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Highlights 
 

 Detached-eddy simulation of the mixing process between mainstream flow and coolant; 
 Effects of various t/H ratios on blade trailing-edge cutback cooling performance; 
 Vortex shedding behind the lip plays an important role in near wall cooling efficiency; 
 Discharge coefficient and adiabatic film-cooling effectiveness agree with experiment; 
 Thermal mixing has been greatly intensified with the increase of the t/H ratio. 

 

ABSTRACT 

  

Three-dimensional detached-eddy simulation (DES) study has been carried out to evaluate the 

cooling performance of a trailing-edge cutback turbine blade with various lip thickness to slot 

height ratios (t/H). By adopting the shear-stress transport (SST) k-ω turbulence model, the 

numerical investigations were performed at two successive steps: first, to validate simulation 

results from an existing cutback turbine blade model with staggered circular pin-fins arrays 

inside the cooling passage against experimental measurements and other available numerical 

predictions; second, to understand the effects of the lip thickness to the slot height ratio on the 

blade trailing-edge cooling performance. It was found from the model validations that at two 

moderate blowing ratios of 0.5 and 1.1, DES predicted film cooling effectiveness are in very 

good agreement with experimental data. Further comparisons of four various t/H ratios (t/H = 

0.25, 0.5, 1.0, 1.5) have revealed that the thermal mixing process between the ‘cold’ coolant gas 

and the ‘hot’ mainstream flow in the near wake region of the exit slot has been greatly intensified 

with the increase of the t/H ratio. As a result, it causes a rapid decay of the adiabatic film cooling 

effectiveness downstream of the blade trailing-edge. The observed vortex shedding and its 

characteristics in the near wake region are found to play an important role in determining the 

dynamic process of the ‘cold’ and the ‘warm’ airflow mixing, which in turn have significant 

influences on the prediction accuracy of the near-wall heat transfer performance. As the four t/H 

ratio increases from 0.25 to 1.5, DES predicts the decrease of main shedding frequencies as fs = 

3.69, 3.2, 2.21, and 1.49 kHz, corresponding to Strouhal numbers St = 0.15, 0.20, 0.23, and 0.22, 

respectively. These results are in good agreement with available experimental measurements. 

                                                           
 Correspondence author, Yufeng.Yao@uwe.ac.uk, Tel: +44(0)1173287084 
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1.   Introduction 

Gas turbines and its variants are widely used for aircraft and marine propulsion, power of 

locomotives, land-based power generation, and other industrial applications. One of the main 

driving forces behind the gas turbine design and development is to achieve the highest possible 

overall engine performance in terms of power output and thermal efficiency. Due to this reason, 

modern gas turbines often operate at high blade inlet temperatures up to 1,200 – 1,500°C 

[1][2][3]. Recent developments in gas turbine engines for aero-propulsion applications require 

much higher turbine inlet temperatures in excess of 1,727°C [4][5][6], and an overall compressor 

pressure ratio of greater than 50 [6]. These extreme conditions and requirements will however 

cause serious aero-thermodynamic problems for key engine components such as liners, vanes 

and blades as the engine operation temperature is far beyond the critical working temperature of 

the materials used [3]. Furthermore, the higher turbine inlet temperatures could lead to some 

adverse effects, such as blade melting, oxidation, corrosion, erosion [7] and degradation of local 

or global structural strengths [8]. For example, an extremely high convective heat flux around a 

blade trailing-edge can cause cracks [7], thermal-fatigue [7][9][10], and buckling [10] thus 

risking turbine blade failure.  

In the gas turbine cooling design, blade trailing-edge (TE) cooling with various lip thickness to 

slot height ratios (t/H) has attracted research interest in recent years. A number of experiments 

have been carried out [11][12][13][14][15][16] and the t/H ratio was found to have significant 

influences on the blade trailing-edge cooling performance. Among these studies, Kacker et al. 

[11][12] evaluated the film-cooling effectiveness of the impervious-wall of a two-dimensional 

wall jet with various t/H ratios, whilst keeping the lip thickness (t) constant. Taslim et al. 

[13][14] investigated the influence of different slot geometries on the film-cooling effectiveness 

in the surroundings of the breakout-slot region at various blowing ratios. It was recognised that 

the increase of the t/H ratio from 0.5 to 1.0 would decrease the overall film-cooling effectiveness 

by about 10%. Similar findings were noted and confirmed by Cuhna et al. [15] and further 

discussed by Goldstein [16]. Sivasegaram et al. [17] and Burns et al. [18] reported that the 

decrease of the t/H ratio is a key factor to increase the film-cooling effectiveness. Hence, it can 
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be concluded that the effectiveness of film-cooling has great dependency on the t/H ratio and the 

correlation between these two parameters needs to be quantified more accurately. 

In recent experiments of Horbach et al. [6][19] on a blade trailing-edge cutback cooling 

configuration, four different t/H ratios ranging from 0.2 to 1.5 have been carefully examined. It 

was found that the decrease of the t/H ratio has the potential to improve the adiabatic film-

cooling effectiveness to unity, while an increase of the t/H ratio will cause the fast decay of the 

film-cooling effectiveness in the vicinity of the trailing-edge cutback region. By using a thicker 

lip (i.e. larger t/H ratio for a fixed slot height), unsteady vortex shedding from the blunt lip end 

will become more intensive, and thus further enhances the thermal mixing of coolant gas and 

warm mainstream flow, in agreement with other researchers, e.g. Holloway et al. [20] and 

Martini et al. [21] [22]. For the cooling passage study, the discharge coefficient was found to be 

increased with the increase of the t/H ratio, possibly due to the local pressure decrease in the lip 

wake region. The discharge coefficient variation was pronounced up to a maximum of 50% for 

different t/H ratios tested at a given blowing ratio of 0.2. These studies have laid a solid 

foundation for numerical investigations to be performed in this paper. 

