 1 m intervals, was kindly provided by Prof. Isabella 

Premoli Silva. Each sample for stable-isotope analysis was drilled from rock pieces with a 

hand-held drill bit (1 mm diameter) to avoid secondary calcite in microfractures and 

stylolites. Samples collected in 2008 along the Bottaccione Road and River sections were 
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analysed in the stable-isotope laboratory at Oxford University using the methods described 

above. Samples collected in 2010 and those provided by Prof. Premoli Silva were analysed in 

the stable-isotope laboratory at Frankfurt University. In Frankfurt, stable-isotope analyses of 

bulk carbonates were performed at a reaction temperature of 72°C using a Finnigan MAT 253 

with Gasbench. All isotope values are reported in ‰ VPDB. The reproducibility of repeated 

standard measurements was better than 0.07 ‰ and 0.02 ‰ for oxygen and carbon isotopes, 

respectively. 

2.3.2. Cyclostratigraphy 

The cyclostratigraphic analysis was performed on carbon- and oxygen-isotope 

variations in the depth and in the time domains after orbital tuning of the time-series. Prior to 

the spectral analysis, long-term trends of the δ
13

C signal were removed from the original 

signal using a piecewise linear interpolation of the time-series. This interpolation allows for a 

linear detrending on several portions of the time-series based on a least-square interpolation 

with break points defined at 8.75, 32.75, 50.75, 57.00 and 75.50 m, which correspond to 

maxima and minima of observed long-term trends (Fig. 4). Similar spectra were obtained 

when detrending long-term trends using different robust loess smoothing weighted averages 

over 40 to 60% of the total time-series, but the power of the identified frequencies were 

systematically higher and better expressed when detrending with the piecewise linear 

interpolation.  

Orbitally tuned time-series were reinterpolated at 5 kyr steps. Spectral analyses were 

performed using the Multi-Taper Method (MTM) with a red noise simulation from Schulz 

and Mudelsee [2002] developed for Matlab
TM

 by Husson et al. [2014]. The red noise 

simulation allows the estimation of confidence levels based on a Chi-square statistical test 

performed on the theoretical spectrum of the red noise. Chi2 confidence levels are based on 
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an AR1 autocorrelation model built on 1000 Monte Carlo simulations. An Average Spectral 

Misfit (ASM) method was tested on the δ
13

C for the 40.00 to 90.75 m interval where 

sedimentation rates were considered to be more stable (see Results, below).  

ASM is a robust inverse method from the Astrochron package [Meyers, 2014] allowing 

testing of the alignment and fit between observed spectral peaks of a sedimentary time-series 

and several target orbital frequencies from the Laskar astronomical solution [Laskar et al., 

2004], using a range of plausible sedimentation rates [Meyers and Sageman, 2007]. The ASM 

methodology allows identification of an optimal sedimentation rate, which minimizes the 

misfit between the observed frequencies of the sedimentary record and the orbital frequency 

targets. However, this method can only be tested on time-series with relatively constant 

sedimentation rates [Meyers and Sageman, 2007]. Significance levels for rejection of the null 

hypothesis of the ASM (no orbital signal) are estimated with Monte Carlo spectra simulations 

[Meyers et al., 2012].  

In addition, Evolutive Harmonic Analysis (EHA) was applied with a step of 5 kyr and a 

window of 500 kyr to the time-series tuned to the 405 kyr component using the script of 

Meyers et al. [2001] provided in the Astrochron package [Meyers, 2014]. In order to extract 

the potential cyclicities identified by the cyclostratigraphic analysis, we used Taner filters 

[Taner, 2000] for high-precision extraction of specific astronomical frequency targets.  
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3. Results 

3.1. Isotopic trends 

3.1.1. Seaford Head 

Major carbon isotopic events and medium-term trends through the Middle Coniacian 

to Lower Campanian at Seaford Head were described by Jarvis et al. [2006] based on the 

low-resolution bulk carbonate δ
13

C curve of Jenkyns et al. [1994] for the Middle Santonian–

Lower Campanian interval, plus lithostratigraphic correlation to other English sections. In the 

present study, the Seaford isotope curve has been extended down into the Middle Coniacian 

and its resolution significantly improved, but all isotopic excursions previously defined and 

correlated to the lithostratigraphy and macrofossil biostratigraphy remain essentially 

unchanged (Fig. 2, Jarvis et al. [2006]).  

Precise calcareous nannofossil and regional benthic foraminiferal biozonations were 

established at Seaford Head by Hampton et al. [2007], and these are shown with the revised 

macrofossil biostratigraphy, our new carbon-isotope curve and the carbon-isotope event 

(CIE) stratigraphy in Figure 2. Carbon-isotope values typically range between 2.0 and 2.6 ‰, 

with no clear long-term trend upwards. Small short-term (meter-scale) low-amplitude (0.2 

‰) peaks and troughs are superimposed on medium-term (decameter) higher amplitude (0.6 

‰) cycles.  

Prominent positive δ
13

C excursions associated with medium-term carbon-isotope maxima are 

the Kingsdown and Horseshoe Bay CIEs in the upper Middle Coniacian and upper Middle 

Santonian, and the double peak of the Santonian–Campanian Boundary Event (SCBE, Fig. 

2). Negative excursions associated with medium-term δ
13

C minima are the Haven Brow and 

Buckle CIEs in the lower Middle Santonian and basal Upper Santonian, respectively. Key 

macrofossil biostratigraphic datum levels include: the LO C. undulatoplicatus marking the 
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base of the Santonian, which occurs at the top of the Michel Dean positive CIE; the LO 

Uintacrinus socialis marking the base of the Upper Santonian, which is located a short 

distance below the δ
13

C minimum defining the Buckle CIE; and the HO Marsupites defining 

the base Campanian, which occurs at the top of the lower peak (a) of the SCBE doublet (Fig. 

