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Abstract 

Recognising human actions in real-time can provide users with a natural user 

interface (NUI) enabling a range of innovative and immersive applications. A 

NUI application should not restrict users’ movements; it should allow users to 

transition between actions in quick succession, which we term as compound 

actions. However, the majority of action recognition researchers have focused on 

individual actions, so their approaches are limited to recognising single actions or 

multiple actions that are temporally separated. 

This paper proposes a novel online action recognition method for fast detection 

of compound actions. A key contribution is our hierarchical body model that can 

be automatically configured to detect actions based on the low level body parts 

that are the most discriminative for a particular action. Another key contribution is 

a transfer learning strategy to allow the tasks of action segmentation and whole 

body modelling to be performed on a related but simpler dataset, combined with 

automatic hierarchical body model adaption on a more complex target dataset.  

Experimental results on a challenging and realistic dataset show an 

improvement in action recognition performance of 16% due to the introduction of 

our hierarchical transfer learning. The proposed algorithm is fast with an average 

latency of just 2 frames (66ms) and outperforms state of the art action recognition 

algorithms that are capable of fast online action recognition.  
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1. Introduction 

The research field of human action recognition has rapidly expanded in recent 

years with many innovative applications in a range of sectors including 

healthcare, education and entertainment. In healthcare, action recognition enables 

touch-free browsing of medical images in operating rooms, physical therapy at 

home and in clinics and for patient monitoring. In education, action recognition 

can increase the engagement of users by providing realistic and immersive 

training simulations. In entertainment, action recognition enables touch-free 

interaction with Smart TVs and games consoles for more intuitive and natural 

interaction. A key requirement of these interactive applications is the ability to 

robustly detect actions in real-time so the system can provide an appropriate 

response to the user with no apparent delay. 

Historically, action recognition research has focused on increasing accuracy on 

datasets in highly controlled environments. These datasets normally contained a 

single person that was instructed to perform a single action clearly (see Figure 1). 

Recognition was performed offline after viewing a complete sequence and 

algorithms were evaluated by the number of correctly classified sequences. A 

recent survey [1] showed perfect or near perfect action recognition accuracy on 

simple datasets with a small number of actions.  

             
Figure 1 Simple boxing sequence with a single person performing a punch (KTH) [3] 

The traditional offline approach led to simplification of the problem, 

overinflated accuracy and lack of applicability to real world situations. Recent 

research toward more realistic action recognition has changed to online action 

recognition where different actions are detected in real-time whilst they are being 

observed. However, the focus has been on recognising actions which are 

temporally well separated and easy to segment. In contrast, this work considers 

multiple actions performed in quick succession, which are critical for robust 
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action detection in natural user interface (NUI) applications. When multiple 

actions are performed in quick succession movements from different actions may 

temporally overlap resulting in complex poses, which we term as compound 

actions. For example, in a full body fighting game a player may throw punches in 

quick succession, one arm may still be finishing the previous punch whilst the 

other arm is performing the next punch or a player may leave one arm in the 

defend position and punch with the other arm (as shown in Figure 2). Detecting 

multiple actions in quick succession is a more complex problem than recognising 

actions which are temporally well separated. 

 

 

    

    

 

Figure 2 Complex fighting sequences between multiple players, performing multiple actions 

in quick succession so that the movements temporally overlap (G3Di) [4]. Each row 

represents a different sequence with visual examples taken every 3 frames. 
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Existing work on recognising more complex actions has to date only been 

researched in an offline context. To evaluate the performance of action 

recognition algorithms on more realistic actions several datasets have been 

extracted from TV and film (YouTube Action Dataset [5], Hollywood Human 

Actions Dataset [6], UCF sports action dataset [7]). In these datasets the actions 

are performed in real-world scenarios with diverse and cluttered backgrounds as 

well as significant changes in viewpoint. The individual actions are realistic but 

the major limitation of these datasets is that they have been segmented into 

sequences containing a single action suitable for offline action recognition. The 

diversity and complexity of real-world datasets makes accurate labelling difficult 

and time consuming. To overcome this problem Ma et al. [8] employed transfer 

learning to transfer knowledge from a simpler domain (e.g. KTH [3]) to a more 

complex target domain (e.g. YouTube Action Dataset) but their approach was 

limited to offline action recognition. An area that has not been considered before 

is the potential for transfer learning to improve online action recognition. 

Several NUI datasets with multiple actions in each sequence have been 

captured (MSRC-12 [9], G3D [10], G3Di [4]) and action points [11] provided, as 

temporal anchors to enable evaluation of online action recognition algorithms. 