With the advancement of computer power and numerical techniques, numerical simulation 

applying modern computational fluid dynamics (CFD) has been widely used for both 

fundamental research and industry applications. So far, the majority of industry CFD studies are 

still based on steady and/or unsteady Reynolds-averaged Navier-Stokes (RANS) solutions. It is 

widely accepted that the steady RANS model cannot accurately simulate the turbulent flow 

mixing process. For example, it will largely over-predict the film-cooling effectiveness while 

applied to the blade cooling problem, as previously reported by Holloway et al. [23], Martini et 

al. [24], Egorov et al. [25] and Effendy et al. [26]. 

Most recently, a numerical study using a blade trailing-edge cutback cooling configuration with 

two rows of long ribs inside the cooling passage was carried out by Effendy et al. [27], who 

applied the SST k-ω turbulence model in steady RANS, unsteady RANS and detached–eddy 

simulations (DES). It was recognised that DES with the SST k-ω model is more capable of 

capturing the turbulent flow structures in the mixing region that result in significant 

improvements on the prediction of the adiabatic film-cooling effectiveness, particularly from a 

lower blowing ratio of M = 0.5, whereas both RANS and URANS models largely over-predict 

the film-cooling effectiveness in the near and the far wake regions. At a moderate blowing ratio 

M = 0.8, it was found that the DES slightly over-predicts the film-cooling effectiveness after a 
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non-dimensional stream wise location x/H > 8 (hereafter H denotes the slot height), whereas at a 

high blowing ratio M = 1.1 it under-predicts after x/H > 5. The same configuration has also been 

studied computationally by Martini et al. [28] [29] who used DES with the Spalart-Allmaras 

(SA) turbulence model. It was found that DES-SA results significantly under-predicted film-

cooling performance at all three test blowing ratios of 0.5 < M < 1.1, with a maximum 

discrepancy of approximately 10% between the predictions and the measurements.  

In order to improve the accuracy of numerical prediction, it is necessary to apply more advanced 

techniques such as detached-eddy simulation, using more suitable and well-validated turbulence 

models together with carefully refined near wall grid resolutions. In this study, the capabilities of 

the DES with the SST k-ω turbulence model will be performed to predict the blade trailing-edge 

cooling performance at various t/H ratios. There are various numerical investigations of the 

blade TE cutback cooling available in open literature, but to the authors’ knowledge, there is no 

specific published work detailing the effects of the lip thickness to slot height (t/H) ratio. In 

addition, little information is available to illustrate the dynamic flow interaction process between 

the internal coolant fluid and the external warm mainstream fluid in a comprehensive manner. 

Thus, the present study intends to fill the gap in this field. 

2.   Problem Description and Definition 

A ‘cutback’ of the trailing-edge is obtained by cutting off a corner of the upper lip plate (i.e. 

pressure-side part of the blade) to create a lip thickness. The ‘breakout’ slot is then formed in 

parallel with the ejection slot. This design is expected to have a mixing region between the 

mainstream flow over the pressure-side region and the coolant gas issuing from the ejection slot. 

As highlighted by various researchers, the lip thickness and the ejection slot height are two key 

parameters to influence a blade trailing-edge cooling performance. The lip thickness to slot 

height ratio (t/H) is defined by the ratio of the lip thickness (t) to the ejection slot height (H), as 

illustrated in Figure 1.  

2.1 Film-cooling effectiveness 

The performance of a blade trailing-edge cutback cooling configuration is commonly expressed 

by the film-cooling effectiveness along the protected wall surface between the slot-exit and 

downstream of the trailing-edge. If the exposed TE cutback surface is with the adiabatic wall 

condition (see Figure 2), the film-cooling effectiveness can be derived from the ratio of the 
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temperature difference between the hot gas and the adiabatic wall surface temperature to the 

temperature difference between the hot gas and the coolant gas temperature, as given in equation 

(1) below 

'
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      (1) 

where Taw is the adiabatic temperature of wall surfaces, Thg is the hot gas temperature of the 

mainstream flow at the inflow region and Tc’ is the coolant gas temperature measured at the 

centre of the slot-exit between two neighbouring pin-fins (see Figure 2).  

2.2 Discharge coefficient  

The discharge coefficient CD represents the global pressure losses inside the cooling passage, 

which is defined by the measured coolant mass flow over the ideal mass flow. It is thus a ratio of 

an isentropic expansion from the total pressure measured upstream of the first row of rib 

elements in the L1 region of the coolant passage against the static pressure of the mainstream 

flow as formulated in equation (2) below  

























































1
)1(

2

1

2

,1

,1

2

1

,1

2

,1

,

,

,













p

p

TR
A

p

p
p

m

m

m
C

t

t

slot

t

t

realc

idealc

realc

D






   (2) 

 

where p1,t and T1,t are the total pressure and the total temperature at the coolant inlet, 

respectively, p2 is the static pressure at the slot exit, Aslot is the area of the slot exit, κ is the 

specific heat capacity and R is the gas constant. 

2.3 Blowing ratio  

The non-dimensional blowing ratio (M) is defined as a factor of slot-averaged mean density and 

velocity product over the density and velocity product at the mainstream hot gas inlet plane. The 

equation can be further transformed using the mass flow rate at the slot exit, which is equal to 

that of the cooling inlet (via the mass conservation) as   
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2.4 Strouhal number  

The Strouhal number (St) is a non-dimensional parameter that represents the shedding of vortices 

in the wake region of the mixing flow. It is corresponding to frequency of vortex shedding as  

u

Df
S

s

t


           (4)            

where 
s

f  is the shedding frequency, D is diameter of the bluff body and u is velocity magnitude 

(or stream wise velocity component). In case of the blade TE cutback cooling design, the 

diameter D is replaced by the blockage distance of the bluff body that is equal to the lip 

thickness (t). The displacement thickness of the boundary layer on both sides of the coolant wall 

(
c

 ) and the mainstream wall (
hg

 ) are also considered as the correction of the lip thickness. 

