
CUQI: cardiac ultrasound video
quality index

Manzoor Razaak
Maria G. Martini

Manzoor Razaak, Maria G. Martini, “CUQI: cardiac ultrasound video quality index,” J. Med. Imag. 3(1),
011011 (2016), doi: 10.1117/1.JMI.3.1.011011.

Downloaded From: http://medicalimaging.spiedigitallibrary.org/ on 04/14/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kingston University Research Repository

https://core.ac.uk/display/74395195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CUQI: cardiac ultrasound video quality index
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Abstract. Medical images and videos are now increasingly part of modern telecommunication applications,
including telemedicinal applications, favored by advancements in video compression and communication tech-
nologies. Medical video quality evaluation is essential for modern applications since compression and trans-
mission processes often compromise the video quality. Several state-of-the-art video quality metrics used
for quality evaluation assess the perceptual quality of the video. For a medical video, assessing quality in
terms of “diagnostic” value rather than “perceptual” quality is more important. We present a diagnostic-qual-
ity–oriented video quality metric for quality evaluation of cardiac ultrasound videos. Cardiac ultrasound videos
are characterized by rapid repetitive cardiac motions and distinct structural information characteristics that are
explored by the proposed metric. Cardiac ultrasound video quality index, the proposed metric, is a full reference
metric and uses the motion and edge information of the cardiac ultrasound video to evaluate the video quality.
The metric was evaluated for its performance in approximating the quality of cardiac ultrasound videos by testing
its correlation with the subjective scores of medical experts. The results of our tests showed that the metric has
high correlation with medical expert opinions and in several cases outperforms the state-of-the-art video quality
metrics considered in our tests. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution

or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI.3.1.011011]
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1 Introduction
Medical imaging systems are increasingly used for diagnosis in
healthcare services. Advancements in communication systems
have facilitated medical images and videos in becoming a sig-
nificant part of modern telemedicine systems. Medical videos
are transmitted over communication channels for various appli-
cations such as remote patient monitoring and diagnosis, medi-
cal consultations, ambient assisted living, educational purposes,
and so on. It is expected that the significant ongoing develop-
ments in medical image acquisition and processing techniques
would see an increasing adoption of telemedicine technologies
in healthcare.

Medical images, especially for the recent high-definition
images, demand huge amounts of storage space and network
capacity for transmission. To overcome this demand, video com-
pression is often used. The compression process reduces the file
size of a given image or video. The compression ratio is the ratio
of a given video file size before compression over the video file
size after compression. The compression ratio depends on the
compression codec used. For instance, the latest video compres-
sion standard high-efficiency video coding (HEVC) is known to
provide a 50% higher compression ratio over its predecessor,
compression standard H.264, and in some cases can possibly
reduce the file size by a factor of over 100 and still keep an
acceptable perceptual quality. Generally, it is ensured that the
extent of the compression applied does not introduce any notice-
able impairments on perception of the image. In some cases,
despite low compression ratios, it is possible that some impair-
ments are introduced that lead to a compromise in the quality

of medical videos for diagnosis. Further, during transmission
over communication channels, videos may suffer transmission
impairments due to factors such as bandwidth limitations and
network congestion, which may also compromise the video
quality. Due to the sensitive nature of the information they
carry, quality is a crucial factor for medical images and videos.
Hence, it is important to ensure, via video quality evaluation,
that the video quality is not affected after compression and
transmission.1

The process of video quality evaluation can be of two types:
“subjective” and “objective” quality evaluation. Subjective video
quality evaluation is an approach in which a pool of observers rate
the quality of a video on a given rating scale. The average of the
observers’ ratings is computed and used as a measure of the video
quality. Subjective quality evaluation is often a reliable approach
since the quality is rated by a pool of observers. However, the
disadvantages of this approach include possible inconsistencies
in the ratings obtained, costs to run the tests, and challenges
to implement in real time. Moreover, in the context of medical
videos, subjective quality evaluation is more difficult, since
observers have to be medical experts, which restricts the choice
of observers. On the other hand, objective video quality evalu-
ation is an approach in which mathematical models are used to
measure the quality of a possibly impaired video with respect to
the original one. Most video quality metrics (VQMs) are designed
and tested on natural videos with a goal of representing the per-
ceptual quality of the video. The state-of-the-art VQMs, although
not specifically designed for medical applications, are still pop-
ularly used in medical video quality evaluation. In our previous
work,2 we tested popular state-of-the-art VQMs for medical video
quality assessment and evaluated their performance for quality
evaluation of the medical videos under test. In the study, it was
observed that some of the VQMs do not perform as well as in
natural videos for medical video quality evaluation. Several
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state-of-the-art quality metrics considered in the test had low cor-
relation with the subjective scores of medical experts, indicating
weaker performance in the context of medical ultrasound videos.
It was also observed that the quality metrics were mainly
designed by considering the image properties of natural videos
and are not necessarily well suited for medical video quality
evaluation. For medical videos, the “quality” factor is dependent
on the suitability of the video for reliable diagnosis rather than
its perceptual quality. Therefore, it is important that the quality
metrics for medical videos be designed with a focus on analyzing
the characteristics that influence the diagnostic suitability of the
videos.