Good performance has been achieved on the datasets where the actions were 

recorded under controlled circumstances (MSRC-12, G3D) but performance 

dramatically decreased when the same algorithm [4] was applied to a real-world 

scenario of a full body fighting game (G3Di). All three datasets contain multiple 

actions but the difference is that the MSRC-12 and G3D datasets contain actions 

that are temporally well separated whereas the G3Di dataset, contains transitions 

between actions and even multiple actions at the same time. Temporal merging of 

a user’s actions results in compound actions comprising of movements from 

different actions, which have not been adequately addressed by existing 

approaches. 

In this work we propose a novel hierarchical transfer learning algorithm for 

online action recognition of compound actions. Specifically, transfer learning is 

employed to allow the tasks of action segmentation and modelling to be 

performed on a related but simpler dataset, combined with model adaptation to 

improve performance on a more complex dataset. Furthermore, we represent 

actions hierarchically to provide the flexibility to recognise poses that are not in 
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the source dataset by introducing independence between limbs. Evaluation on a 

realistic and challenging public action dataset confirms the effectiveness of our 

approach. 

2. Literature Review 

A key requirement of many real-world applications is the ability to recognise 

actions online. However, recent surveys [12], [13] show that the majority of 

existing action recognition algorithms are offline and rely on observing a pre-

segmented action sequence before classification of a single action. A common 

adaptation of existing approaches is to use a sliding window and classify the 

current frame based on the recent temporal history. This enables continuous 

recognition of multiple actions in real world scenarios such as monitoring elderly 

patients at home [14]. However, there is an additional requirement in NUI 

applications to detect actions with low latency so the system can provide an 

appropriate response to the user with no apparent delay. For example, increasing 

the volume on a Smart TV by raising a hand should be detected with low latency 

to provide natural interaction. 

Existing work has demonstrated that action points [11], temporal anchors 

within the course of the action are important for evaluating the latency of the 

detection. An action point is a single pose that can be clearly and easily identified 

as a representative of an action. Several, sliding window approaches for online 

action recognition have been validated using action points [9], [15], [16]. 

Fothergill et al. [9] used fixed size sliding windows on the streaming data and 

performed the classification by a Random Forest. Similarily, Bloom et al. [15] 

used a fixed size sliding window and perform the classification by AdaBoost. 

However, the fixed size of the sliding window in both approaches is a source of 

classification error due to execution rate variations. To address this Zhao  et al. 

[16] optimise the size of the segment during their feature extraction using a DTW 

variant for subsequence matching. However, as these methods were tested with 

temporally separated actions their ability to robustly detect compound actions is 

unclear. Especially as AdaBoost which achieved good performance on relatively 

simple actions [17] but when applied to more complex actions performance 

dramatically decreased [4].  
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Manual labelling of action points is possible in complex datasets as they 

represent the most significant part of the action, however subsequently 

automatically selecting a sequence of training examples around the point leads to 

inconsistencies. Firstly, as some actions have long duration such as defending (see 

Figure 2), later samples of the current action will be incorrectly selected as 

negative samples. Secondly, samples from another action class may be incorrectly 

selected due to the close proximity of neighbouring actions (see Figure 2). The 

first problem has been overcome by action segments [4] which incorporate the 

duration of the most significant part of the action. The second problem has not yet 

been adequately addressed but could be alleviated by reducing the need for 

labelling.  

Transfer learning [18] has been beneficial to many machine learning research 

areas, including classification, regression and clustering problems to reduce the 

need to collect and label training data. However, transfer learning applied to 

action recognition is a relatively new topic with limited research in the computer 

vision community. Transfer learning has been used for cross-view action 

recognition [19], [20] to recognise human actions from different views. In both 

cases the methods were tested offline on a multi-view dataset (IXMAS) [21], 

which comprised of simple actions with simple backgrounds so it has limited 

applicability to real world scenarios.  

More significantly transfer learning has been used cross-dataset [8], [36] to 

harness lab datasets to facilitate real-world action recognition. The aim is to 

generalise action models built from a source dataset to a target dataset, to alleviate 

the problem of labelling complex sequences. The source dataset typically has a 

clean background and each video clip may involve only one type of action and a 

single person, which describes most lab collected datasets. In contrast, in the 

target dataset the background may be cluttered and there may be multiple people 

and multiple actions which may overlap temporally. Cross-dataset learning aims 

to adapt the existing classifier from a source dataset to a new target dataset, while 

requiring only a small or even no labelled samples in the target dataset. Ma et al. 