2). 

3.1.2. Gubbio 

A thorough description of the Upper Albian–Lower Campanian carbon isotope curve 

of the Bottaccione reference section was provided by Sprovieri et al. [2013]. However, the 

new high-resolution records established here for the Tethyan Upper Coniacian to Lower 

Campanian of the Bottaccione River and Road sections call for a revision of Sprovieri et al.‘s 

[2013] interpretation of the isotopic events through this interval. In those authors‘ 

interpretation, the small 0.2 ‰ positive excursion correlated to the C33R/C33N boundary 

was interpreted as the Santonian–Campanian Boundary Event, whereas the long-term 0.4 ‰ 

positive excursion correlated with the C34N/C33R boundary was interpreted as the 

Horseshoe Bay CIE (Fig. 5). A similar erroneous correlation was proposed in Figure 14 of 

Jarvis et al. [2006] whereas Wendler [2013] proposed a correlation similar to our new 

interpretation. Those erroneous interpretations were due to insufficient resolution and high-

amplitude scatter (typically 0.3 – 0.5 ‰) in the Sprovieri et al. [2013] dataset, that prevented 

recognition of the true Horseshoe Bay Event within the top of C34N, immediately above the 

LO G. elevata (Fig. 5).  

Carbon-isotope values in the Bottaccione succession typically range between 2.2 and 2.8 ‰, 

with highest values at the base of the sections, in the Coniacian (Fig. 5). An offset of 0.1 ‰ 

in absolute values between the similarly shaped low- and high-resolution Bottaccione Road 

curves is attributed to a systematic inter-laboratory bias. Correlation of our Gubbio curves to 
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the Boreal Campanian reference section at Lägerdorf [Schulz et al., 1984; Schönfeld et al., 

1996; Voigt et al., 2010] is shown in Figure 5. Major Middle Coniacian–Lower Campanian 

CIEs from the Kingsdown to the SCBE can be confidently correlated between the two 

sections. For the higher Campanian, the key tie point is the positive δ
13

C excursion at the top 

of our low-resolution data set, which is equated to the Mid-Campanian CIE of Jarvis et al. 

[2002], based on its position immediately below the LO Radotruncana calcarata (Cushman). 

This interval is correlated with the well-defined δ
13

C peak in the lower basiplana/spiniger 

Zone at Lägerdorf. Above this level, the carbon-isotope profile begins a long-term fall (Fig. 

5), interpreted to represent the start of the falling trend that ultimately leads to a well-

developed negative excursion, the Late Campanian CIE, in the mid-Upper Campanian [Jarvis 

et al., 2002, 2006, 2008; Voigt et al., 2010]. 

The δ
13

C peak at the base of the Upper Campanian at Lägerdorf correlates with a more 

marked positive excursion at the same biostratigraphic level in the Trunch borehole 

succession of Norfolk, Eastern England [Jenkyns et al., 1994; Jarvis et al., 2002, 2006]. This 

peak was previous equated with the Mid-Campanian Event by Jarvis et al [2002]; the new 

data presented here from Bottaccione indicate that it is better correlated with a peak in the 

mid-C. plummerae Zone. The δ
13

C peak is differentiated here as the Trunch CIE, which is at 

the level of the Trunch Hardgrounds in the Norfolk section [Jarvis et al., 2006]. 

A well-developed peak of ~ 0.2 ‰, coincident with a medium-term δ
13

C maximum, occurs in 

the mid-Lower Campanian papillosa Zone at Lägerdorf and in the uppermost G. elevata Zone 

(Chron 33R/33N boundary) at Bottaccione, and two small negative excursions of ~ 0.15 ‰ 

below this interval can be traced from the pillula and senonensis Zones at Lägerdorf, to the 

lower and mid-G. elevata Zone at Bottaccione, respectively. However, these excursions have 

very low amplitudes and their stratigraphic significance will need to be tested in high 

resolution datasets from other sections. For correlation purposes, the Campanian CIEs 
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identified here are informally referred to their corresponding macrofossil zonal names in the 

Lägerdorf section, e.g. pillula Zone event (Fig. 5; in this case immediately above the LO 

Globotruncanita atlantica (Caron) at Bottaccione). 

 

3.2. Cyclostratigraphy of the Seaford Head section 

3.2.1. Cyclostratigraphy in the depth domain 

Results of the Multi-Taper Method spectral analysis on the detrended δ
13

C variations 

of the Seaford Head record highlight one highly significant periodicity at 16 m, a poorly 

significant peak at 4.2 m, and three other periodicities at 0.75, 0.68 and 0.56 m (Fig. 4). The 

MTM spectral analysis of the δ
18

O signal highlights mainly high-frequency variations with 

highly significant peaks at periodicities of 4.2 m and 1.18 m, and less significant peaks at 

0.75, 0.69 and 0.57 m (Fig. 4). Frequency ratios suggest assignment of the 16 m peak to the 

405 kyr eccentricity, of the 4.2 m peak to the 100 kyr eccentricity, of the 1.18 m peak to 

obliquity, and of the three remaining high-frequency peaks to the precession. Filtering of the 

16 m peak highlights the expression of ca. 7.8 long-eccentricity cycles of 405 kyr in the δ
13

C 

signal and ca. 81 obliquity cycles in the δ
18

O record (Fig. 4), and points to relatively 

concordant durations of 3155 and 3078 kyr when tuning the time-series to the 405 kyr 

eccentricity and 38 kyr obliquity, respectively (Fig. 4).  