Toward this approach, we propose a VQM designed for qual-
ity evaluation of cardiac ultrasound videos termed as cardiac
ultrasound video quality index (CUQI). The proposed metric
is based on the features that cardiologists consider as important
features for performing a diagnosis via cardiac ultrasound: the
identification of the boundaries between organs and of the walls
of the heart, as well as the motion/contraction pattern of the
heart. In particular, we consider the phenomenon of motion per-
ception and edge detection of human visual system (HVS). The
HVS is known to respond to static and motion stimuli sepa-
rately. The motion of objects in a video helps the HVS in object
identification. Further, edge detection by the HVS enables it to
process semantic information from an image.

In this regard, CUQI considers the motion characteristics and
the edge information of the cardiac video to evaluate its video
quality. In this work, we test and compare the performance of
CUQI with other state-of-the-art VQMs. The results show that
the proposed metric exhibits consistently high performance and
in some cases outperforms several objective quality metrics con-
sidered in our tests.

2 Background
In this section, a brief discussion of motion and edge perception
by HVS is provided, followed by a brief insight into optic flow
methods. An overview of different compression artifacts is pro-
vided, followed by a discussion of the related work.

2.1 Motion and Edge Perception

Motion in a video acts as a stimulus to the HVS. Classical liter-
ature has studied the response of the HVS to motion stimuli and
several theories have been suggested in the scientific literature to
explain its behavior.3–7

Motion perception is important for several reasons. Motion
enables shape perception, object speed and direction judgments,
navigation, and activity recognition.7–9 Motion in videos can
make objects more detectable. In the context of medical videos,
for structure detection, ultrasound videos are preferred over
static images, as they make the detection process easier. This
is because motion in ultrasound videos provide more informa-
tion over static images and reduces independent noise signifi-
cantly. Also, visual motion enables better perception of structure
boundaries and reduces patient motion artifacts.10 Video
processing may distort the apparent motion present in the video
and may influence the diagnosis process of observers, especially
during the defect detection processes.11

Similarly, several studies have shown that the perception of
an image by the HVS highly relies on the structural information
of the image and that the edge information in an image can have
significant impact on visual perception of the image.12–14 In the
context of medical videos, edge information plays an important

role and is predominantly used in applications like image seg-
mentation, region of interest detection, classification, image
interpolation, and noise removal.15–17 The edges of an image re-
present a crucial part of the image that can be effectively used in
VQA, and the medical doctors we interacted with confirmed its
importance for performing a diagnosis.

2.2 Motion Estimation Using Optic Flow Methods

Motion estimation involves computing motion vectors, which
represent the predicted motion in the next frame with respect
to the current frame. Some of the methods for motion estimation
are the block-matching, phase correlation, and optical flow
methods. Optical flow is one of the most widely used methods
for motion estimation. Optical flow measures the spatiotemporal
changes and provides information about the speed, direction,
and path of an object in an image/video.18 Optical flow methods
explore the time-varying intensity of the pixels across successive
video frames for motion estimation. If Iðx; y; tÞ represents the
intensity of a pixel at position (x; y) at time t on a two-dimen-
sional (2-D) plane, then at time tþ δt, the pixel with the same
intensity will be in location xþ δx, yþ δy.

EQ-TARGET;temp:intralink-;e001;326;513Iðx; y; tÞ ¼ Iðxþ δx; yþ δy; tþ δtÞ: (1)

Assuming constant intensity and using Taylor’s expansion,
the optical flow equation is given as

EQ-TARGET;temp:intralink-;e002;326;460Ixuþ Iyvþ It ¼ 0; (2)

where u ¼ du∕dt and v ¼ dv∕dt represent the motion vectors
in the horizontal and vertical directions. A solution to Eq. (2) is
obtained by introducing additional constraints.19 The type
of constraint introduced defines the type of optical flow
computation.