[8] built a model within a multi-task framework so the actions of one domain are 

associated with its own features. The general Schatten p-norm was applied to 

mine the shared components between the lab data and the real world data. The 

main advantage of their approach is the ability to share knowledge between the 



7 

two datasets even if they have different action categories. However, the method 

was tested offline with sequences containing just a single action. Cao et al. [22] 

combine model adaption and action detection into a Maximum a Posterior (MAP) 

estimation framework for action detection. The advantage of this approach over 

the previous method is that it can perform spatial-temporal detection of the action 

within a sequence. However, as a search for the optimal 3D sub-volume is 

performed across all frames in the target sequence this approach is also offline. 

The approaches described so far are limited to single actions or multiple 

actions that are temporally separated. However, in NUI applications the user may 

wish to perform multiple actions in quick. This temporal merging of different 

actions results in complex poses comprising of movements from multiple actions. 

Hierarchical models have been successfully applied to pose estimation [23]–[27] 

to recover novel poses not present in the training dataset. Hierarchical models 

have also been applied to improve action recognition performance [28]. Following 

the popular bag-of-words approach several efforts constructed a hierarchical 

representation of local feature descriptors but as the temporal order is ignored they 

are not suited to many real-world problems. To overcome this Song et al. [29] 

propose hierarchical sequence summarisation to capture discriminative 

information at various temporal resolutions. However, as the testing was 

performed at the sequence level this approach is limited to offline action 

recognition.  

 

2.1 Contributions 

We propose a novel hierarchical transfer learning algorithm for online 

detection of compound actions for robust action recognition in natural user 

interface (NUI) applications. Specifically, transfer learning is employed to allow 

the tasks of action segmentation and modelling to be performed on a related but 

simpler dataset, combined with model adaptation to improve performance on a 

complex NUI dataset. We represent actions using a hierarchical human body 

model to allow independence between low-level body parts. Our novelty is to 

automatically weight each low-level body part based on their discriminative 

ability to detect specific actions. We propose hierarchical peak poses for low 

latency detection which provide the flexibility to recognise poses that are not in 

the source dataset. Hierarchical template matching is performed with Dynamic 
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Time Warping (DTW) to ensure execution rate invariance and we use a sliding 

window approach for online recognition. Evaluation on a public dataset with 

complex, realistic actions demonstrates that our approach outperforms existing 

methods in terms of accuracy and latency. 

3. Methodology 

The proposed method for online action recognition consists of two phases: an 
offline training phase and an online testing phase as illustrated in Figure 3.  

 
Figure 3 Methodology overview 

We propose a novel hierarchical transfer learning algorithm for online 

detection of compound actions for fast and robust action recognition in natural 

user interface (NUI) applications. Our method is based on skeleton data, 

specifically joint angles which are viewpoint and anthropometric invariant and 

can be generated in real-time with a pose estimation method [30]. A key 

contribution is our hierarchical body model that can be automatically configured 

to detect actions based on the low level body parts that are the most discriminative 

for a particular action. Another key contribution is a transfer learning strategy to 

allow the tasks of action segmentation and whole body modelling to be performed 

on a related but simpler source dataset, combined with automatic hierarchical 

body model adaption on a more complex target dataset (as shown in Figure 3).  
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3.1 Training (source dataset) 

 
Figure 4 Training overview which is performed on the source dataset for each action 

The training phase is based on our existing approach for online action detection 

[17] that achieved high accuracy and low latency for multiple actions that were 

separated temporally (see Figure 4). Our contribution is to adapt these action 

templates to detect compound actions by representing and detecting actions 

hierarchically. The two key stages in training, as published in our previous work 

[17] are dimensionality reduction and key pose generation. Dimensionality 

reduction of the skeleton data produces spatio-temporal manifolds which removes 

individual style whilst maintaining the temporal ordering of the poses. Clustering 

the manifolds and projecting the cluster centres back to the high dimensional 

space creates key poses. An individual key pose represents a generic pose from an 

action at a specific point in time and the sequence of these key poses represent the 

entire action (as illustrated in Figure 5). A major benefit of the clustering is that 

the number of key poses is significantly less than the original number of training 

poses which dramatically reduces the computation time and enables our approach 

to scale efficiently to much larger datasets. 