Results of the filtering and of the two distinct tunings to the 405 kyr eccentricity and 38 kyr 

obliquity suggest a significant decrease of the compacted sediment accumulation rate from 

ca. 4 to 2.5 cm/kyr in the interval comprised between 17 and 40 m (Upper Coniacian–mid-

Middle Santonian; Fig. 4). Sediment accumulation rate appears to vary slightly around 3 

cm/kyr for the remainder of the time-series. Average Spectral Misfit was thus tested on the 

latter interval comprised between 40.00 and 90.75 m, for which four main significant 
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frequencies can be recognized in the MTM power spectrum (Fig. 6, Table 1). Results of the 

ASM support an optimum sediment accumulation rate of 3.05 cm/kyr and suggest assignment 

of the four main identified frequencies to E405, e2, p1 and p2 (Fig. 6, Table 1). A second 

ASM evaluating all frequency peaks of the MTM power spectrum of the 40.00 – 90.75 m 

interval, comprising those below significance levels, provides very similar results with an 

optimum sediment accumulation rate of 2.97 cm/kyr (Appendix 2).  

 

3.2.2. Cyclostratigraphy in the time domain 

Cyclostratigraphic analysis in the time-domain is fundamental because, if the tuning is 

accurate, then Milankovitch frequencies should be better defined, potentially with higher 

power in the MTM of the new time-series (Fig. 7). Due to the chaotic behaviour of the solar 

system, the 405 kyr component of the eccentricity is the only orbital parameter stable 

throughout the Mesozoic–Cenozoic [Laskar et al., 2004]. Alternatively, the second most 

suitable Milankovitch component for orbital tuning should be obliquity, because it is a 

relatively stable component with a narrow and well-defined peak in the Laskar astronomical 

solution (La2004, Laskar et al. [2004], Fig. 7D). Both components are expressed with 

relatively narrow peaks and very high significance either for the 405 kyr in the δ
13

C record or 

for the obliquity in the δ
18

O record (Fig. 4).  

We tested two distinct age-models based on the 405 kyr filter output of the 
13

C data 

and 38 kyr filter output of the 
18

O data. The two distinct tuned time-series are not 

significantly different and have very similar durations. The MTM spectral analysis of the two 

distinct tuned time-series of the 
13

C data reveal all expected Milankovitch frequencies but 

differ significantly with respect to the expression of these frequencies. The 405 kyr tuning 

logically resolves the 405 kyr component much better and was thus chosen here to highlight 
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the expression of the 405 kyr cycles in the carbon-isotope record of Seaford Head (Fig. 7). 

This component is very stable and remains along a straight line in the Evolutive Harmonic 

Analysis (E in Fig. 7C), although a slight perturbation is observed at around 1000 kyr in the 

top of E405 Sa1. However, the 405 kyr tuning poorly resolves the remaining Milankovitch 

frequencies, whose significance is reduced because of the very high power of the 405 kyr 

component. A 122 kyr component is present in the MTM but below the 90% significance 

level, the obliquity appears shifted to 34 kyr, and precession components are not highly 

significant (Fig. 7B).  

When the 405 kyr is filtered out, other components are well expressed (Fig. 7G). The 38 kyr 

tuning of the δ
13

C signal resolves much better the high frequencies with an extremely well-

defined 38 kyr peak, significant precession components and two poorly significant short-

eccentricity peaks at 127 and 91 kyr (Fig. 7E), as expected when compared to the La2004 

solution (Fig. 7D). The expression of the 38 kyr peak in the tuned δ
13

C record is particularly 

relevant here as the series was actually tuned on the 38 kyr filter of the δ
18

O record, and as 

this component was not particularly significant in the original MTM power spectrum of the 

δ
13

C in the depth domain (Fig. 4). This analysis reveals that the tuning improved significantly 

the expression of Milankovitch frequencies.  

4. Discussion 

4.1. Correlations in the Boreal Realm 

Correlation of our high-resolution δ
13

C curve for Seaford Head to published lower 

resolution Boreal δ
13

C records for the Coniacian to Campanian of the German and English 

Chalk is fully consistent with the available macrofossil biostratigraphy for the sections (Fig. 

3). The LO C. undulatoplicatus, marking the base of the Santonian, is associated with the 

short-term positive δ
13

C excursion of the Michel Dean CIE and falls on a medium-term 
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falling trend that begins at the level of the HO V. involutus. The Buckle CIE occurs 

immediately above the LO U. socialis, and the Foreness CIE above the LO Marsupites. The 

Santonian–Campanian Boundary Event (SCBE) consistently exhibits a well-defined pair of 

δ
13

C excursions at the peak of a broad medium-term carbon-isotope maximum, with the 

lower peak (SCBE a) being coincident with the HO of Marsupites testudinarius, the preferred 

marker of the stage boundary according to Gradstein et al. [2012] (Fig. 3). Correlation of the 

remainder of the Lower Campanian section is hampered by the lack of a high-resolution 

record at Seaford Head and elsewhere, very low amplitude δ
13

C variation in most sections, 

and a paucity of correlatable macrofossil datum horizons. 

Available calcareous nannofossil data are less consistent with respect to the δ
13

C 

chemostratigraphy. For example, the LO of the calcareous nannofossil Broinsonia parca 

parca is either at the top of, or some distance above the SCBE. This slight mismatch may be 

due to preservation or taxonomic issues, as ―small‖ and ―big‖ B. parca parca have not been 

clearly depicted elsewhere yet. A potential mismatch is also apparent with respect to the LO 

of Calculites obscurus, which is recorded in the Upper Santonian at Lägerdorf and Trunch 

but occurs stratigraphically much lower, in the Upper Coniacian, below the Kingsdown Event 

at Seaford Head. This mismatch was previously discussed by Burnett et al. [1998] and 

Wagreich [2012]. Interestingly, Hampton et al. [2007] noticed a marked increase in C. 

obscurus within peak ‗a‘ of the SCBE at Seaford Head (Fig. 3). It is likely that the LO of C. 