2.3 Compression Artifacts

In simple terms, image/video compression is achieved by
removal of redundant data, which often implies loss of informa-
tion, typically with negligible impact on the perception quality.
Various steps in compression codecs, such as motion compen-
sation, quantization, and transform coding, may distort the edge
and motion information present in the video. On occasions,
when compression distortions cross the perceptual threshold,
visible artifacts could be seen on the images, which in turn
impacts the image visual quality. Some of the most common
compression artifacts that introduce spatial and temporal distor-
tions include “blockiness”20 due to the block-based approach
used by codecs, “blurriness and ringing artifacts”21 due to quan-
tization process, “mosquito noise”22 due to the interframe cod-
ing used by compression codecs, “motion-compensated edge
artifacts” due to motion prediction errors by the codec, “ghosti-
ness,”23 and “jerkiness.”24

2.4 Related Work

Image/video quality assessment is an active area of research. In
the literature, several objective VQMs have been presented.
Mean square error (MSE) and peak signal-to-noise ratio
(PSNR) are two of the most widely used metrics for image and
video quality assessment. Both MSE and PSNR are often used
to measure the loss in signal quality, which can be a one-dimen-
sional audio signal or a 2-D image signal. Therefore, these
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statistical quality models do not necessarily give a good approxi-
mation of the impact of image quality degradation on the per-
ception of the image and are often shown to correlate poorly
with human perception.

In recent years, several image and VQMs based on HVS
response models to particular image and video features have
been proposed. One such popular metric is the structural sim-
ilarity index metric (SSIM), which measures the structural sim-
ilarity between reference and impaired image/videos by means
of luminance, contrast, and structural comparison.25 Similarly,
other metrics such as visual signal-to-noise ratio (VSNR),26 vis-
ual information fidelity (VIF),27 and several others were devel-
oped based on the response of the HVS to different feature
stimuli. The metrics developed by considering HVS behaviors
have shown better correlations with the perceptual quality of
the image/video.28

Several VQMs were originally designed for image quality
assessment, then later extended to measure video quality. In
recent years, a few research works have developed metrics
for video quality evaluation by considering the spatial and
temporal features of the video. The VQM from the National
Telecommunications and Information Administration uses sev-
eral spatial and temporal distortions from a video to measure the
quality. The main components of the VQM metric are spatial
distortions such as edge shifts, spatial information loss, color
losses, and so on. The only temporal distortion measured by this
metric is the measure of frame differences.29 A few VQMs based
on motion information have been developed by researchers. For
instance, a VQM was presented based on spatial-temporal dis-
tortion assessment.30 The motion quality was evaluated along
the motion trajectories of the video by constructing the Gabor
filter responses from the reference and distorted videos. A
human visual speed perception model was developed31 to esti-
mate the motion information, the perceptual uncertainty, and
an associated spatiotemporal weight for quality assessment of
videos. Also, a few other works32–36 have used quality assess-
ment strategies involving motion information.

There is a dearth of VQMs specifically designed for medical
videos. The state-of-the-art objective VQMs may not be suitable
for medical videos, since they are mainly designed to evaluate
the perceptual quality, which may not ensure the diagnostic reli-
ability of the video. To the best of our knowledge, there is cur-
rently no VQM that considers both motion and edge information
as the main criteria for medical video quality assessment. The
proposed metric is an approach for quality assessment of cardiac
ultrasound video sequences, as it considers two important video
characteristics: motion information and edge information.

3 Quality Metric for Cardiac Ultrasound
Videos

To illustrate how compression may impact the motion informa-
tion in a cardiac ultrasound video, the motion vector trajectories
of a single pixel of an original video and its distorted version
across the frames of the video are shown in Fig. 1. The distorted
video is obtained by compressing the original video with a quan-
tization parameter (QP) of 41. It can be observed that there are
significant distortions in the pixel trajectory of the distorted
video and in most frames the pixel belonging to the distorted
video suffers significant reduction in the vector magnitude
values. Such distortion to the motion information may have sig-
nificant impact on the video perception.

The proposed CUQI metric measures the distortion to the
motion information along with the edge distortions between
the reference and the distorted video and uses them to quantify
the quality of the cardiac video. In the first stage, the classic
Horn and Schunck optical flow method37 is employed to esti-
mate motion in cardiac videos. Next, a window-based Gaussian
filter weighting function is used to assign weights to the motion
vectors of each pixel of the original and distorted videos. The
weighted motion vectors of the original and distorted videos are
used to compute the motion distortion in the cardiac video. In
the second stage, edge information quality preserved in the com-
pressed video is computed using Laplacian of Gaussian (LoG)
edge filter and correlation methods. Finally, a quality score is
obtained for the cardiac videos by combining both the motion
and edge quality scores.