 
Figure 5 Right punch action template, consisting of key poses k1 to km where m is the number 

of clusters [17] 
The two stages are explained in detail below: 
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3.1.1. Dimensionality reduction  

Stylistic variations are removed by learning a clustered spatio-temporal 

manifold (CSTM) for each action [17]. Given a set of training poses from the 

source dataset 𝑋 =  {𝑥𝑖} (𝑖=1…𝑛), 𝑥𝑖 ∈   ℝ𝐷, distributed in a high dimensional 

space, Temporal Laplacian Eignemaps (TLE) [31] discovers their low 

dimensional representation 𝑋′ =  {𝑥′𝑖} (𝑖=1…𝑛), 𝑥′𝑖  ∈   ℝ𝑑  where 𝑑 ≪ 𝐷 by 

combining two neighbourhood graphs. Temporal neighbours are the closest points 

in the sequential order and spatial neighbours are the geometrically similar 

neighbours. These neighbour relations are used in the construction of two graphs 

where any two vertices are connected when a neighbour relationship exists 

between these points. Neighbourhood connections defined in the Laplacian graphs 

place neighbours from the high dimensional space nearby in the embedded space. 

Consequently, the temporal neighbours preserve the temporal structure and the 

spatial neighbours reduce style variability by aligning the time series in the 

embedded space (see Figure 6). 

Clustering is then performed on the embedded space to reduce computation 

time by removing redundant poses. k-means [32] is applied to cluster the 𝑛 low 

dimensional points 𝑋′ into 𝑚 clusters 𝐶 = (𝑐𝑗) (𝑗=1…𝑚), 𝑐𝑘  ∈   ℝ𝑑 , where 𝑚 ≪ 𝑛. 

 
Figure 6 Clustered Spatio-Temporal manifold with the low dimensional points plotted (𝒙𝒊), 

coloured based on the cluster to which they belong and the cluster centers (𝒄𝒋) as black 

circles [17]. 

3.1.2. Key pose generation 

Key poses remove redundant information to improve classification accuracy 

and reduce the computational latency of action detection [14], [17]. To generate 

key poses we follow the method proposed in [31] that uses the training set 

𝑀 = {𝑥𝑖, 𝑥′𝑖}(𝑖=1…𝑛)  to learn a Radial Basis Function Network (RBFN) that 
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represents the mapping between the embedded and the high dimensional space 

[31]. Then using the RBFN mappings the cluster centers are projected into the 

high dimensional space to generate new poses that are a direct representation of 

the average poses. The implicit temporal order in the low dimensional space can 

be extracted from the training data to order the corresponding key poses 𝐾 =

�𝑘𝑗�(𝑗=1…𝑚)
to create action templates (𝐾) for each action as illustrated in Figure 

5. Action templates are the high dimensional representations of the clustered 

spatio-temporal models and inherit their advantages, including style invariance 

and compactness.  

3.2. Model Adaptation (target dataset) 

 

Figure 7 Model Adaptation overview which is performed on the target dataset for each 

action 

To detect compound actions such as those performed in NUI applications we 

propose a hierarchical template matching algorithm (see Figure 7). Representing 

actions using a hierarchical model of human body allows independence between 

the low-level body parts 𝐵 = (𝑏𝑙) (𝑙=1…𝐿) (as illustrated in Figure 8). Each low-

level body part is represented by joint angles. Our contribution is to automatically 

weigh each low-level body part based on their discriminative ability to detect 

specific actions. Weighting the individual low-level body parts, creates flexible 

body part configurations at different levels of a normal body hierarchy e.g. whole 

body, upper body or right arm and atypical combinations such as right arm and 

left leg. 
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Figure 8 Low level body parts: the skeleton is divided into low level body parts, right arm  

(red), left arm (blue), right leg (green), left leg (pink) and torso (black). 

The action peak is a fundamental concept of the proposed approach which we 

define as the segment in time when the goal of the action is being satisfied. For 

example, in a boxing game the aim of the punch is to hit the opponent which is 

being fulfilled when the arm is maximally extended as shown in Figure 9. The 

peak poses in the training data of the target dataset are manually labelled with an 

action label, there must be at least one frame labelled as the peak pose for each 

action instance. If the action peak has duration, as in the case of the defend action 

there will be multiple sequential labelled frames.  

 
Figure 9 Action peak for right punch action 

There are three main steps to adapt the action templates learnt from the source 

dataset for hierarchical template matching: learning the most discriminative body 

part combinations, detecting the most representative hierarchical peak key pose 

and optimising the peak segment threshold.  

All three steps use exemplar matching between the peak poses in the target 

dataset training poses and the action templates to find the optimum matching 

parameters. To incorporate the temporal history of the action and increase the 

robustness of the matching process sequences of poses are matched rather than 
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single poses. To extract a fragment 𝐹 from a sequence of poses 𝑆 =

 (𝑠1, 𝑠2, … 𝑠𝐺) Eq. 1 is used: 

𝐹(𝑆, 𝑖) = (𝑠𝑖−𝑠, 𝑠𝑖−𝑠+1, … 𝑠𝑖) 
(1) 

where, 𝑖 is the pose index, s is the number of poses in the fragment and 𝐺 is the 

number of poses in sequence 𝑆 and the conditions 𝑖 > 𝑠 and 𝑖 ≤ 𝐺 are satisfied. 

