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Purpose. To review the validation of assumptions made in agent-based modeling of diffusion 

and the completeness of the mechanisms assumed to operate. 

Design. One well-cited paper is re-examined.  

Findings. Evidence is presented that casts doubt on the assumptions and mechanisms used. A 

range of mechanisms is suggested that should be evaluated for inclusion in modeling. 

Originality. The need for validation of assumptions has been stressed elsewhere but there has 

been a lack of examples. This paper provides examples. The emphasis on the 

completeness of the mechanisms used has not been highlighted elsewhere.  
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Improving Agent-Based Models of Diffusion  

 

1. Agent-Based Modeling 

Agent-based modeling (ABM) sets out to show how patterns of behavior emerge from the 

individual-level actions and interactions of agents. In this paper, an agent is considered to be 

a consumer, but the approach can cover other entities that act on each other in a system. 

Assumptions are made about the choices facing agents and the way they make decisions, 

which are expressed as decision rules. Because these choices occur in a network, one agent’s 

choice affects the behavior of other agents and, when the whole system is computed and run, 

the interaction plays out and collective effects emerge. Therefore, there is a direct link 

between initial assumptions and outcomes. The ABM may be seen as an inference engine that 

leads to conclusions by logic and mathematical procedures.  However, in order to derive true 

conclusions from this inference engine, the assumptions that are made should be both 

validated and sufficient. By validated, we mean that the assumptions have empirical support 

and, by sufficient, we mean that these assumptions cover all substantial processes and 

limitations relevant to the inferences made with the model. ABM has been applied to a 

variety of problems; here, we are only concerned with its application to the diffusion of 

innovation where the complexity of the exercise makes validation and sufficiency more 

problematic and we focus on one paper by Goldenberg, Libai, Moldovan, and Muller (2007), 

which we abbreviate to GLMM. 

Rand and Rust (2011) review good practice in ABM. These authors argue against the use 

of untested assumptions but give few examples; we build on their work to show how the 

assumptions used in one very well known ABM paper are not supported by subsequently 

gathered evidence. This gives substance to the problem of using untested or poorly-tested 

assumptions. Rand and Rust also include a test of model output in their specification of 

validation and state that this is the key test of a model’s validity. This type of validation tests 

predictive validity and is relevant if the purpose of the model is to predict outcomes as, for 

example, is the case for aggregate-level Bass (1969) modeling. But the truth of outcomes 

does not imply the truth of assumptions, only that these assumptions have not yet been 

falsified by a finding contrary to evidence 1. By contrast, true assumptions in a valid 

                                                 
1 Here, implication rests on deductive validity as it is understood in logic as a property of a well-formed 
argument. For example: The King of France is blue-eyed, I am the King of France, therefore I am blue-eyed is a 



argument lead inexorably to true conclusions. Thus, if agent-based modelers want to go 

beyond simply predicting diffusion outcomes and to explain the processes governing social 

network change, they need to validate their assumptions.   

The validation exercise does not cover the sufficiency of these assumptions. By 

sufficiency we mean that all relevant processes and conditions are conceptualized and 

represented in the model. For this to be covered in the validation exercise, modelers would 

need to go through all the limiting conditions and possible mechanisms that might be 

involved, investigate them and include those that have significant effect. If this is not done, 

the model may be insufficient and fail to represent the processes in the actual social network. 

Instead, it will represent processes in a hypothetical social network that does not exist. 

Agent-based modelers talk of experimenting with the model: they may try various values 

for the assumptions and observe the outcomes produced. Another procedure is to eliminate an 

element of the model to see how this changes the network outcome. This was done, for 

example, by Watts and Dodds (2007) when they tried removing opinion leaders from the 

modeling. Similarly, GLMM compare outcomes with and without NWOM being produced. 

This is a form of experimentation within the model but the model itself is not an experiment. 

If the assumptions of the model are false, or insufficient, multiple runs that vary the input 

data will not solve the problem.  