obscurus at Trunch and Lägerdorf actually corresponds to a lowest common occurrence 

(LCO) of the species in the Upper Santonian throughout the Boreal realm, and that this 

species was too rare to be observed below this level in the two latter sections.  
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4.2. Correlation of Boreal and Tethyan records 

Correlation of the new high-resolution δ
13

C record of Seaford Head with the new δ
13

C 

records from Gubbio allows for an excellent tie of the Coniacian–Santonian and Santonian–

Campanian boundaries between the Boreal and Tethyan realms (Fig. 8). The correlation 

allows the better identification of the Horseshoe Bay CIE at Gubbio, enabling all the isotopic 

excursions previously identified in the English Chalk to be placed on the Gubbio record. This 

correlation also shows that the double peak of the SCBE is a consistent feature that can be 

observed at Seaford Head, Gubbio and at Lägerdorf (Figs 3, 5–7).  

The revised correlation of the Santonian–Campanian boundary between Gubbio and Seaford 

Head calls for a revision of the magnetostratigraphic interpretation of Montgomery et al. 

[1998] for the English Chalk (Fig. 8). Magnetostratigraphy is a difficult exercise in chalks, 

which generally lack a sufficiently high concentration of magnetic minerals to provide 

reliable inclination data [Hambach in Schönfeld et al., 1996]. Combined magnetostratigraphic 

records from Seaford Head and Culver Cliff (Isle of Wight) led Montgomery et al. [1998] to 

propose a C34N/C33R Chron boundary within the Uintacrinus socialis Zone, at the top of the 

Buckle Marls (immediately above the Buckle CIE), where both records suggest a shift from 

normal to reverse polarity (Fig. 8). However, our new correlation of the SCBE between 

Gubbio and Seaford Head demonstrates that this interpretation is erroneous. At Gubbio, 

which is the Tethyan reference for Late Cretaceous to Paleocene magnetostratigraphy 

[Gradstein et al., 2012; Coccioni and Premoli Silva, 2015], the SCBE lies at the top of Chron 

C34N, indicating that the base of Chron 33R must lie within the lower O. pillula Zone at 

Seaford Head (Fig. 8). It is concluded that the published English Chalk magnetostratigraphy 

is unreliable, due to the very weak magnetic signal present, a conclusion that was already 

reached by Hampton et al. [2007] based on Barchi [1995].  
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The Coniacian–Santonian boundary, as defined by the LO of Cladoceramus undulatoplicatus 

at Seaford Head, correlates with the Michel Dean Flint and with the Michel Dean positive 

carbon-isotope excursion, which can be correlated to Gubbio at ca. 195 m, within the lower 

part of the D. asymmetrica planktonic foraminifer zone and the lower part of nannofossil 

Zones UC11c
TP

 to UC12 (Fig. 8). This correlation and identification of the Michel Dean CIE 

at Gubbio is supported by the correlation of the Horseshoe Bay Event in the Santonian, and 

the Kingsdown CIE in the Upper Coniacian of the two sections (Fig. 8). At the GSSP of 

Olazagutia, the Coniacian–Santonian boundary has been placed ca. 5 m below the Michel 

Dean CIE [Lamolda et al., 2014], although the definition and position of the CIE may require 

modification in the light of our new high-resolution isotope data.  

Finally, the correlation of the Gubbio and Seaford Head isotopic records indicates an interval 

of condensation at Gubbio in the Lower Santonian between 195 and 200 m (Fig. 8). It should 

be noted that the whole Lower Santonian interval between the Michel Dean and Horseshoe 

Bay events also appears more condensed at Lägerdorf and Trunch/Dover than at Seaford 

Head (Fig. 3). The much lower sediment accumulation rate noted at Seaford Head between 

17 and 40 m also corresponds to this interval, suggesting a global episode of sediment 

starvation in the Early Santonian.  

 

4.3. Correlation to the ATS of the Western Interior and astronomical calibration to 

La2011 

The Coniacian–Santonian and Santonian–Campanian boundaries were recently 

assigned precise radiometric dates by Sageman et al. [2014], using interpolation of new 

40
Ar/

39
Ar and 

206
Pb/

238
U ages of ash layers in the Niobrara Formation of the Western Interior. 

An integrated radiometric and orbital time scale was proposed by those authors for the 
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Coniacian to Lower Campanian interval in the Western Interior [Locklair and Sageman, 

2008; Sageman et al., 2014]. The 405 kyr filter output of the Niobrara Formation was 

extracted from a micro-resistivity signal mostly reflecting inverse variations of the 

siliciclastic fraction [Locklair and Sageman, 2008]. However, their 405 kyr filter output was 

not calibrated to the most recent astronomical solutions [Laskar et al., 2011a, 2011b]. This 

exercise is performed here by a tie to the La2011 solution which has proved to be the most 

robust solution so far for the Cenozoic and pre-Cenozoic astronomical calibrations 

[Batenburg et al., 2012; Dinarès-Turrell et al., 2013, 2014]. La2010d was not considered 

here because the 405 kyr filter output of this solution, which is the only reliable target for 

astronomical calibration of pre-Eocene records, is actually very close to that of La2011 and 

because La2011 shows a better fit to early Cenozoic geological data [Dinarès-Turrell et al., 

2014]. Correlation of the Santonian–Campanian boundary between the Tethyan and Boreal 

realms and the Western Interior is further supported by the finding of the double-peak SCBE 

positive excursion in organic carbon isotopes across the transition from the Demoscaphites 

bassleri to Scaphites leei III ammonite zones in the Aristocrat Angus core (Niobrara 

Formation, Colorado) [Joo and Sageman, 2014]. 