3.1 Motion Vector Estimates

The Horn and Schunck optical flow method is used to estimate
the motion between two successive frames in the video. For each
pixel i, two motion vectors in the horizontal and vertical direc-
tions are derived. Let ui be the horizontal motion vector and vi
be the vertical motion vector of a pixel i in a given frame. The
root sum of squares of vectors ui and vi gives the resultant mag-
nitude vector

EQ-TARGET;temp:intralink-;e003;326;225mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2i þ v2i

q
: (3)

The horizontal and vertical motion vectors for each pixel of
the original and the distorted image frame are computed and the
resultant magnitude vector defined by Eq. (3) for each pixel is
obtained, resulting in a matrixM for each frame. Figure 2 shows
estimated motion vectors of an example frame from an ultra-
sound cardiac sequence.

3.2 Weighting Function

A Gaussian weighting function is applied to the magnitude
vectors matrix M of both the original and distorted frame to

Fig. 1 The motion vector trajectory of a single pixel across all frames
of both original and the impaired videos. Blue curve presents the pixel
trajectory of original cardiac video. Dashed green curve presents
the pixel trajectory of the distorted cardiac video.
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compute the Gaussian weights. A window-based approach is
used. Let P be an n × n window of the motion vector matrix
M. If μ is the mean of the magnitude vectors in the window
P and σ is the standard deviation, then the Gaussian weight
for each motion vector i ¼ 1;2; : : : ; n2 in window P can be
computed as follows:

EQ-TARGET;temp:intralink-;e004;63;492wMi
¼ exp

−ðMi−μÞ2
2σ2 : (4)

We defineW as an n × nmatrix of the weights, and theweight for
each pixel indicates the distance of the vector magnitude of the
pixel from the mean vector magnitude of the window. Pixels
whose vector magnitude values are closer to the μ value get higher
weights. A sliding window is used on matrix M to compute a
weight for each pixel of the frame. Then, a Gaussian weighted
response of matrix M can be derived by taking the product of
the element of matrices obtained from Eqs. (3) and (4):

EQ-TARGET;temp:intralink-;e005;63;366Mg ¼ W �M: (5)

The matrixMg is composed of elementsMgi ¼ wiMi where each
pixel i is tuned to its corresponding Gaussian weight. The matrix
Mg is nothing but a Gaussian filtered response that reduces the
noise in the vector magnitude matrix M and provides a smooth
version of M.

3.3 Edge Detection

To compute edge distortions, we first extract edge information
from the videos. For edge detection, a LoG detector proposed by
Marr and Hildreth is used. This detector uses a Gaussian filter
along with a Laplacian operator, which is nothing but the second
derivative of the filter and detects edges at the point of zero-
crossings. The LoG edge detector can be represented as
shown in Eq. (6), where x and y are the Cartesian coordinates
of the pixels in the image.

EQ-TARGET;temp:intralink-;e006;63;161LoGðx; yÞ ¼ −
1

πσ4

�
1 −

x2 þ y2

2σ2

�
exp

−ðx2þy2Þ
2σ2 : (6)

3.4 Quality Metric

The CUQI metric is a full reference metric where the “distorted”
version of the video is compared with its original video, termed

the “reference” video. CUQI has two components, “motion
quality” and “edge quality,” computed using the motion and
edge measures obtained in Eqs. (5) and (6), respectively.

Let R be a frame of the reference video and D be the cor-
responding frame from the compressed video. Using Eq. (5),
the Gaussian weighted response for each frame of the reference
video and the corresponding frame of the distorted video can
be represented by Rgði; fÞ and Dgði; fÞ, respectively, where
i ¼ 1;2; : : : N is the pixel index in the frame f, and N is the
total number of pixels in the frame. Further, to restrict the quality
metric in the range between 0 and 1, the condition of “bounded-
ness” is applied

EQ-TARGET;temp:intralink-;e007;326;620fðαÞ ¼ 1

α2 þ 1
; 0 ≤ fðαÞ ≤ 1: (7)

The error between Rgði; fÞ and Dgði; fÞ is computed using the
MSE

EQ-TARGET;temp:intralink-;e008;326;556emðfÞ ¼
1

N

XN
i¼1

½Rgði; fÞ −Dgði; fÞ�2: (8)

Implementing the bounding function of Eq. (7)

EQ-TARGET;temp:intralink-;e009;326;495EMðfÞ ¼
1

N

XN
i¼1

�
1

Rgði; fÞ2 þ 1
−

1

Dgði; fÞ2 þ 1

�
2

: (9)

The error index given in Eq. (9) is between a single frame of the
reference and the compressed video. Thus, it is a measure of
change in the motion quality of a frame based on the change
in motion estimates between the reference and the impaired
videos.