Therefore, equation (4) can be expressed as follows:  
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3.   Governing Equations of DES Model 

The adopted detached-eddy simulation (DES) is a hybrid large-eddy simulation (LES) and 

Reynolds-Averaged Navier-Stokes (RANS) method that was first used for predicting turbulent 

flow phenomenon at high Reynolds numbers, including separated flows [30]. The basic concept 

of DES is to apply a sub-grid-scale (SGS) model in those regions away from the wall where the 

grid density is fine enough for LES, while using a RANS turbulence model in the near wall 

regions. Hence, the unsteady flow motions can be captured both in the near-wall region and 

away from it [30]. The DES method has been successfully applied for turbulent flow over a 

circular cylinder [31], and other complex engineering problems such as aerofoils, hydrofoils, 

civil aircraft, and fighter aircraft [32].  

The present DES formulation is based on the SST k-ω model proposed by Menter et al. [32]. The 

model describes the transport equation of turbulence kinetic energy (k) and the specific 

turbulence dissipation rate (ω) as follows:   
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where ρ is density, ui are velocity components, 
k

G  represents the generation of turbulence 

kinetic energy due to the mean velocity gradients, 


G  is the generation of turbulence dissipation 

ω, 
k

 and 


  denotes the effective diffusivity of k and ω, respectively, 
k

Y and 


Y characterizes 

the dissipation of k and ω, 


D indicates the cross-diffusion term, and 
k

S  and 


S are source 

terms. 

The turbulence dissipation term of the turbulence kinetic energy (k) is modified as described by 

Menter et al. [32]. It can be written as follow: 
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). The equation of 

*

i
  and other terms can be found in the reference papers by 

Menter et al. [32] and the theory guide of ANSYS Fluent [33]. 
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where 
DES

C  = 0.61 is a calibration constant used in the DES model, and ∆ is the maximum local 

grid spacing (= max(∆x, ∆y, ∆z)) in the case of a Cartesian grid. 

The turbulence length scale is defined as,     
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 For delayed DES options, 
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F  is modified as follows       
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where 
SST

F  = 0, 
1

F , and 
2

F  are the blending functions of the SST model. Details of the equation 

DES
F  can be found in theory guide of ANSYS Fluent [33]. 

4.   Computational Details 

This computation considers the configuration of a blade with a TE cutback on the pressure-side 

(PS) wall, the same as experimentally investigated by Martini et al. [28] [29] [21] [22]. It has an 
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equilaterally staggered array of circular pin-fins within the internal cooling passage, as 

predominantly used in high-pressure turbine (HPT) design.  

4.1 Computational domain and boundary conditions 

After some precursor studies on the domain size effect between one-pitch and two-pitch in width 

and referencing to other published works, a computational domain with two-pitch (S) distance of 

the pin-fin arrays in the span wise z-direction is chosen. Figure 3 illustrates the computational 

domain for the blade TE cutback cooling with the pin-fin arrays in the internal passage. Due to 

the geometrical feature of the mainstream hot gas domain (i.e. a plain channel test wind tunnel), 

only half a domain height (Hhg = 52.5 mm) of the wind tunnel is considered in the vertical y-

direction [21] [22] large enough for the flow mixing and its development after the ejection 

location. A symmetric boundary condition is applied at the upper surface, as applied in the 

previous computational studies [28] [29]. 

The same flow and boundary conditions as used by the previous researchers (see, e.g. Martini et 

al. [28] [29] [21] [22]) are adopted here to evaluate the heat transfer coefficient at the pin-fin 

surfaces inside the cooling passage, the discharge coefficient, the film-cooling effectiveness 

along the protected wall surfaces, the shedding frequency of the wake flow and the dynamic 

thermal mixing between the mainstream hot gas flow and the cold coolant gas, etc. Table 1 gives 

the summary of numerical test conditions applied in the present studies. 

4.2 Mesh generation 

A block-structured mesh with hexahedron elements is generated by the Gambit meshing tool, 

resulting in three types of mesh for the grid refinement studies. Figure 4 exemplifies the local 2-

D structured meshes around the pin-fin arrays from the top view. The mesh A, mesh B and mesh 

C have 48, 72 and 96 elements, respectively, encircling the circumference of the pin-fin. The 

isometric view is illustrated by the finest mesh C as shown in Figure 5. The grid dependence will 

be verified later at the validation stage. As a comparison, Martini et al. [28] [29] used 2.2 million 

hybrid structured/unstructured cells with a near wall grid resolution of y1
+ 

≈ 1.37, and Egorov 

et al. [25] utilised 0.7 million structured cells with y1
+ 

≈ 1.  

Table 2 gives a comparison of mesh C grid resolution for four various t/H ratios. All meshes 

have very fine grid resolution, which ensures sufficient spatial near-wall resolution of y1
+ 

< 1. 

In addition, those areas (i.e. the adiabatic/protected wall surfaces) are constructed with quality 
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meshes, typically a near-wall resolution of Δy
+
 < 0.5, as addressed by Nishino et al. [34] in an 

effort to assure a sufficiently fine spatial resolution for unsteady flow phenomenon at the mixing 

region. As suggested by Spalart et al. [35][36] and Joo et al. [37], the grid should be refined in 

the x, y and z directions in order to keep the consistency of local grid spacing in the 3-D domain, 

which is important to control the FDES factor in the SST model (see the equation (9)).  