 

2.1. Untested assumptions 

For this aspect of the paper, we focus on the GLMM study. We do not claim that our 

specific criticisms of this paper can be extended to all ABM applications to diffusion but the 

problems that we highlight may be found in other papers such as Watts and Dodds (2007) and 

Goldenberg, Libai, and Muller (2010).  GLMM use ABM to explore how negative word of 

mouth (NWOM) may undermine the take-up of a new product. They suggest that a higher 

proportion of customers recruited by advertising will become dissatisfied with the product 

compared with those recruited by positive word of mouth (PWOM) and that these dissatisfied 

customers will then give more NWOM, which they define as an outcome of dissatisfaction. 

Their analysis suggests that the proportion of dissatisfied customers is particularly harmful 

because of the impact of NWOM.  

GLMM’s work has important and controversial managerial implications since, to 

minimize the effect of NWOM, they argue that promoters of a product should limit 
                                                                                                                                                        
valid argument irrespective of the truth of the assumptions and, if I am not blue-eyed, one or both of the 
premises is false. 



advertising when the product is launched. Crucial to GLMM’s argument is whether ad-

recruited customers are substantially more dissatisfied.  Uncles, East, and Lomax (2013) 

found that ad-recruited customers were more dissatisfied but the difference between them and 

referral-recruited customers was fairly small. In a projection of their findings, Uncles et al. 

showed that it took several years for the advantage of referral customers to emerge strongly. 

Another part of GLMM’s argument is that NWOM is more potent than PWOM; they 

conceptualize two groups: rejecters who, without buying the product, may dissuade others 

and disappointed adopters, who have bought the product and are dissatisfied. NWOM from 

these groups may turn adopters against the product and may block off whole clusters of 

potential customers. Thus GLMM follow an assumption made by Midgely (1976) that 

NWOM has two effects: it dissuades non-users from adopting and also turns positive 

adopters into disappointed adopters, who then give NWOM. GLMM represent this process 

and give NWOM twice the impact of PWOM. As support for the greater weight of NWOM, 

they point out that research in the negativity bias field shows that negative information has a 

greater impact than positive information (e.g. Mizerski 1982). They also asked MBA students 

about the judged effect of positive and negative information on behavior. This evidence falls 

short of validation.  

First, PWOM may have parallel effects by creating adoption and also changing the 

dispositions of negative adopters so that they give PWOM; this needs to be checked because 

it would match the influence of PWOM and NWOM. 

Second, the negativity bias research shows effects on attitude and cognition rather than on 

behavior such as adoption. Intention to purchase is normally seen as closer to behavior than 

attitude and work conducted after GLMM’s study has shown that PWOM has more impact on 

purchase intention than NWOM (East, Hammond, and Lomax 2008, Sweeney, Soutar, and 

Mazzarol 2014). This weakens GLMM’s claim that NWOM is more powerful than PWOM.  

Third, asking MBA students about the hypothetical impact of PWOM and NWOM seems 

wide open to bias from lay theory (Craik and Lockhart 1972).  Our experience has been that 

business people expect NWOM to have more impact but when we investigated this in a 

sample of the general population, PWOM and NWOM had much the same support.  

We turn now to the relationship between dissatisfaction and NWOM. GLMM saw NWOM 

as the product of dissatisfaction but the relationship is not one to one. People may give 

negative advice about products that they like because they believe that these products are 

unsuited to the needs of the receiver of advice. If a substantial proportion of NWOM is not 

based on satisfaction, GLMM’s assumption that NWOM is always (or even mostly) based on 



dissatisfaction will lead to error. GLMM cite evidence from Anderson (1998), showing that 

there is more WOM produced by dissatisfied than satisfied customers but the difference that 

Anderson found was quite small.   

Additional evidence is needed to clarify this matter. First, what is the proportion of 

NWOM produced primarily as a consequence of dissatisfaction? For services, this averaged 

37% while 40% of the PWOM came from satisfied customers in a study by East et al. (2015). 

Second what is the ratio of satisfied to dissatisfied customers? This depends on the product 

field but a figure of about 10:1 can be derived from Peterson and Wilson (1992) who studied 

a range of products. These data indicate that the volume of NWOM produced by dissatisfied 

customers is quite small compared to the PWOM produced by satisfied customers.  These 

incidence differences need to be represented in ABM models.  The volume of NWOM 

derived from dissatisfaction may be still lower for tangible products. These are thought to 

produce less dissatisfaction because the purchaser can judge the product more easily and the 

seller can control quality more effectively. GLMM find a very strong effect on adoption from 

increases in the proportion of dissatisfied customers so, if they overestimate the amount of 

NWOM produced by dissatisfied customers, the effect will be much reduced. 