The motion information error across the video is calculated
by taking the mean across all k frames of the video. The measure
obtained by (9) is a measure of the motion error of a frame f.
Subtracting the error from 1 would give a measure of the motion
quality. Therefore, the motion quality of a given impaired car-
diac video is given as

EQ-TARGET;temp:intralink-;e010;326;324QM ¼
Xk
f¼1

½1 − EMðfÞ�: (10)

To compute the second component, “edge quality,” the edge
detector defined by Eq. (6) is implemented on both the reference
video frame and the corresponding compressed video frame. If
Redgði; fÞ andDedgði; fÞ are the edge maps of the corresponding
reference and compressed video frame f with i ¼ 1;2; : : : ; N
pixels, then the edge quality measure can be obtained by com-
puting the correlation between Redgði; fÞ and Dedgði; fÞ. The
correlation score would give a measure of closeness between
the edge map of reference and the compressed video frame.
Therefore, the edge quality measure can be defined as

EQ-TARGET;temp:intralink-;e011;326;163EdgeErrðfÞ¼
P

N
i¼1Redgði;fÞDedgði;fÞ−R̄edgði;fÞD̄edgði;fÞ

ðN−1ÞSRedg
SDedg

:

(11)

In Eq. (11), R̄edgði; fÞ and D̄edgði; fÞ are the mean of edge infor-
mation across the reference and impaired video frame, respec-
tively. Similarly, SRedg

and SDedg
are its corresponding standard

Fig. 2 The motion vectors on frame 35 of a cardiac ultrasound
sequence. The motion vectors are illustrated for every 10 pixels.
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deviation for N number of pixels. Further, by taking the mean
across all k frames of the video, the Edge Quality measure can
be obtained as

EQ-TARGET;temp:intralink-;e012;63;719QE ¼
Xk
f¼1

EdgeErrðfÞ: (12)

Finally, the CUQI metric measure is obtained by multiplying
the “motion quality” index by the “edge quality” index. This
approach gives equal weight to both motion and edge quality
measures and hence captures any degradation in either of the
quality indices. Therefore, CUQI is computed as

EQ-TARGET;temp:intralink-;e013;63;613CUQI ¼ QM ×QE: (13)

4 Metric Implementation and Evaluation

4.1 Metric Implementation

The CUQI metric was implemented on MATLAB®. The Horn
and Schunck optical flow algorithm was implemented on two
successive frames (i.e., the current and the next frames) to obtain
the motion vectors of the current frame. Thus for F frames of a
video, the motion vectors were computed for F − 1 frames.

An n × n sliding window-based approach was used for
implementing the Gaussian weights. The Gaussian kernel
size was chosen to be 32 × 32, as it gave a good approximation
of the quality for less complexity than smaller windows. Our
tests showed that increasing the block size to 64 × 64 would
increase the computation speed; however, the approximation
of quality was weaker. Using a smaller block size of 15 × 15

or 7 × 7 decreases the computation speed without significant
changes to the quality approximation when compared to
32 × 32 window.

The LoG edge detector was implemented in MATLAB® to
extract the edge map. For the LoG edge detector, it is important
to define the threshold and sigma values. Choosing lower thresh-
old and sigma values may result in wrong detection of speckle
noise as edge information, whereas higher threshold values
might sometimes miss detecting certain edges from the video.
Therefore, in our experiments, we tested several threshold and
sigma values and found that a threshold value of 0.0035 and a
sigma value of 2.25 for the filter gave the best edge map extrac-
tion. The correlation measure between the reference and the
impaired cardiac video frames was done using the Pearson cor-
relation as defined in Eq. (11). Also, since the motion quality is

measured for F − 1 frames only, the edge quality was also mea-
sured for the same number of frames.

4.2 Evaluation Setup

4.2.1 Video sequences

The CUQI metric was tested on cardiac ultrasound sequences. In
our tests, we used three cardiac ultrasound sequences consisting
of 100 frames with a frame resolution of 640 × 416 and frame
rate of 25 frames per second. The video sequences were com-
pressed at eight different quality levels using the latest video
compression standard, HEVC.38 The quality levels were deter-
mined by the value of the QP used. Therefore, eight different QP
values were used to impair the video at eight different quality
levels. The QP values chosen were 27, 29, 31, 33, 35, 37, 39,
and 41. The compression ratios achieved were in the range of
100∶1 to 550∶1 depending on the QP value used. For instance,
the original video sequence, SeqA (refer to Fig. 3), was of file
size 84,000 KB. At a QP level of QP ¼ 27, the file size was
reduced to 834 KB. In total in the tests, we used 27 video
sequences, i.e., three video sequences compressed at eight dif-
ferent quality levels. Figure 3 shows an example frame of the
cardiac sequences considered in our tests.