 DTW [33] is a well-known algorithm for determining the similarity of time-

series data that allows “elastic” transformation to gain execution rate invariance. 

The similarity of two series of poses, the query sequence 𝑄 =  (𝑞1, 𝑞2, … 𝑞𝑈)  and 

the reference sequence 𝑅 =  (𝑟1, 𝑟2, … 𝑟𝑉)  can be computed using the standard 

DTW distance metric using Eq. 2. 

𝐷𝐷𝐷(𝑄,𝑅) =  min{𝑐𝑝(𝑄,𝑅),𝑝 ∈ 𝑃𝑈 ×𝑉 }  (2) 

Where 𝑐𝑝 is the global cost function associated with a warping path 𝑝 =

(𝑝1, … ,𝑝𝐻) and 𝑐 is the local cost function, which is the Euclidean distance 

between two poses, which will be small if the poses are similar to each other: 

𝑐𝑝(𝑄,𝑅) =  �𝑐(𝑞𝑢ℎ, 𝑟𝑣ℎ)
𝐻

ℎ=1

 
(3) 

 

In our previous approach [17] the DTW distance was computed for the whole 

body. To increase flexibility we propose a hierarchical DTW distance 

measurement (𝐻𝐷𝐷𝐷): 

𝐻𝐷𝐷𝐷(𝑄,𝑅,𝐷) =  �𝐷𝐷𝐷�𝑄𝑙 ,𝑅𝑙 �𝐷𝑙

𝐿

𝑙=1

 
(4) 

For two series of poses, the query sequence Q and the reference sequence 𝑅, the 

similarity of low level body parts 𝑙 is computed independently using the standard 

DTW distance metric. A weighted combination 𝐷 = (𝑤𝑙) 
(𝑙=1…𝐿)

,𝑤𝑙  ∈   (0,1) of 

the low level body part distances provides a discriminative distance metric for 

compound actions. 

3.2.1. Body Part Combinations 

The most discriminative body part combinations for each action are discovered 

by maximising the ratio of intra-class matches between the labelled peak poses in 

the target dataset training data and the action templates. This procedure is repeated 
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for all body part combinations, so for computational efficiency we selected binary 

weights,  𝑤𝑙  ∈   (0,1)  for each of the low level body parts which results in 2𝐿 

permutations. For each permutation 𝜀, the intra-class ratio 𝜌 is computed by the 

number of intra-class matches 𝜇 over the number of total training instances in the 

target dataset 𝑛𝑦. The intra-class matches are counted for each action by exemplar 

matching between the peak poses from the target dataset training data and the key 

poses from all the action templates. For each action 𝑎, if the closest matching 

action template is the same action this is counted as an intra-class match. The 

maximum intra-class ratio represents the most discriminative body part 

combination for each action, as illustrated in Figure 10 and summarised in 

Algorithm 1. 
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Algorithm 1 Learn the most discriminative weights for each action 

Input: Given a set of training poses from the target dataset 𝑌 =  {𝑦𝑖} (𝑖=1…|𝑌|), with 

manually selected peak poses from Y represented by their indices 𝐼𝑎 =

{𝑖𝑝𝑎}(𝑝=1…|𝐼𝑎|), where  𝑖𝑝  ∈  1 … |𝑌| and the superscript denotes a set of action 

templates 𝐾𝑎 =  �𝑘𝑗�(𝑗=1…𝑚)
, where 𝑚 is the number of clusters. 

 

1. For each action, 𝑎 = 1:𝐴 

1.1. For each permutation, 𝜀 = 1: 2𝐿 

1.1.1. Initialise 𝜇 = 0 

1.1.2. For each peak pose, 𝑝 = 1: |𝐼𝑎| 

1.1.2.1. Extract the peak pose fragment, 𝐹Y =  (𝑌, 𝑖𝑝𝑎) using Eq. 1 

1.1.2.2. 𝑎∗ = min𝑎′ ∈𝐴  𝐻𝐷𝐷𝐷(𝐹Y,𝐾𝑎′,𝐷𝜀) using Eq. 4 

1.1.2.3. If 𝑎∗ = 𝑎 

1.1.2.3.1. Intra-class match so increment 𝜇 

1.1.3. Compute intra-class ratio, 𝜌𝜀𝑎 = 𝜇
|𝐼𝑎| 

1.2. Select the most discriminative weights, 𝐷𝑎 = arg max𝜀 𝜌𝜀𝑎 

1.3. Output the weights for this action, 𝐷𝑎 
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Figure 10 Body Part Combinations: The weights (W) are optimised for each action based on 

their ability to discriminate complex actions in the target dataset. The bottom skeletons show 

potential body parts configurations for the defend (left) and right punch  (right) actions. 