The Santonian–Campanian boundary, dated at 84.19±0.38 Ma, is characterized by a 

minimum in the 405 kyr filter output of the resistivity in the Western Interior (Fig. 9). In the 

English Chalk, the Santonian–Campanian boundary is characterized by a well-defined 

maximum of the δ
13

C 405 kyr filter output (Fig. 9). It is striking that the 405 kyr component 

of the La2011 astronomical solution also shows a well-defined insolation minimum at exactly 

84.2 Ma and this tie appears to be the most likely tuning option to the minimum in resistivity 

in the Western Interior and maximum in δ
13

C in UK (Fig. 9, Option 2).  However, the 

remaining uncertainties in the radiometric dates of the Coniacian–Santonian and Santonian–

Campanian boundaries in the Wester Interior call for 5 distinct tuning options to the La2011 
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solution (Figs. 9–10). Tuning Options 1 to 3 consider a tie of 405 kyr insolation minima to 

maxima of the δ
13

C 405 kyr filter output in UK and minima in the 405 kyr filter output of the 

resistivity signal in the Wester Interior (Fig. 9). Out of these three possibilities, Options 1 and 

3 are less likely as either the projected Coniacian–Santonian boundary or Santonian–

Campanian boundary astronomical ages appear to fall slightly out of the uncertainty range in 

radiometric dates of the Western Interior (Fig. 9, Table 2). Astronomical Option 2 shows by 

far the best match with radiometric dates (Fig. 9, Table 2).  

Tuning Options 4 and 5 consider a tie of 405 kyr insolation maxima to maxima of the δ
13

C 

405 kyr filter output and minima in the 405 kyr filter output of the resistivity signal in the 

Wester Interior (Fig. 10). These two options fall well within the range of uncertainties in 

radiometric dates and can therefore not be discarded (Fig. 10, Table 2). In any case, the 

correlation presented for these 5 options highlights a mismatch in the position of the 

Coniacian–Santonian boundary as defined by the LO of C. undulatoplicatus between the UK 

and the Western Interior (Figs. 9–10, Table 2). Depending on the choice of the tuning option, 

this mismatch accounts for a total of ca. 170 to 210 kyr (Table 2). It remains unclear whether 

the mismatch is due to a slight diachroneity of the lowest occurrence of C. undulatoplicatus 

between the Boreal realm and the Western Interior or to remaining uncertainties in the 

radiometric dates and cyclostratigraphic analysis. 

  

4.4. Insolation forcing of carbon-isotope variations 

The strong expression of the obliquity expressed in oxygen-isotopes is not particularly 

surprising for a section that was situated at boreal mid-latitudes in the Santonian and several 

examples even show a well-expressed obliquity at low latitudes [Bosmans et al., 2015]. The 

lesser expression of the obliquity observed in carbon-isotopes of Seaford Head may then be 
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explained by the ca. 200 kyr-long residence time of dissolved inorganic carbon in the ocean 

[Zeebe and Wolf-Gladrow, 2008]. The proposed tuning options of the 405 kyr eccentricity 

filter output of the Seaford Head δ
13

C to the 405 kyr filter output of the resistivity signal in 

the Niobrara Formation and to the La2011 astronomical solution need to be examined 

through our current understanding of external forcings (insolation) and internal 

paleoceanographic responses in individual oceanic basins. Locklair and Sageman [2008] 

demonstrated that the resistivity signal of the Niobrara Formation is mainly a reflection of the 

carbonate content; the main controlling mechanism of these variations was through the 

siliciclastic flux to the Western Interior Basin, which was at that time a restricted 

epicontinental seaway. Such an interpretation could imply that minima of the resistivity (low 

carbonate intervals) correlate to maxima of insolation due to more intense continental 

weathering (driving increased siliciclastic and nutrient input) during insolation highs. Such an 

interpretation would be in favour of tuning Options 4 and 5 and implies a correlation of 

maxima of insolation to maxima in δ
13

C, as suggested by the correlation of Figure 10. A 

possible mechanism would be for the increased nutrient supply to the oceans, driven by 

increased terrestrial weathering, to promote increased marine productivity and increased 

marine organic-carbon burial.  Sediments deposited in the Western Interior Basin during the 

Santonian are relatively rich in organic matter [Tessin et al., 2015]. Preferential removal of 

12
C from the oceans by increased organic matter burial would lead to higher δ

13
C values in 

surface carbon reservoirs [Scholle and Arthur, 1980].  

By contrast, Options 1 to 3, among which Option 2 shows by far the best match to 

radiometric dates out of the 5 considered possibilities, imply a correlation of maxima in 

insolation to maxima in resistivity (high carbonate intervals) in the Niobrara Formation and 

to minima in δ
13

C (Fig. 9). A correlation between minima in bulk carbonate δ
13

C and 

insolation maxima of the 405 kyr eccentricity has been suggested for the Late Maastrichtian 
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of Zumaia by Batenburg et al. [2012], and is similar to the response of sedimentary records to 

Cenozoic climate forcing [Pälike et al., 2006; Holbourn et al., 2007; Westerhold et al., 2011]. 

The underlying mechanism that explains this relationship is a globally intensified 

hydrological cycle during insolation eccentricity maxima that enhances weathering intensity 

and riverine nutrient and terrestrial organic carbon (lighter δ
13

CHCO3-) supply to the ocean. 

Model simulations of the carbon-isotope response to 405 kyr climate variability during the 

Miocene climatic optimum have shown that a key factor controlling the oceanic δ
13

C record 

was the burial ratio of CaCO3 to organic carbon [Ma et al., 2011]. A net increase in the global 

burial of CaCO3 at eccentricity maxima (mainly driven by tropical shallow-water carbonates) 

relative to organic carbon in ocean basins will lead to a decrease in oceanic δ
13

C, and vice 

versa. This mechanism is consistent with Option 2 tuning of our Santonian data.  