4.3 Algorithm and time step 

A finite-volume method is utilised to solve the governing equations for the incompressible flow 

of the present problem. The Semi-Implicit Method for Pressure-Linked Equations Consistent 

(SIMPLEC) algorithm [38] is chosen with the second-order numerical scheme applied for all 

equations (i.e. pressure, momentum, energy) of the DES calculations. Similar to the grid 

resolution, the time-step must also be small enough to guarantee a sufficiently fine temporal 

resolution for the unsteady flow effects. With respect to these requirements, a small time-step 

size of 1.25 × 10
-5

 seconds is applied in these computations when considering the shedding 

frequency obtained by Martini et al. [28] [29] for the same flow problem. 

5.   Grid refinement and validation studies 

The grid refinement studies consider the computational domain with three successive meshes 

from coarse to fine, as described above (see Figure 4 and Figure 5). After the verification of the 

modelling procedures and boundary conditions, the SST k-ω turbulence model based DES is 

employed for the simulations and the experimental measurements of Martini et al. [21] [22] [28] 

[29] and Horbach et al. [6] are used for validation. Two blowing ratios (M = 0.5, 1.1) are 

considered for this purpose. 

Figure 6 shows the DES predicted adiabatic film-cooling effectiveness (
aw

 ), in comparison 

with available experimental data. The results indicate that the present DES modelling requires a 

fine grid resolution, i.e. mesh C, to properly resolve the flow and heat transfer characteristics in 

the near-wall region. Whilst results from the coarse mesh A and the medium mesh B are largely 

over-predicting the film-cooling effectiveness after the position x/H > 4. The use of the fine 

mesh C produces results that are in a very good agreement with the experimental data along the 

protected/adiabatic wall surface from the slot-exit (x/H = 0) along the way to the downstream 

region (x/H = 12), with the important feature of the cooling effectiveness decay being captured 
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successfully. Based on the effect of grid resolution shown in Figure 6, it was decided to adopt the 

fine mesh C for further computations. 

6.   Results and Discussion 

Further investigation of the blade TE cutback cooling performance with four various t/H ratios 

has been carried out by steady RANS and DES calculations. The simulation started with steady 

RANS mode, and once initial convergence was achieved it then switched to DES mode at a fixed 

time step of 1.25×10
-5

 seconds to continue the simulation up to the point that a statistically 

converged solution was achieved.  Finally, samples were accumulated over a total of 2,000 time 

steps to obtain time-averaged results for comparison. Simulation results are validated in terms of 

pin-fin surface heat transfer, discharge coefficient and film-cooling effectiveness as described 

below. After validation, further DES simulations of four t/H ratios would be carried out for 

assessment. It commences with the coolant flow behaviour inside the cooling passage, followed 

by the blade TE cutback cooling performance. The dynamic interaction of the mainstream flow 

and the coolant, including the frequency spectrum of vortex-shedding at the mixing region, are 

also discussed thereafter. 

6.1 Heat transfer coefficient at the pin-fin surfaces 

The heat transfer coefficient at the pin-fin surfaces inside the internal cooling passage increases 

moderately row-by-row, as seen in Figure 7. This is probably due to the effect of flow 

acceleration during the section area contraction. However, the increase becomes negligible after 

the fourth row of the pin-fin array, specificaly for lower blowing ratio, and also there is no 

significant difference between the four t/H ratios tested. This observation indicates that the 

coolant flow inside the internal cooling passage flows has little impact on the flow mixing 

process.     

The trend of the present predicted heat transfer coefficient is comparable to that of Cunha et al. 

[15], Tarchi et al. [39] and Effendy et al. [40], who studied similar subjects through the 

staggered arrays of pin-fin cooling. For example, the peak heat transfer occurred in the last row 

of the pin-fin located in a wedge duct, and the increase of the heat transfer coefficient is stronger 

within a contraction channel than that in a parallel duct. In this study, it was found that the 

difference between the highest and the lowest heat transfer levels of all pin-fin rows is 

approximately 45.45%. In comparison, Cunha et al. [15] noted up to 38.46% in their experiment 
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and Tarchi et al. [39] found up to 180% in their numerical study with seven pin-fin rows, whilst 

Metzger et al. [41], who measured the heat transfer through ten staggered pin-fin rows within a 

parallel duct, discovered 12% of heat transfer differences between the highest and the lowest 

levels. Similar results have been found by Lawson et al. [42], Chyu et al. [43] and Mitre et al. 

[44], all of whom investigated the heat transfer in the parallel duct with seven-rows of pin-fin 

arrays. These researches confirmed that the heat transfer increases through the first three rows 

and then reduces for the remaining rows. 

As shown in Figure 7, the blowing ratio (M) increase from 0.5 to 1.1 does cause an increase of 

heat transfer coefficient about a factor of three on average. It means that the blowing ratio is a 

key parameter that affects the heat transfer coefficient of the pin-fin cooling. This has been 

confirmed by further investigations over a wide range of M values between 0.42 and 1.83 

(results not shown here).  

6.2 Discharge coefficient 

Figure 8 provides the DES predicted discharge coefficients (CD) for the four t/H ratios, in 

comparison with the experimental measurements. It was found that the numerical results 

demonstrate the same trend for all four t/H ratios, i.e. the discharge coefficients increase with the 

raising of the blowing ratio, as seen in the inserted table. The DES prediction also matches the 

experiments (e.g. Horbach et al. [6], Martini et al. [21][22][28] [29]), as well as other available 

CFD data. As expected, the discharge coefficients remain almost unchanged for all four t/H 

ratios simulated, most likely due to the fact that the dimensions and geometry of the cooling slot 

were kept the same in all simulation cases. There is however a very small discrepancy that is 

likely caused by the flow unsteadiness and the recirculation effect at the mixing region, which 

could influence the static pressure at the slot exit.  