 

3.2.2. Hierarchical Peak Key Pose 

In our previous work on simple actions, peak key poses were proposed as the 

generic representation of peak poses in the training data and were automatically 

selected from the key poses by exemplar matching with the whole body [17]. To 

increase robustness on compound actions we propose hierarchical peak key poses. 

Hierarchical peak key poses are also automatically selected from the key poses 

but the exemplar matching is performed using the most discriminative body parts 

rather than the whole body. The hierarchical peak key poses are selected as 

follows: for each action and for each peak pose in the target dataset training data, 
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the best matching key pose is found (as shown in Figure 11). A hierarchical peak 

key pose can be represented by its index 𝑗𝑎 in the action template. The best 

matching index 𝑗∗ is found by minimising the distance between the peak pose 

fragments 𝐹Y and the key pose fragments 𝐹K using the most discriminative body 

part combination for each action. The hierarchical peak key pose for the action is 

the key pose that has the maximum number of matches, as summarised in 

algorithm 2.  

 

 
 

Figure 11 Hierarchical template matching: peak pose (left), best matched key pose  (right) 

 
Algorithm 2 Learn the hierarchical peak key pose 

Input: Given a set of training poses from the target dataset 𝑌 = {𝑦𝑛}(𝑛=1…|𝑌|) 

with manually selected peak poses from Y represented by their indices  𝐼𝑎 =

{𝑖𝑝𝑎}(𝑝=1…|𝐼𝑎|), where  𝑖𝑝  ∈  1 … |𝑌| and the superscript denotes a set of action 

templates 𝐾𝑎 =  �𝑘𝑗�(𝑗=1…𝑚)
with weights 𝐷𝑎: 

1. For each action, 𝑎 = 1:𝐴 

1.1. Initialise 𝐽 = {0}(1…𝑚) 

1.2. For each peak pose, 𝑝 = 1: |𝐼𝑎| 

1.2.1. Extract the peak pose fragment 𝐹Y =  (𝑌, 𝑖𝑝𝑎) using Eq. 1  

1.2.2. Find the best matching hierarchical key pose index,  

𝑗∗ =  arg min𝑗∈1…𝑚  ∑ 𝐻𝐷𝐷𝐷�𝐹𝑙Y,𝐹𝑙K,𝐷𝑙
𝑎�𝐿

𝑙=1 , where 𝐹𝑙K = (𝐾𝑙𝑎, 𝑗) 

1.2.3. Increment 𝐽𝑗∗ 

1.3. Output the hierarchical key pose index 𝑗𝑎 = arg max 𝐽 
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Peak Segment Matching

 

 

Figure 12 (Top) Interaction detection based on action segments which correctly detects 

actions with long duration. (Bottom) Interaction detection based on action points which only 

works if both actions occur at the same time and incorrectly detects interactions if an action 

has a long duration. 
 

Some existing methods for online action recognition detect the action as a 

single point in time [9], [17] whereas others incorporate the duration of the action 

[14], [34]. The duration of the action is important for subsequently detecting 

interactions between multiple players in a sports game [4] and illustrated by 

Figure 12. 

Peak key poses [14] were limited to detecting a single temporal point so we 

introduce a threshold 𝜏 to incorporate the duration of the peak. Similar to [14], 

[34] we introduce a threshold 𝜏 for action detection but instead of specifically 

learning a threshold for each action we learn a single threshold for all actions. 

Confining, the threshold to a single parameter reduces the time taken to adapt the 

model and this time will not increase even if more actions are considered, 

providing scalability to larger datasets. 

The threshold 𝜏 and fragment size 𝑠 are learnt on the training part of the target 

dataset by optimising the action point metric F1 [11] with our hierarchical 

template matching algorithm (summarised in Algorithm 3) but using the training 

data from the target dataset rather than the testing data.  
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3.3. Testing (target dataset) 

 

Figure 13 Testing overview which is performed on the target dataset 

We propose a hierarchical template matching algorithm with a temporal sliding 

window for online action recognition (summarised in Algorithm 3). For each new 

frame the sliding window buffer is updated and compared with learnt exemplars. 

The minimum hierarchical DTW distance to the nearest neighbour is used to 

detect the action (see Figure 13). 

 

Figure 14 Normalised hierarchical DTW distances: the lowest value represents the most 

similar action, where this value is lower than the threshold 𝝉 it represents the detected 

action. The right punch is displayed in yellow, left punch displayed in green and the defend 

in magenta.  