However, relationships between eccentricity cycles and the carbon-isotope record may be 

more complex than supposed by the above studies, as the seasonal contrasts at insolation 

highs and lows must also be considered. An important constraint, for instance, would be the 

quantity of organic carbon stored on land. Eccentricity minima favor less seasonality and thus 

smaller areas with semi-arid and semi-humid climates. A more even yearly distribution of 

precipitation enhances organic-carbon burial during pedogenesis and peat formation. In this 

case, the driver for positive δ
13

C excursions during eccentricity minima would be located 

primarily on land (Zachos et al., 2010).  

Previous studies have observed a phase lag in the order of 20 to 60 kyr between insolation 

405 kyr eccentricity maxima and 405 kyr minima of carbon-isotope variations [Pälike et al., 

2006; Holbourn et al., 2007; Westerhold et al., 2011]. This phase lag is explained by the long 

residence time of carbon in the ocean, which implies a delayed response to astronomical 

forcing [Pälike et al., 2006]. A phase lag was most probably also a persistent feature 

throughout the Cretaceous, but cannot be documented here due to the uncertainties in the 
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recent Santonian radiometric dates and in the ATS of Seaford Head and of the Niobrara 

Formation. However, such a phase lag would account for only a very small source of error, 

and the nearly identical La2010d/La2011 solutions appear as robust astronomical models for 

the Cretaceous [Batenburg et al., 2012; Dinarès-Turrell et al., 2013, 2014; Wu et al., 2014]. 

Option 2 appears by far the most likely solution for the astronomical calibration of the 

Santonian (Fig. 9, Table 2). If, as supported by this option, the near-coincidence between 405 

kyr eccentricity maxima of insolation and 405 kyr minima of the oceanic δ
13

C can be proven 

to be a reliable feature of Cretaceous climate, a significant improvement of the Geologic 

Time Scale could be achieved through high-resolution carbon-isotope stratigraphy, filter 

extraction of the δ
13

C 405 kyr component, and calibration to La2011 by assuming a close to 

180° phase relationship to the astronomical solution.  

5. Conclusions 

 

New high-resolution carbon-isotope records of bulk carbonate have been correlated 

across the Upper Coniacian to Lower Campanian intervals in the reference sections of 

Seaford Head (England) and Bottaccione (Gubbio, central Italy). This study demonstrates an 

unambiguous stratigraphic correlation of the Santonian–Campanian boundary positive δ
13

C 

excursion to a short distance below the C34N/C33R chron reversal in the Bottaccione 

(Gubbio) Tethyan reference record, and to the HO of Marsupites testudinarius in the Boreal 

realm. The Santonian–Campanian Boundary Event (SCBE) is characterized by a pronounced 

double peak at the summit of a medium-term δ
13

C maximum, which makes it a reliable 

stratigraphic marker for the top Santonian.  

The new record at Seaford Head constitutes the highest resolution carbon-isotope curve for 

the uppermost Coniacian to lowermost Campanian interval obtained to date, and reveals the 
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expression of orbital forcing. Filtering of the 405 kyr eccentricity cycles from the Seaford 

Head δ
13

C curve allows construction of a floating astronomical time scale (ATS) of the 

Boreal Santonian.  

Anchoring of the Seaford Head ATS and that of the Niobrara Formation (Western Interior) to 

the recent radiometric dating of the Santonian–Campanian boundary (84.19±0.38Ma) permits 

an astronomical calibration of the stage to the La2011 solution. Astronomical calibration 

allows precise correlation of the Boreal Santonian to the endemic ammonite and inoceramid 

zones of the Western Interior, and suggests that a slight (c. 200 kyr) mismatch exists in the 

correlation of the Coniacian–Santonian boundary between the Boreal realm and the Western 

Interior Basin.  

Five tuning options have been examined. Of these five options, Option 2 appears as the most 

likely and pre-supposes that 405 kyr insolation minima correspond to maxima in the δ
13

C of 

the Chalk sea and vice versa. We propose two distinct mechanisms to explain this 

relationship: (1) similar to previous studies in the Cenozoic, changes in the burial rate of 

CaCO3 relative to that of organic carbon in oceanic basins, caused by climate forcing of 

weathering, drove changes in nutrient input and oceanic productivity, which played a key role 

in controlling global δ
13

C; (2) the difference in seasonal contrasts between insolation lows 

and highs caused significant differences in organic-carbon burial on land.  
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Figure Captions 

 

Figure 1. Paleogeography of the Western Interior, North Atlantic, Chalk sea and western 

Tethys during the Santonian (at 86 Ma), with locations of: (1) English Chalk sections; (2) 

Lägerdorf, North Germany; (3) Gubbio sections, Italy; (4) sections of the Niobrara 

Formation, U.S. Western Interior. After Scotese [2014]; Mollweide projection with a sea 

level of +80 m.  
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Figure 2. Summary log of the Middle Coniacian to lowermost Campanian at Seaford Head 

with bulk carbonate carbon and oxygen stable-isotope profiles. The thin blue (carbon) and red 

(oxygen) lines join isotopic data points for 25 cm-interval samples; the thick underlying 

curves correspond to a 3-point running averages. Lithological log and carbon-isotope events 

after Jarvis et al. [2006]; SCBE = Santonian–Campanian Boundary Event. Macrofossil 

biostratigraphy and datum levels are from this study; stage and substage boundaries are 

placed based on our macrofossil records from the section. Micro- and nannofossil 

biostratigraphy modified (see text) from Hampton et al. [2007]. Marker bed terminology 

modified from Mortimore [1986, 1997]. See Appendix 1 for further information and key. 
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Figure 3. Correlation of Boreal carbon-isotope records from Lägerdorf (North Germany), 

Trunch/Dover (England) and Seaford Head (England). Lägerdorf stratigraphy and isotope 

data after Schönfeld et al. [1996] and Voigt et al. [2010]. Trunch and Dover data from 

Jenkyns et al. [1994] and Jarvis et al. [2006]. The high-resolution (25 cm interval) carbon-

isotope record from Seaford Head (this study) and low-resolution data (1 m spacing) of 

Jenkyns et al. [1994] are compared to the macrofossil (this study), nannofossil (modified 

from Hampton et al. [2007]), and magnetostratigraphy [Montgomery et al., 1998] of the 

section. Carbon-isotope events after Jarvis et al. [2006] and this paper; SCBE = Santonian – 

Campanian Boundary Event. Lägerdorf macrofossil zone names detailed in Schönfeld et al. 