4.2.2 Subjective test

The compressed video sequences were subjectively evaluated
for the diagnostic quality by medical experts. The subjective
evaluation setup in our tests followed the double stimulus con-
tinuous quality scale (DSCQS) approach—a type II methodol-
ogy that is one of the methodologies recommended by the
International Telecommunication Union (ITU) in the document
ITU-R BT.500-11.39 The DSCQS methodology is widely used
in medical video subjective quality evaluation, for instance, in
Refs. 40–42. The subjective scores obtained by this methodol-
ogy are less sensitive to the context; i.e., the ordering and the
level of impaired sequences have less influence on the subjective
ratings.43 The context effect occurs when the ratings given by
the subject are influenced by the severity and order in which
the impaired video sequences are placed. This effect might
lead to memory-based biases from previously viewed sequences
that may impact the ratings provided by the subjects to the video
under test. In DSCQS methodology, the context effects are mini-
mized, as pairs of videos are shown in a randomized order so
that the subjects are less likely to be biased in their ratings from
the previously viewed sequences.43

In the DSCQS methodology, the medical expert is presented
two videos side by side, typically the reference and the impaired

Fig. 3 An example frame of each of the sequences used in the tests. Right to left. Seq A:
Echocardiography in four chambers view. The right ventricle is dilated. Seq B: Echocardiography:
parasternal long axis view, displaying left atrium and ventricle, aorta and mitral valves. Seq C:
Echocardiography in four chambers view: both atria and ventricles are visualized.
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videos. The subject is asked to rate both video sequences on two
separate scales of 1 to 5, where 1 corresponds to the lowest and 5
to the highest quality. The quality, for the medical experts, is
defined as the suitability of the medical video for a reliable diag-
nosis. In other words, the experts are asked to rate the video
based on how reliable they find the video to be used for diag-
nosis. The DSCQS is a blind test, i.e., the subject is unaware of
which one is the reference video. The video sequences were dis-
played in their original resolution, i.e., 640 × 416, on a liquid
crystal display monitor, and the tests were performed in a
room that specialists use to visualize video sequences and per-
form diagnoses. The monitor display settings and the ambient
lighting conditions were set at natural conditions under which
the medical experts perform their daily diagnosis activities. In
other words, the subjective test was conducted in an ambience
similar to the ambience the medical experts use to view cardiac
videos on a regular basis.

Prior to the actual tests, the subjects underwent a short train-
ing session to familiarize them with the testing process. During
the actual tests, the subjects had an option to replay the video
sequence in case they were not able to judge the quality of
the video in the first viewing; however, they were not able to
manipulate the videos or do operations such as zoom/pan and
others. The Moscow State University perceptual quality tool44

was used for conducting the subjective tests and documenting
the score obtained in the subjective study. The ratings obtained
were then used to get the mean scores and other desired
statistics.

The subjective tests involving medical experts were con-
ducted at the University Hospital of Perugia, Italy. The ethics
approval to conduct the subjective tests was obtained from
the Faculty Research Ethics Committee (in SEC Faculty) in
Kingston University and Ethics Committee of Hospital of
Perugia, Italy.

4.2.3 Subjective scores

The subjective evaluation was done by four medical experts
(three cardiologists and a radiologist) who subjectively rated
the video sequences based on their diagnostic and perceptual
quality. In the DSCQS method, for each video sequence, two
ratings were obtained, where one score corresponds to the
score given to the reference video and the other to the impaired
video. If Refi;j is the rating given to the reference sequence of
the j 0th video by subject i, and Impi;j is the rating given to the
impaired sequence of the j 0th video by subject i, then the differ-
ential opinion score (DOS) for the j 0th video by the subject i is
given as

EQ-TARGET;temp:intralink-;e014;326;752DOSi;j ¼ Ref i;j − Impi;j: (14)

The DOSi;j for each video j is obtained for each subject i. The
scores of all the subjects were tested for reliability and interob-
server variability via the subject rejection procedure adopted
from Ref. 39. The subject screening methodology is based
on determining the normal distribution of the scores by comput-
ing the Kurtosis coefficient of the scores. The scores are con-
sidered to be normally distributed and accepted if the Kurtosis
value of the scores is between 2 and 4. In cases where the scores
are not normally distributed and if the standard deviation of the
subject’s scores falls outside the 95% confidence interval range
from the mean score, then it accounts for large interobserver
variability and makes the scores unreliable, subsequently result-
ing in the rejection of the subject’s scores. In our tests, none of
the expert ratings were rejected. The accepted DOSi;j scores
were further computed to obtain the mean score, i.e., differential
mean opinion score (DMOS) for video sequence j, given as

EQ-TARGET;temp:intralink-;e015;326;554DMOSj ¼
XN
i¼1

DOSi;j: (15)