 

The hierarchical matching process is performed using DTW to ensure 

execution rate invariance. The normalised hierarchical DTW distances 𝑑∗, are 

recorded for each frame as illustrated in Figure 14. To detect actions in real-time 

we compare the lowest hierarchical DTW distance at each frame with a threshold 

𝜏. 𝜏 discriminates which pose fragments are most similar to the peak key pose 

T 
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fragment. Therefore, whilst pose fragments are similar to the peak key pose 

fragment (𝑑∗  ≤ 𝜏) the action is at its peak, as shown by the coloured segments on 

Figure 14. Before and after the peak, the pose fragments will be less similar 

(𝑑∗  > 𝜏) and therefore the action is not considered at its peak.  
 

Algorithm 3 Online hierarchical template matching 

Input: Given a set of testing poses from the target dataset 𝑍 = {𝑧𝑖}(𝑖=1…|𝑍|), a set 

of action templates 𝐾𝑎 =  �𝑘𝑗�(𝑗=1…𝑚)
, with weights 𝐷𝑎, hierarchical peak key 

poses indices 𝑗𝑎,  the fragment size 𝑠,  and distance threshold 𝜏: 

1. For each testing pose, 𝑖 = 1: |𝑍| 

1.1. Add the current test pose to the test fragment, 𝐹Z = 𝐹Z  ∪  𝑧𝑖 

1.2. If 𝑖 ≥ 𝑠 

1.2.1. 𝐹Z = 𝐹Z \ 𝑧𝑖−𝑠 

1.3. For each action, 𝑎 = 1:𝐴 

1.3.1. Extract the key pose fragment, 𝐹K =  (𝐾𝑎, 𝑗𝑎) using Eq. 1 

1.3.2. Compute 𝐻𝐷𝐷𝐷(𝐹Z,𝐹K,𝐷𝑎) using Eq. 4 

1.4. 𝑑∗ = min𝑎 ∈𝐴 𝐻𝐷𝐷𝐷(𝐹Z,𝐹K,𝐷𝑎) 

1.5. If 𝑑∗ <  𝜏 

1.5.1. 𝑎∗ = arg min𝑎 ∈𝐴 𝐻𝐷𝐷𝐷(𝐹Z,𝐹K,𝐷𝑎)  

1.5.2. Output “Action 𝑎∗” 

1.6. Else, output “No action” 

 

One of the advantages of using clustering to identify peak poses is that the 

computational time is independent on the size of the training dataset, although it is 

linearly dependent on the number of actions. In case of many actions, a parallel 

implementation, i.e. one thread per action, would achieve real-time performance. 

4. Experiments 

In this section we present experiments to evaluate the ability of our online 

action recognition method to improve accuracy at low latency in complex 

scenarios. 



21 

4.1. Datasets 

The performance of our algorithm is evaluated using publicly available datasets 

designed specifically for real time action recognition: G3D [10], MSRC-12 [9] 

and G3Di [4]. All datasets contain multiple actions in each sequence in a 

controlled indoor environment with a fixed camera, a typical setup for NUI 

applications. Both datasets provide sequences of skeleton data captured using the 

Kinect pose estimation pipeline at 30fps. However, G3D contains scripted actions 

which are temporally well separated whereas G3Di was captured using a 

gamesourcing approach where the users were recorded whilst playing computer 

games and consequently contains more complex actions which  overlapping 

temporally. The G3Di also contains noisier skeleton data than G3D as there was 

interference from multiple Kinects during the recording, making it more realistic 

of a home scenario where there may be interference from the sunlight. 

The G3D dataset contains 10 subjects performing 20 gaming actions grouped 

into seven categories. The fighting category was selected as it has the same 

actions as the G3Di boxing category although there are substantial variations in 

execution rate as well as personal style between these two datasets due to the 

different recording environments. The G3D fighting category contains five 

gaming actions: right punch, left punch, right kick, left kick and defend. 

The MSRC-12 dataset comprises of 30 people performing 12 gestures. These 

gestures are categorized into two categories: iconic and metaphoric gestures. The 

iconic gestures directly correspond to real world actions and represent first person 

shooter (FPS) gaming actions. There are six FPS gaming actions: crouch, shoot, 

throw, night goggles, change weapon and kick. Whereas metaphoric actions 

represent abstract concepts for manipulating a music player e.g. raise volume of 

the music. The dataset was obtained using different instruction modalities and the 

modality that produced the most accurate results was video + text so we will use 

this particular subset of the dataset. 
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The G3Di dataset contains 12 people split into 6 pairs. Each pair interacted 

through a gaming interface showcasing six sports: boxing, volleyball, football, 

table tennis, sprint and hurdles. Boxing is a competitive sport and the interactions 

can be decomposed by an action and counter action. The boxing actions were 

right punch, left punch and defend and the interactions between the players are 

shown in Table 1. The total number of action and interaction instances used for 

our experiments is shown in Table 2. 