6.3 Film-cooling effectiveness  

Figure 9 provides the quantitative comparison of the averaged film-cooling effectiveness for four 

different t/H ratios, at two blowing ratios of 0.5 and 1.1. The DES predictions are compared with 

experimental measurements by Martini et al. [28] [29] and Horbach et al. [6], respectively. 

In general, the blade TE cutback cooling performance is strongly dependent on the blowing ratio 

(M) and the lip thickness to the slot height (t/H) ratio. Simulations at all four t/H ratios predict 
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the same level of film-cooling effectiveness in the near slot-exit region between 0 < x/H < 3, then 

it gradually decays up to maximum 50% depending on the blowing ratio and the t/H ratio. For 

the baseline model of t/H = 1.0 and two blowing ratios, the prediction agrees well with the 

experiments. 

From Figure 9(a), it is recognised that the decrease of the t/H ratio causes an increase in the film-

cooling effectiveness downstream of the slot-exit. For example, the blade TE cutback design of 

the lowest ratio (t/H = 0.25) generates the highest level of cooling effectiveness of near unity in 

the ‘breakout’ region. Compared to the baseline model of t/H = 1.0, it improves the cooling 

performance up to 10.33%, despite a slight decay seen in the region between 8 < x/H < 12. For a 

ratio of t/H = 0.5, an average improvement of 6.58% could be achieved, but the decay is more 

pronounced in the downstream region with a discrepancy of up to a maximum of 25% compared 

to unity. It emphasises the experimental finding by Horbach et al. [6], where the decrease of the 

t/H ratio is able to largely improve the film-cooling effectiveness. One previous experiment with 

an empty cooling passage [14] also noted that the decrease of the lip thickness to the slot height 

ratio has the potential to increase adiabatic film-cooling effectiveness by approximately 10%, in 

agreement with the present study.  

Not surprisingly, the adiabatic film-cooling effectiveness is found to be largely decreased for the 

case with higher t/H ratio of 1.5. The average discrepancy of cooling performance can be up to 

3.02% when compared with that of the baseline model (t/H = 1.0), as seen in Figure 9(a). 

Similarly, Figure 9(b) shows a quantitative comparison of the adiabatic film-cooling 

effectiveness at a high blowing ratio of 1.1. It was found that the trend is quite similar to the 

simulation results at a low blowing ratio of 0.5, e.g. it decreases up to 3.19% for the t/H ratio of 

1.5, but increases by approximately 5.21% and 6.34% for the two t/H ratios of 0.5 and 0.25, 

respectively.   

In regards to the adiabatic film-cooling effectiveness, Horbach et al. [6] stated clearly from their 

experiments that the thinnest lip thickness could produce the highest film-cooling effectiveness. 

Taslim et al. [14] also believed that the film-cooling effectiveness could be maximised by 

utilising a thin lip thickness in order to reduce an intensified thermal mixing along the TE 

cutback region between the mainstream flow and the coolant fluid, and to create smaller size 

wake flow. For thick lip geometry, it is most likely to have a larger wake, and this could further 

enhance the flow unsteadiness, hence influencing the mixing process and causing rapid decay of 

the cooling effectiveness 
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6.4 Mixing region 

6.4.1 Temperature distributions 

Figure 10 shows the temperature distributions from four various t/H ratios at a blowing ratio of 

1.1. These charts follow a total of five polylines inserted in Figure 10. They are calculated in the 

same manner as the laterally averaged film-cooling effectiveness. It was found that the change of 

lip thickness influences the temperature distribution at the mixing region. For example, along 

line 4, the temperature T4 has a peak around x/H = 1.5, with its magnitude slightly varying, 

depending on the lip thickness. It seems that this magnitude is related to the size of the trailing-

edge vortex formed just behind the lip end. After the peak location, the temperature T4 decreases 

gradually along the ‘breakout’ region in all four cases. The temperature distribution also relates 

to the turbulent flow structures formed at the mixing region, which will be discussed later. 

In contrast, the temperature distribution of T3 shows a different trend compared to those 

described above, in particular there is no peak value between 0 < x/H < 2. This implies that the 

vortex-shedding exists behind lips of different sizes, and that it depends on the wake area. The 

increase of t/H ratio creates bigger vortex-shedding that gives a different effect against the 

laterally averaged temperature of T3, mainly near the slot exit region as marked by the red circle. 

This is due to the flow circulation around this region as the effect of different lip thickness (t). It 

can be seen by examining the size of the vortices behind the lip that they are more pronounced 

for a higher lip thickness. An experimental study by Holloway et al. [23] also noted that the 

location and the size of vortices behind the lip are dependent on the blowing ratios, this being in 

agreement with the present findings.  

From Figure 10, it can be seen clearly that the trend of line T1 is almost identical to that of Taw at 

a short distance, in parallel to the protected wall, mainly near the downstream region. The 

discrepancy of the trend is stronger when away from the protected wall and can be justified by 

comparing the laterally averaged temperature at T1 and T2. The discrepancy is more obvious 

when compared to the laterally averaged temperature at T3 or T4, where the positions of both 

polylines are very close to the mainstream hot gas region. This indicates that there is an 

interaction process between the mainstream flow and the coolant jet along the cutback region.   

As formulated in equation (1), the protected wall temperature (Taw) gives a direct influence to the 

calculation of the adiabatic film-cooling effectiveness (ηaw), while the Taw is strongly dependent 

on the mixed-air temperature over the protected wall, due to the unsteady mixing process 
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between the mainstream flow and the coolant jet. By investigating the mixed-air properties at the 

mixing flow region, it usually predicts the protected wall temperature first, and then calculates 

the laterally averaged film-cooling effectiveness along the protected wall. This procedure has 

been used in data analysis presented hereafter. 