4.2.4 Performance evaluation

To evaluate the performance of the metric, the correlation analy-
sis approach is used. The correlation between the CUQI metric
scores and the DMOS scores is computed. A high correlation
implies that the metric shows good performance. Further, we
compare the performance of the CUQI metric with seven
other state-of-the-art metrics also considered in our previous
study.2

The correlation between the objective and subjective scores
is evaluated using the Pearson linear correlation coefficient
(PLCC) and the Spearman rank order correlation coefficient
(SROCC). Further, a nonlinear regression analysis using a
four-parameter logistic function is performed on the objective
metrics in order to improve prediction accuracy and correlation
with the DMOS.45 The four-parameter logistic function is
described as

EQ-TARGET;temp:intralink-;e016;326;321VQ 0
j ¼ β2 þ

β1 − β2

1þ exp
h
−
�
IQj−β3
jβ4j

�i : (16)

The β values are obtained by implementing Eq. (16) using the
nlinfit tool in MATLAB®. The fitted objective values VQ 0

j are
tested for their correlation with DMOS using the PLCC method.

Table 1 The PLCC and SROCC of the objective scores with the DMOS scores. The first two rows report PLCC results before and after nonlinear
regression. The third row reports the SROCC results.

CC

State of the art objective metrics

SSIM VSNR VIF UQI PSNR VQM NQM CUQI

PLCC 0.9304 0.9040 0.9214 0.9233 0.8917 0.9236 0.9179 0.9005

PLCCNlin 0.9335 0.9261 0.9317 0.9245 0.9098 0.9258 0.9278 0.9415

SROCC 0.9222 0.9217 0.9279 0.9257 0.9125 0.9301 0.9160 0.9311

Note: The best performing metric in each row is highlighted in bold.
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5 Results
Table 1 presents the correlation scores of the metrics considered
with the subjective scores of the medical experts. The first row
shows the PLCC scores, the second row presents the PLCC

scores after nonlinear regression analysis, and the third row
presents the SROCC scores. The best-performing metric in
each row is highlighted. It can be seen that the CUQI metric
shows consistently high correlation with the subjective scores.

Fig. 4 Scatter plots of DMOSs of experts versus objective quality metrics along with logistic fit.
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In some instances, the CUQI metric performs better than some
of the state-of-the-art metrics considered in our tests. In particu-
lar, under PLCC analysis after nonlinear fitting and under
SROCC analysis, the CUQI shows high correlation. It can be
observed that the SSIM, VQM, and VIF metrics show very
high performance, too. The performance of the metric is further
evaluated statistically using the F-test in Sec. 5.1.

The performance of the metric is further shown in Fig. 4. The
objective scores of all the quality metrics considered in our tests
are plotted against the DMOS values. A best fitting logistic
curve is also shown in the plot. The logistic fit curve corre-
sponds to the four-parameter logistic function used for nonlinear
regression analysis of objective scores to improve the prediction
accuracy as described by Eq. (16) in Sec. 4.2.4. It can be
observed that the majority of quality predictions from the
CUQI metric are close to the fitted curve. This indicates that
CUQI gives quality predictions very close to the subjective
scores of the medical experts.

5.1 Statistical Significance Test

The performance of the metric is further tested using the F-test
statistical significance test. The F-test statistical evaluation is an
ITU recommendation to evaluate the performance of one objec-
tive quality metric over the other.46

The “null hypothesis” considered for the F-test is that the
variance of the residual error of two objective quality metrics
are equal. Based on this null hypothesis, the performance of
the CUQI metric is evaluated with other metrics at 1% signifi-
cance level. The “degrees of freedom” for the test is one unit
lower than the number of test videos, i.e., 24 − 1 ¼ 23. The
results of the F-test are shown in Table 2.

In Table 2, the FRatio values of the CUQI with each metric are
given in the first row. When the FRatio value exceeds the Fcritical

value, the performance of the CUQI is statistically insignificant.
It can be observed that the CUQI metric performance is sta-
tistically superior to VIF, UQI, and PSNR. Further, the perfor-
mance of the CUQI is statistically equal to VSNR and NQM.
The SSIM and NQM metrics’ performance is statistically supe-
rior to the CUQI.

The results of our tests show that the proposed approach of
considering the motion and edge information for quality evalu-
ation of cardiac ultrasound sequences is an efficient method of
quality evaluation. The CUQI metric also shows slightly better
performance than popular VQMs such as PSNR, SSIM, VQM,
VIF, and others.

Cardiac ultrasound sequences are significantly characterized
by rapid, repetitive motions and distinct structural information.
Most state-of-the-art VQMs give little to no consideration to the

apparent motion of the video sequences for quality evaluation.
Therefore, in the CUQI metric, we compute the change in
motion and edge integrity of the cardiac ultrasound sequences
to perform quality evaluation. This approach proves to better
represent the diagnostic quality of the cardiac sequences than
other state-of-the-art metrics.