In models of social networks, the network connections must be specified. Actual networks 

will show clusters and voids when interaction is mapped, representing the greater association 

between some people and the relative isolation of others. This pattern needs to be represented 

if the computer model is to be realistic. GLMM assume a structure of connected clusters. 

That is, there is a relatively large interaction within the cluster, mainly between strong ties, 

and a lesser interaction between clusters where the ties tend to be weak. Mukherjee (2014) 

shows that variation in the network alters outcomes, which makes the assumptions that are 

made about network structure important. Nitsan and Libai (2011) have researched telephone 

interaction in a network of a million subscribers; this gives evidence of actual connections. 

The use of such evidence should improve network representation but there remains a problem 

that interaction patterns may vary with the category and product type being studied. On such 

product differences, GLMM are generally silent. We do not have evidence to add on network 

structure but uncertainty about the appropriate network structure adds to doubts about the 

output from ABMs. 

This review suggests that: ad-recruited customers are not much more dissatisfied than 

referral customers, the amount of dissatisfaction is low, a substantial proportion of the 

NWOM expressed has little relationship to dissatisfaction, the evidence on the supposedly 



greater impact of NWOM is questionable, and that different assumptions about network 

structure might produce different results.  

 

2.2. Insufficiency of the model 

We now turn to the sufficiency of assumptions – that nothing important has been left out.  

Assumptions should cover all mechanisms and constraints that are relevant to outcomes.  

Here we give one example of a mechanism and one example of a constraint that seem to be 

missing from the GLMM research. Further consideration of mechanisms that may be needed 

in diffusion models is left to the Discussion.  

Central to GLMM’s suggestion about the effect of initial advertising is the proposition that 

NWOM would flow from the higher proportion of disappointed purchasers produced by 

advertising. Data relevant to this were gathered by East et al. (2015). They used an 

established typology of triggers of WOM response and found that four percent of NWOM 

was elicited primarily by advertising for the service. They also found that three percent of 

NWOM was elicited by advertising for another service, indicating that a brand’s advertising 

could stimulate negative comment on other brands, which could be to the advantage of the 

focal brand. This mechanism of responding negatively to Brand A because of advertising on 

Brand B does not seem to be represented in the model used by GLMM. It offsets any 

generation of NWOM on a focal brand as a result of its advertising.  

One constraint on the modeling is the overall proportion of NWOM compared to PWOM. 

GLMM’s claims about the detrimental effects of NWOM would lose importance if the ratio 

of PWOM to NWOM volume were high because, then, NWOM would be crowded out by 

PWOM. The proportions of PWOM and NWOM are measured by the Keller Fay Group; 

USA data supplied to us for 2009 shows that that 65% of brand-related conversations are 

mostly positive, 8% are mostly negative, 15% are mixed and 12% are neutral. Even if mixed 

conversations are treated as both positive and negative, this evidence shows that NWOM is a 

relatively small proportion of total WOM. GLMM do not address the ratio of PWOM to 

NWOM in their review of evidence. 

 

2.3. Comparison with car crash modeling 

These criticisms of the modeling of diffusion effects may be compared with a field where 

the modeling is unquestionably successful. In car crash modeling, the car body is specified 

and, unlike network structure, does not need to be discovered; the mechanisms involved such 

as energy transfer, heating and bending are well understood and can be sufficient; the input 



data can be precisely specified; and predictions can be tested by direct physical observation, 

which will reveal insufficiencies in the modeling.  

 

 3. Discussion 

 

In this paper, we build on the critique of ABM practice by Rand and Rust (2011) by 

providing more specific evidence on the assumptions used in one study that applies ABM to 

diffusion processes. We show that important assumptions made by GLMM are not supported 

by evidence gathered after their study was completed. However, our wider concern is that 

recommendations based on ABMs of diffusion may be erroneous because of untested 

assumptions and that GLMM’s recommendation of restraint in launch advertising may lead 

practitioners astray. Such restraint is contrary to normal practice at launch where heavy 

advertising is justified by the work of Lodish et al. (1995) showing much higher ad 

elasticities at this time than at product maturity. Relevant here is evidence by East et al. 