[1996]; HCO = highest common occurrence, M = Marsupites, Mc = Micraster 

cortestudinarium, Sp = Sternotaxis plana, Ua = Uintacrinus anglicus, Us = Uintacrinus 

socialis. 
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Figure 4. Cyclostratigraphy of bulk carbonate carbon and oxygen stable-isotope records of 

Seaford Head in the depth domain. Periodograms on the right side of the figure correspond to 

4 pi Multi-Taper Method (MTM) power spectra. Compacted sediment accumulation rates are 

derived from two distinct age-models based on the 405 kyr and 38 kyr filtering of the δ
13

C 

and δ
18

O records, respectively.  
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Figure 5. Correlation of new carbon-isotope records of the Bottaccione Road and 

Bottaccione River sections to the δ
13

C curve of Lägerdorf (North Germany). Magneto- and 

biostratigraphy of the Bottaccione section from Coccioni and Premoli-Silva [2015]. The base 

of UC14 is defined here by the LO of ―small‖ B. parca parca (<10µm) [Gardin et al., 2001]. 

Lägerdorf macrofossil biostratigraphy and datum levels after Schönfeld et al. [1996]; 

calcareous nannofossil zonation from Voigt et al. [2010] after Burnett et al. [1998]; carbon 

isotopes from Voigt et al. [2010]. Carbon-isotope events after Jarvis et al. [2002, 2006] and 

this study. 
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Figure 6. Results of the Average Spectral Misfit method (ASM) for the δ
13

C time-series of 

the 40 to 90.75 m interval. The evaluated orbital terms of the Laskar solution [Laskar et al., 

2004] are E405, e1, e2, o1, p1 and p2 (see Table 1). (A) Average spectral misfit. (B) Null 

hypothesis significance level. (C) Number of terms evaluated. (D) Multi-Taper Method 

(MTM) power spectrum of bulk carbonate δ
13

C. (E) Data (black) versus target (blue). (F) 

Power spectra for La2004 (80 – 84 Ma). 
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Figure 7. Carbon-isotope record of Seaford Head tuned to 405 kyr cycles and 

cyclostratigraphic results in the time domain. (A) Primary and detrended δ
13

C records with 

identified cycles. (B) 4 pi Multi-Taper Method (MTM) power spectrum with AR1 confidence 

level estimates of the 405 kyr tuned δ
13

C time-series with power on a logarithmic scale. (C) 

Normalized amplitude of an Evolutive Harmonic Analysis (EHA) of the 405 kyr tuned δ
13

C 

time-series showing linearity of the E405 kyr component and additional Milankovitch 

frequencies (e2, o1, p1, p2) expressed mainly in the time intervals from 250 to 1400 ka and 

from 2100 to 2900 ka. (D) 4 pi MTM of the La2004 astronomical solution for the 80 to 84 

Ma interval. (E) 4 pi MTM power spectrum of the 38 kyr tuned δ
13

C time-series. (F) 4 pi 

MTM power spectrum of the 405 kyr tuned δ
13

C time-series. (G) 4 pi MTM power spectrum 

of the 405 kyr tuned δ
13

C time-series when the 405 kyr is filtered out.  
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Figure 8. Correlation of Coniacian to Lower Campanian δ
13

C records of the Bottaccione 

(Gubbio, Italy) and Seaford Head (English chalk). Stratigraphy of the Bottaccione section 

from Coccioni and Premoli-Silva [2015] with Coniacian–Santonian carbon-isotope data of 

Sprovieri et al. [2013] plotted for comparison. Seaford Head sources as in Figures 2 and 3. 



 

 
© 2016 American Geophysical Union. All rights reserved. 

 

Figure 9. Astronomical tuning to the La2011 solution [Laskar et al., 2011b] of the Seaford 

Head bulk carbonate carbon isotopes (δ
13

Ccarb) tuned to 405 kyr eccentricity cycles and to the 

floating astronomical time scale of the Niobrara Formation. Tuning options considered here 

correlate 405 kyr insolation minima to maxima of the Seaford Head δ
13

Ccarb and minima of 

the resistivity signal in the Niobrara Formation. Seaford Head stratigraphy as in Fig. 2. 

Niobrara Formation cyclostratigraphy after Locklair and Sageman [2008]; radiometric age 

determinations (highlighted by the red stars) and placement of biostratigraphic zone 

boundaries after Sageman et al. [2014]. Inoceramid /crinoid zones: 8 Magadiceramus 

crenelatus; 9 Cladoceramus undulatoplicatus; 10 Cordiceramus bueltenensis; 11 

Cordiceramus muelleri; 12 Marsupites testudinarius. Macrofossil LO and HO datum levels 

plotted relative to the cyclostratigraphy and ammonite zones, based on data presented by 

Gale et al. [1995] and Locklair and Sageman [2008]. Ca = Campanian, Co = Coniacian, Sa = 

Santonian. The grey areas in the La2011 astronomical solution highlight the total range in 

uncertainty of the radiometric datings.  
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Figure 10. Astronomical tuning to the La2011 solution [Laskar et al., 2011b] of the Seaford 

Head bulk carbonate carbon isotopes (δ
13

Ccarb) tuned to 405 kyr eccentricity cycles and to the 

floating astronomical time scale of the Niobrara Formation. Tuning options considered here 

correlate 405 kyr insolation maxima to maxima of the Seaford Head δ
13

Ccarb and minima of 

the resistivity signal in the Niobrara Formation. Seaford Head stratigraphy as in Fig. 2. 