As mentioned above, larger vortex-shedding occurs for cases with a higher t/H ratio, and is more 

likely to develop with a large wavy pattern. In fact, the recirculation effect of unsteady vortex-

shedding will cause the further growth of wavy flow along the breakout region, which will 

eventually become more significant at the downstream region. Therefore, it influences an 

intensified mixing process between the mainstream flow and the coolant jet, meaning the 

mainstream gas, with its higher temperature, is more likely to be able to reach the protected wall. 

The increase of wall temperature near the downstream region is more noticeable for the highest 

t/H ratio due to a stronger magnitude and a wider flow oscillation period. 

In contrast, smaller wakes obtained by simulation from the thinnest lip thickness causes a better 

film-cooling performance almost across the entire surface of the adiabatic wall. Smaller wakes 

over the ‘breakout’ region are therefore most effective when seeking to keep the coolant at its 

lowest temperature level along the adiabatic wall. 

As seen on the inserted-figures (see Figure 10), the non-dimensional temperature (θ) distribution 

at the x-y plane for a fixed z/H = 0 remains at a lower level for the thinnest lip thickness. The 

increase of lip thickness causes a strong interference of the mainstream flow to suppress the 

shielded film cooling along the protected wall surface. This is indicated by the narrowing blue 

colour of θ = 1, which is only up to x/H = 4.5 for a higher t/H ratio of 1.5. Besides that, an 

intensive mixing process coupled with a large size wake influences a spacious area of the 

mainstream flow with the capability of reaching the protected wall near the downstream region 

(see Figure 10(d)). The coolant air is mostly suppressed by the mainstream flow before reaching 

the downstream region. Finally, a higher temperature near the downstream region causes a larger 

decay of film-cooling effectiveness for the case with a thicker lip thickness (see Figure 9).  

Based on the above observations, it can be concluded that film-cooling effectiveness could be 

increased by maintaining the blade TE cutback with thinner lip thickness. Figure 10(a) confirms 

that an optimum cooling performance could be maximised up to the downstream region while 

using a thinner lip thickness with a t/H ratio of 0.25 (e.g. the position of θ = 1 at x/H = 9.7). It is 

also clear that the case with a t/H ratio of 0.25 performs better compared to other cases. The 

Page 14 of 29



15 

 

range of this optimum cooling performance is more than  double that of the case with a t/H ratio 

of 1.5, as seen between Figure 10(a) and Figure 10(d). 

6.4.2 Turbulent flow structures 

Figure 11 provides the qualitative comparison of turbulent flow structures from simulations of 

the four different t/H ratios, super-imposed by the contours of the adiabatic film-cooling 

effectiveness at the protected wall surface. The turbulent flow structures are presented by iso-

surfaces of the vortex identification criterion Q = 0.5(Ω
2 

- S
2
) as used by Terzi et al. [45] and 

Schneider et al. [46][47]. These iso-surfaces are coloured by the average temperature of the 

mixing flow, from a low value of 293 K (in blue colour) to a high value of 500 K (in red colour), 

respectively. 

It can be seen from Figure 11(a) that a thin lip thickness to slot height ratio (t/H = 0.25) 

generates small-scale wakes and relative shorter waves in the span wise direction, compared to 

the other three cases. However, with this condition, the adiabatic film-cooling effectiveness has 

shown high values (as seen in blue colour) along the protected wall surface. This finding is 

consistent with that illustrated quantitatively in Figure 6 and Figure 9. 

Unsteady wake patterns are more pronounced when the t/H ratio is increased. It can be seen that 

a wake with a high level of intensity grows along the cutback region, accompanied by the growth 

of vortex-shedding with longer waves in the span wise direction. This vortex-shedding becomes 

more significant for the case with a higher t/H ratio, as clearly seen at the downstream region 

(see Figure 11(d)). As it induces a strong mixing between the mainstream flow and the film 

cooling slot jets, which in-turn degrades the adiabatic film-cooling effectiveness. Indeed, a decay 

of the adiabatic film cooling effectiveness is obvious for a higher t/H ratio (see Figure 9). This 

finding agrees with measurements made by Chen et al. [48], who found a degradation of the 

adiabatic film cooling effectiveness on the trailing-edge cooling due to an intensive mixing. The 

present numerical study indicates that detached-eddy simulation could be used to produce 

predictions, in good agreement with the experimental measurements of Taslim et al. [13][14], 

Krueckel et al. [49] and Horbach et al. [6][19]. The present numerical results also prove a 

forgoing research done by Holloway et al. [20], in which it was identified that a larger lip 

thickness leads to more film-cooling effectiveness decay, due to intensified vortex-shedding. A 

larger wake seen in Figure 11(d) would induce a strong interaction between the main hot gas 

flow and the coolant jet in the region near the protected wall. This would cause major 
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distributions of mixed-air temperature as shown in Figure 10(d). The situation will be different 

for thinner lip thickness in which a smaller wake will limit the growth of wake size along the 

mixing region, so that the coolant temperature could be maintained for the majority of the 

protected wall surface, as evident from Figure 10(a) and Figure 11(a).  

Investigation of the laterally averaged turbulence level (Tu = u’/U∞) of fluid mixture along the 

protected wall has shown some consistencies in terms of the intensity of wake as visualised in 

Figure 11. The turbulence levels have shown a strong correlation with the turbulent flow 

structures over the ‘breakout’ region, when comparing Figures 10-12. 

  

6.5 Shedding frequency 

Figure 12 shows the comparison of the velocity magnitude (U) and the corresponding shedding 

frequencies for various t/H ratios, presented in both the physical time and the frequency 

domains, respectively. It was found that the amplitude of velocity is increased with the increase 

of t/H ratios. This observation agrees with the turbulent flow structures, as depicted in Figure 11. 