(2011) showing the user status (current, previous, never) of those giving NWOM. On 

average, across 15 studies, only 22% of current users give NWOM whereas 55% of previous 

users do so (and 22% of never-users). At the launch of a new product, there are no previous 

users, which reduces NWOM and gives a honeymoon period for new products.  

 

3.1. Transmission of WOM by adopters who hear PWOM on the brand 

WOM has two direct effects on the acceptance of new products. One is to affect adoption 

and the second is to influence the further transmission of WOM. It seems likely that PWOM 

will produce a greater effect because it is more common. In particular, adopters who receive 

PWOM on their brand may give extra PWOM, some of which may result in adoption. 

Relevant to this, East, Romaniuk, and Lomax (2011) find that 93% of PWOM comes from 

existing or prior owners. Work in progress shows that those who have heard their current 

brand recommended give twice as many recommendations as those who have not heard such 

recommendation. A significant effect persists when the influence of major covariates is 

controlled. Thus, we think that there is a strong case for incorporating PWOM transmission 

effects into models of diffusion. 

 

3.2. Saturation effects 

A PWOM transmission effect would have most impact when the brand is large and has 

many owners who originate, receive, and transmit WOM. Thus, a runaway feedback effect 



would occur in large brands unless a saturation mechanism operates to dampen WOM. The 

motivation to transmit WOM is likely to recede as a product becomes widely known. Some 

evidence for this comes from Dost, Sievert, and Oetting (2010). They found that people did 

not pass on WOM because they lost interest in it or because they perceived that the receiver 

had little interest in the matter. 

 

3.3. Decay of effect after product experience 

Some products/services are used intermittently or once only. When this applies, we may 

expect a fall in WOM about the product after product experience. This decay is very rapid in 

some fields such as retail fashion and movie attendance so that much of the WOM that occurs 

happens in the week after product use (East et al. 2014). In other fields such as cell phones, 

the WOM is spread over a much longer period. GLMM do allow for decay, unlike the 

aggregate Bass (1967) model. Such decay effects need to be incorporated into any modeling 

of diffusion. 

 

3.3. Customer retention 

Uncles et al. (2013) found that, on average, referred customers were slightly better 

retained than customers acquired through advertising. They found that this retention was the 

major factor increasing the value of referral customers, rather than their greater use of WOM. 

There were indications that, in some categories, retention might be large and, if this were 

confirmed, differential retention would need to be included in diffusion models.  

 

3.5. Reflexive effects 

When people give WOM, there may be self-induced learning effects, which increase the 

likelihood of giving WOM on a subsequent occasion. We have no direct evidence on this but 

a finding of Chandon, Morwitz, and Reinartz (2005) suggests that reflexive effects may 

occur. They found that those who reported their intentions in a survey were more likely to 

engage in the intended behavior than those who had not been asked for their intentions. 

 

3.6. Better models of diffusion 

The defects of mature methods such as surveying are well known and commonly 

expressed. ABM is relatively new; it has stirred interest and seems to yield insights that are 

exciting. For example, the widely cited paper by Watts and Dodds (2007) has raised 

discussion on the moribund two-step flow account of diffusion (Lazarsfeld, Berelson, and 



Gaudet 1944, Katz and Lazarsfeld 1955). However, the potential for omitting important 

processes from ABM models seems large.  To develop work in this field, we need to include 

currently available evidence and to conduct research on the additional mechanisms that could 

affect diffusion.  

Modelers in this field may justify simpler models by reference to Axelrod’s (1997) KISS 

maxim (Keep It Simple, Stupid). Theories and methods that are simple may be more easily 

comprehended and explained to others and are attractive for this reason. However, when a 

problem is complex, such as the spread of an innovation in a social network, the KISS maxim 

may lead researchers astray.  It appears to be a modern-day expression of Occam’s razor but 

William of Occam was against unnecessary complexity rather than complexity per se. We 

argue that the range of mechanisms and circumstances that can operate in diffusion makes the 

field very complex to model and that this complexity cannot be avoided. More complex 

modeling is a daunting prospect, but one which we hope that agent-based modelers will 

undertake. 
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