Niobrara Formation cyclostratigraphy after Locklair and Sageman [2008]; radiometric age 

determinations (highlighted by the red stars) and placement of biostratigraphic zone 

boundaries after Sageman et al. [2014]. Inoceramid /crinoid zones: 8 Magadiceramus 

crenelatus; 9 Cladoceramus undulatoplicatus; 10 Cordiceramus bueltenensis; 11 

Cordiceramus muelleri; 12 Marsupites testudinarius. Macrofossil LO and HO datum levels 

plotted relative to the cyclostratigraphy and ammonite zones, based on data presented by 

Gale et al. [1995] and Locklair and Sageman [2008]. Ca = Campanian, Co = Coniacian, Sa = 

Santonian. The grey areas in the La2011 astronomical solution highlight the total range in 

uncertainty of the radiometric dating.  
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Table 1. Orbital targets of the La2004 astronomical solution [Laskar et al., 2004] for the 80 

to 84 Ma interval and their uncertainty with assignment of the observed frequencies of the 

δ
13

C time-series to these orbital terms. Percentage uncertainties in frequency of the orbital 

terms are those provided by Meyers et al. [2012] for the Cenomanian–Turonian interval.  

Term La2004 period 

(kyr) 

% uncertainty in 

frequency 

observed 

frequency 

(cycles/m) 

Chi-2 significance 

E405 405 2.3% 0.0625 >95% 

e2 128 4.6% 0.2344 >90% 

e1 95 4.2% 0.3125 <85% 

e3 76.9 4% 0.4531 <85% 

o2 50.6 1.6% 0.6094 <AR1 base level 

o1 38.2 0.8% 0.8954 <85% 

p1 22.9 3.5% 1.344 >95% 

p2 18.5 0.4% 1.797 >95% 
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Table 2. Radiometric ages for Santonian stage boundaries and ages derived from the 

projection of the Coniacian–Santonian and Santonian–Campanian boundaries as defined by 

their biostratigraphic criteria when considering the 5 different tuning options to the La2011 

astronomical solution.  

Defining criteria of 

the Santonian stage 

Radiometric age , 

Ma [Sageman et al., 

2014] 

La2011 

(Ma) 

option 1 

La2011 

(Ma) 

option 2 

La2011 

(Ma) 

option 3 

La2011 

(Ma) 

option 4 

La2011 

(Ma) 

option 5 

Sa/Ca (LOMarsupites) 84.19±0.38  84.65 84.20 83.78 84.44 84.00 

Co/Sa (FOC. 

undulato- plicatus) 

UK 

 

86.62 86.16 85.77 86.4 85.96 

Co/Sa (FOC. 

undulato- plicatus) 

WI 86.49±0.44 86.8 86.37 85.97 86.57 86.17 
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Figure S1. Detailed log of the Seaford Head section with bulk carbonate carbon and oxygen 

isotopes and SH samples (red numbers) of Hampton et al. [2007] recalibrated to the log. 

Stratigraphy and data sources as in Fig. 2. Small black filled circles are isotope sample 

positions. Yellow arrows and black text are macrofossil lowest occurrence (LO) and highest 

occurrence (HO) datum levels; dark blue are foraminifera; pale blue are calcareous 

nannofossils.  

Figure S2. Results of the Average Spectral Misfit method (ASM) for the δ
13

C time-series of 

the 40 to 90.75 m interval using all observed frequency peaks of the 4 pi Multi-Taper Method 

(MTM) power spectrum. (A) Average spectral misfit.  (B) Null hypothesis significance level. 

(C) Number of terms evaluated. (D) MTM power spectrum of δ
13

C. (E) Data versus target 

frequencies, and (F) Power spectrum for La2004 (80 – 84 Ma). The evaluated orbital terms of 

the Laskar2004 solution [Laskar et al., 2004] are E405, e2, e1, e3, o2, o1, p1 and p2 (see 

Table 1).  

Figure S3. Results of the Evolutive Harmonic Analysis (EHA) for the δ
13

C time-series at 

Seaford Head in the depth domain. (A) Bulk carbon isotope profile with corresponding 

detrended curve and 405 kyr Taner filtered output. (B) 4 pi MTM power spectrum. (C) EHA 

normalized amplitude. (D) EHA probability. 

Figure S4. Results of the Evolutive Harmonic Analysis (EHA) for the δ
13

C time-series at 

Seaford Head tuned to 405 kyr cycles. (A) Tuned bulk carbon isotope profile with 

corresponding detrended curve and 405 kyr filtered output. (B) 405 kyr tuned MTM power 

spectrum. (C) EHA normalized amplitude. (D) EHA probability. 

Figure S5. Results of the Evolutive Harmonic Analysis (EHA) for the δ
13

C time-series at 

Seaford Head tuned to 38 kyr cycles. (A) Tuned bulk carbon isotope profile with 
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corresponding detrended curve and 38 kyr filtered output. (B) 38 kyr tuned 4 pi MTM power 

spectrum. (C) EHA normalized amplitude. (D) EHA probability. 

Table S1. Table of macro-, micro- and nannofossil datum levels in the Seaford Head section, 

along with biozonations and lithostratigraphy.  

Table S2. Bulk carbonate carbon and oxygen stable isotope data for the Bottaccione River 

and Road sections.  

Table S3. Bulk carbonate carbon and oxygen stable isotope data for the Seaford Head 

section.  

 