The velocity amplitude resulting from the thickest lip thickness is found to be more than two 

times larger than that of the thinnest lip thickness.  

The present simulation using a thinner lip thickness produces a harmonic wave pattern and 

furthermore, sub-harmonic waves are captured for almost all cases simulated, this being in good 

agreement with Medic et al. [50]. The flow response also found contains a sub-sub harmonic 

wave with a stronger intensity when increasing the t/H ratios. Moreover, the ‘beating’ 

phenomenon is more pronounced for the case with higher t/H ratios, for example at 1.0 and 1.5. 

It is likely this is caused by the 3-D effect of turbulent flow mixing which probably generates a 

similar frequency in-phase between adjacent waves. The accumulation of these waves would 

lead to a combined wave at higher amplitude, as seen in Figure 12(a). 

After post-processing using the fast Fourier transform (FFT) technique, it was found that the 

increase of t/H ratios causes the decrease of the dominant frequency, e.g. the vortex-shedding 

frequencies are found fs = 3.69, 3.2, 2.21, and 1.49 kHz from the thinnest to the thickest lip 

thickness, respectively. The predicted frequency from the baseline model (i.e. fs = 2.21 kHz) is 

found to be in good agreement with the available data of Martini et al. [28] [29], which reports a 
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dominant frequency of 2.36 kHz based on simulation at the blowing ratio of 0.8. An analytical 

calculation done by Martini et al. [28] [29] also found that the shedding frequency would be  

approximately 2.4 kHz, based on the effective lip thickness of 5mm and the mainstream velocity 

at uhg = 56 m/s, as used in the present study. 

By using the equation (5), all dominant frequencies predicted above could be represented in 

terms of Strouhal number, as presented in Table 3. A lower Strouhal number for the case with 

the lowest t/H ratio is most likely to be related to the vortex shedding frequency. Comparing the 

Strouhal numbers for the two TE geometries with turbulent boundary layers, one might notice 

that these findings are very close to those experiments done by Sieverding et al. [51] using a 

simple flat plate model with a squared trailing-edge. A Strouhal number around St = 0.215 was 

found from their experiments at Mach numbers between 0.11 and 0.25. Another experiment 

using rectangular cylinders was reported by Atsushi et al. [52], who evaluated Strouhal numbers 

in a range of Reynolds numbers between 70 and 2 × 10
4
 and with a variation of the ratio of 

width-to-height from 1 to 4.  It was found that the Strouhal number is around St = 0.1 and 0.15 

depending on the Reynolds number and the size of the rectangular cylinders. Boldman et al. [53] 

reported that the Strouhal number is approximately 0.2 for turbulent flow behind a blunt trailing 

edge for a certain range of Reynolds number with a width-to-height ratio of 2 to 3.  Overall, the 

present DES predicted Strouhal numbers agree very well with those experimental measurements. 

 

7.   Conclusions 

The blade TE cutback cooling performance for four various t/H ratios (t/H = 0.25, 0.5, 1.0, 1.5) 

has been studied by detached-eddy simulation (DES) with the SST k  turbulence model. The 

DES results have shown an overall good agreement with the available experimental data, in 

terms of discharge coefficient, film-cooling effectiveness and vortex shedding frequency. 

Accordingly, the following conclusions can be made:  

1) By using a fixed slot-height (H), the change of t/H ratio will not have a major influence on 

the heat transfer inside the cooling passage. This has been recognised by the coolant flow 

behaviour at the surface of the pin-fin along the cooling channel, which has exhibited almost 

the same properties in each row of pin-fins for all four t/H ratios studied. 

2) The discharge coefficients remain almost unchanged for all four t/H ratios. However, the 

coefficient will increase with an increase of blowing ratios. 
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3) The increase of t/H ratio of the blade TE cutback cooling will lead to the decrease of the 

adiabatic film-cooling effectiveness, particularly in downstream near-wake region. This is 

likely due to an intensified flow mixing process between the coolant jet and the mainstream 

hot gas. This has been confirmed qualitatively by the growth of the turbulent flow structures 

with increasing t/H ratios, and also quantitatively by the increase of the airflow velocity 

amplitude and the magnitude of shedding frequency, respectively. 

4) Based on the FFT result, the dominant frequency is found to decrease   when the t/H ratio is 

increased from 0.25 to 1.5. The DES predicted frequencies are fs = 3.69, 3.2, 2.21, and 1.49 

kHz from thinner to thicker lip thickness, corresponding to Strouhal numbers St = 0.15, 0.20, 

0.23, and 0.22, respectively. 
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9.   Nomenclature 

Aslot = Area at slot exit [m
2
] 

DES
C  = Calibration constant used in the DES model (CDES = 0.61) 

CD  = Discharge coefficient 

D   = Diameter of bluff body 

Dω  = Cross-diffusion term 

s
f    = Shedding frequency 

FDES = Blending function of DES 

Gk   = Generation of turbulence kinetic energy due to the mean velocity gradients 

Gω   = Generation of turbulence dissipation rate ω 

H  = Height of internal coolant passage [mm]   

h  = Heat transfer coefficient [W/m
2
K] 

k   = Turbulence kinetic energy  

L1,2.3,4 = Stream wise lengths of domain [mm] 

t
L   = Turbulence length scale 
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M  = Blowing ratio, 
 

hghgslot

c

hghg

slotcc

uA

m

u

u
M



 
  

Ma  = Mach number 

PIN = Pin-fin   

p1,t   = Total pressure at the coolant inlet 

p2   = Static pressure at the slot exit,  

T1,t  = Total temperature at the coolant inlet,  

Q  = Vortex identification criterion  

R   = Gas constant 

s  = Pitch-wise distance of ribs array [mm] 