6 Discussion and Conclusion
A VQM for cardiac ultrasound videos is proposed. In cardiac
videos, motion and edge information are two significant fea-
tures. Distortions to the motion and edge information may sig-
nificantly affect the perception of the video, which in turn affects
the diagnostic quality of the video. Therefore, a VQM that can
primarily measure the motion and edge distortions in cardiac
videos would provide a suitable approach for quality assessment
of cardiac videos. In the literature, to the best of our knowledge,
there has been very little work that has focused on an approach
that considers combined motion and edge distortions measure-
ment for video quality assessment. Further, we were not able to
find any VQM that is specifically used for quality assessment of
cardiac videos. To address the lack of specific VQMs for cardiac
ultrasound videos, the CUQI metric is proposed. The proposed
CUQI metric can be considered a diagnostic-quality oriented
metric since it evaluates the quality based on the image features,
which has significant potential to affect video perception for
diagnosis. To validate our claim, the results of our tests show
that the motion and edge information in cardiac ultrasound vid-
eos can be effectively utilized for a reliable objective evaluation
of diagnostic quality. The correlation with expert opinion scores
and the statistical significance test validate the performance of
the CUQI metric.

Further, the proposed metric can have significant applica-
tions clinically. The relevant medical staff such as cardiologists
and radiologists could use the metric to ensure that the cardiac
video does not have significant impairments that might have
affected the diagnostic information in the video. Also, in appli-
cations such as remote consultations or other telemedicinal
applications where the videos are compressed and transmitted,
the metric can be applied at the receiver end to verify the video
integrity. In several countries, hospitals are legally required to
archive medical videos in their servers for a specific period
of time for which compression is often used to reduce the stor-
age costs. The faculty responsible for archiving the videos could
use the CUQI metric to verify that the compression process does
not introduce unacceptable impairments. The metric can also be
used to identify acceptable compression ratios for cardiac videos
based on its objective quality assessment. To be able to identify
an acceptable compression ratio is important because acceptable
compression ratios may differ for each video. A particular

Table 2 The F -test results evaluating the performance of the CUQI with other objective metrics. The F critical value is 2.72. The first row shows the
FRatio value obtained when CUQI performance is evaluated with other metrics. In the second row, “I” indicates the CUQI is statistically inferior to
the metric of that column, “S” indicates the CUQI is statistically superior to the metric of that column and the symbol “−” indicates the performance of
the CUQI and the corresponding metric is equal.

CUQI (F critical ¼ 2.72)

State-of-the-art objective metrics

SSIM VSNR VIF UQI PSNR VQM NQM

FRatio 3.51 2.70 1.73 2.41 1.46 4.59 2.70

Result I — S S S I —
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compression ratio may have a different impact on video quality
for two different videos. Therefore, the CUQI could be used to
adapt the compression ratio specifically for each cardiac video
depending on its impact on the quality. Finally, the CUQI metric
can help automate the process of quality validation of cardiac
videos and reduce the need to subjectively validate the video
quality, which is often a time-consuming and operationally
expensive process.

The presented study could be further strengthened by
expanding the subjective study to include more relevant expert
subjects. A limited number (4 to 5) of expert observers for
medical subjective evaluation is an accepted norm since recruit-
ing expert observers is a difficult and expensive process.
Additionally, in our studies, three cardiac videos were consid-
ered for quality evaluation. The study can be further expanded
by considering more cardiac ultrasound videos at different
impairment levels, thereby using a larger dataset for perfor-
mance evaluation of the CUQI metric. The main aim of the met-
ric evaluation was to assess the quality of compressed cardiac
videos. However, the study can be further expanded to evaluate
the metric performance in quality assessment of different distor-
tions such as packet losses during the transmission process. The
CUQI metric is a “full-reference”metric, implying that the origi-
nal uncompressed video is required for quality assessment. In
scenarios where the original video is unavailable, the CUQI met-
ric cannot be used in the current form. This limitation could be
overcome by developing “reduced-reference” or “no-reference”
versions of the CUQI metric that would not require the original
video for quality assessment. The CUQI metric can also be
modified if necessary and tested on other types of medical vid-
eos that have significant motion and edge characteristics.

To summarize, our study showed that the approach of using
specific characteristics of the medical video can enable design
and development of more diagnostic-quality oriented VQMs.
The topic of medical video quality evaluation remains a chal-
lenge. There is a need for development of content-aware
VQMs for various types of medical videos. This can be achieved
by a better understanding of medical video features affecting the
diagnostic quality and by the participation of medical specialists
in the development of quality metrics.
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