S1  = First monitoring point location  

S2  = Second monitoring point location  

St  = Strouhal number 

Sk  =source terms in turbulence kinetic equation  

Sω  = Source terms in turbulence dissipation equation 

t  = Thickness of blade trailing-edge [mm] 

Taw  = Temperature at the adiabatic wall surfaces [K] 

Tw  = Isothermal wall temperature [K] 

Tc  = Coolant gas temperature [K] 

Tc’  = Coolant temperature measured at the centre of the slot-exit [K] 

Thg  = Hot gas temperature [K] 

Tu   = Turbulence level (Tu = u’/U∞) 

u   = Velocity  

c
m   = Mass flow rate of coolant gas [kg/s] 

ui   = velocity components  

uc  = Coolant gas velocity [m/s] 

uhg  = Hot gas velocity [m/s] 

Yk    = Dissipation term of k  

Yω  = Dissipation term of ω  

 

Greek Symbols 

α  = Inclined angle of suction-side test plate of blade model [deg] 
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θ  = Non-dimensional temperature, 





















'chg

hg

TT

TT
   

ρ  = Density [kg/m
3
] 

ρc  = Coolant gas density [kg/m
3
] 

ρhg  = Hot gas density [kg/m
3
]  

ηaw  = Adiabatic film cooling effectiveness 

aw
  = Averaged adiabatic film cooling effectiveness 

Γk  = Effective diffusivity of k 

Γω  = Effective diffusivity of ω 

   = Turbulence dissipation rate 

   = Maximum local grid spacing (∆x, ∆y, ∆z) of Cartesian coordinate system 

 κ   = Specific heat capacity  

 

Subscripts 

aw  = Adiabatic wall 

c  = Cold gas 

c’  = Cold gas at the slot exit 

hg  = Hot gas 

s  = Shedding 

slot  = Slot exit 

1,t  = Coolant inlet 

2  = Slot exit 

 

Abbreviations 

CFD = Computational Fluid Dynamics 

DES = Detached-Eddy Simulation  

LES  = Large-Eddy Simulation 

RANS = Reynolds-Averaged Navier-Stokes 

SA  = Spalart-Allmaras 

SGS = Sub-grid-scale 

SST = Shear-Stress Transport 

TE  = Trailing-edge  
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(a) t/H = 0.25 (b) t/H = 0.5 (c) t/H = 1.0 (baseline) (d) t/H = 1.5 

Figure 1: Sketches of blade TE cutback for four various t/H ratios. 

 

  

Figure 2: Schematic view of TE cutback slot with cold and hot gas streams. 

 

 

 
 

(a) Isometric 

 
(b) Front view  

 

 
(c) Top view  

Figure 3: Computational domain, key parameters and flow conditions. 
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(a) mesh A (coarse) (b) mesh B (medium) (c) mesh C (fine) 

Figure 4: Three types of mesh A, B, C around the pin-fin geometry. 

 

Figure 5: Overall view of meshes at coolant inlet, side and bottom wall surfaces, and surface mesh C on the 

pin-fins arrays. 

 

  

(a) Low blowing ratio (M = 0.5) (b) High blowing ratio (M = 1.1) 

Figure 6: Grid refinement studies and validation against experimental data. 
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Figure 7: Comparison of heat transfer coefficient. 

 

 

 

Figure 8: Comparison of discharge coefficients. 

 

  

(a) Low blowing ratio (M = 0.5) (b) High blowing ratio (M = 1.1) 

Figure 9: Laterally averaged film-cooling effectiveness at the protected wall. 
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 (a) t/H = 0.25 (b) t/H = 0.5 

 

 

 

 
(c) t/H = 1.0 (baseline) (d) t/H = 1.5 

Figure 10: Mixed-air temperature along the breakout region at a higher blowing ratio of 1.1. 

(Thg = 500 K, Tc = 293 K) 
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(a) t/H = 0.25 (b) t/H = 0.5 

  

(c) t/H = 1.0 (baseline) (d) t/H = 1.5 

 

Figure 11: Turbulent flow structures along the breakout region at a higher blowing ratio of 1.1, visualised by 

Iso-surfaces at a value of Ω
2 
- S

2
 = 10

5
 1/s

2
. 

 

  
(a) Time domain (b) Frequency domain 

Figure 12: Shedding frequencies at a higher blowing ratio of 1.1. 
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Table 1: The numerical test conditions. 

 

 Mainstream flow Coolant flow Out flow 

Velocity [m/s]  uhg = 56  uc = 4 - 15 - 

Temperature [K] Thg = 500 Tc = 293 - 

Turbulence Intensity [%] Tuhg = 7 Tuc = 5 - 

Length Scale [mm] 10 1.5 - 

Pressure [kPa] - - Phg = 105  

 

Table 2: Mesh C statistics 

 

t/H 0.25 0.5 1.0 

(baseline) 

1.5 

Inside the cooling passage region     

pin-fin wall
 a
 y1

+ 
 0.907 0.907 0.907 0.906 

end-wall y1
+ 

 0.751 0.752 0.749 0.751 

Mainstream region     

pressure side wall y1
+ 

 0.475 0.478 0.482 0.488 

lip-end wall y1
+ 

 0.528 0.523 0.607 0.654 

TE breakout/cutback region      

No. of elements
 b
, nx × ny × nz 124×48×48 124×48×48 124×48×48 124×48×48 

y1
+ 

 0.338 0.309 0.257 0.254 

average     

y1
+ 

 0.739 0.737 0.740 0.694 
a
 an average of y1

+
 in the radial direction of pin-fins, 

b
 elements at the block of breakout-slot region 

Table 3: DES predicted Strouhal number 

t/H 0.25 0.5 1.0 1.5 

St 0.15 0.20 0.23 0.22 
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