 
Table 1 Gaming interactions for the boxing scenarios in G3Di. 

Sport Action Counter Action Interaction 

Boxing Right Punch Defend Block 

 Left Punch Defend Block 

 Right Punch Other Attack 

 Left Punch Other Attack 

 Right Punch Right Punch Attack 

 Right Punch Left Punch Attack 

 Left Punch Left Punch Attack 

 

Table 2 The total number of action and interaction instances used from each dataset 

Dataset Action 

Classes 

Interaction 

Classes 

Subjects Action / 

Interaction 

Instances 

Frames 

G3D  

(Boxing) 

5 NA 10 150 12,870 

MSRC-12 

(Iconic Gestures) 

6 NA 10 502 4782 

G3Di 

(Fighting) 

3 2 12 317 + 257 = 

574 

6784 
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4.2. Skeleton Data 

Joint angles are viewpoint and anthropometric invariant and can be generated 

in real-time with a pose estimation method [30]. More specifically, the skeleton 

poses are first normalised and then the three angles defining each joint position 

are computed and represented by a 4-D quaternion. The skeleton is parameterised 

as a high dimensional feature vector by concatenating quaternions for all joints. 

For each pose 13 quaternions are calculated so each feature vector has 52-

dimensions (see [14] for more details). 

4.3. Comparative Study  

The following is a brief introduction of the comparison algorithms in our 

experiments: 

• AdaBoost: AdaBoost has shown high accuracy and low latency for online 

action recognition [5], [17]. AdaBoost was trained on the source dataset 

and the parameters: the number of training frames around each peak pose 

the sliding smoothing window size were optimised on the training part of 

the target dataset and the method was evaluated on to the target testing 

data. 

• Clustered Spatio-Temporial Manifolds  (CSTM): is a state-of the art 

approach for low latency online action recognition [17]. CSTM was 

trained on the source dataset and the parameters: the template size and the 

stream size and the peak pose detector were optimised on the training part 

of the target dataset and the method was evaluated on to the target testing 

data. 

• Hierarchical Transfer Segments (HiTS): The proposed method in this 

paper, a version of CSTM extended for transfer learning, allowing 

knowledge to be transferred from simple actions in a source dataset to 

complex actions in a target dataset by adapting the learnt models with a 

hierarchical pose representation. The parameters: peak segment matching 

threshold (τ=0.22) and fragment size (𝑠 = 7) were optimised on the 

training part of the target dataset and the method was evaluated on to the 

target testing data. 
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For all the above experiments we performed leave one-person out cross 

validation on the target dataset; each cross validation fold was trained on 11 

subjects and tested on the remaining subject. 

4.4. Performance Metrics 

Evaluating of action recognition algorithms has previously been done in 

isolation, focusing historically on high accuracy and more recently also on low 

latency. However, in reality most actions form part of an interaction where the 

duration of the action is important. To test our proposed algorithm in a realistic 

context we employ the interaction detection and evaluation framework [4] and the 

action point metric [11] which is the most commonly used metric for online action 

recognition. 

4.4.1. Action Point Metric 

For evaluation we use an existing latency-aware performance metric for based on 

temporal anchors known as action points [11]. For a specified amount of latency 

(Δms) the action point F1-score determines whether a detection made at time 𝑡𝑝 

for action 𝑎 is correct in relation to a ground truth action point at time 𝑡𝑔 by using 

the following formula: 

Φ�𝑡𝑝, 𝑡𝑔,Δ� =  �1    if ( � 𝑡𝑔  −  𝑡𝑝�  ≤  Δ) 
0    otherwise                   

 (5) 

For a specified amount of latency (Δms) the precision and recall are measured for 

each action and combined to calculate a single F-score. 

F1 − score(𝑎,Δ)  =  2
prec𝑎(Δ) rec𝑎(Δ)

prec𝑎(Δ) + rec𝑎(Δ)
 

(6) 

As online action recognition algorithms need to detect multiple actions, the mean 

F-score over all actions is used, defined as: 

Average F1 − score(𝛢,Δ) =  
1

|𝛢|  � F1 − score(𝑎,Δ)
a ∈ 𝛢

 (7) 

4.4.2. Interaction Detection Framework 

The Interaction Detection Framework [4] enables online interaction recognition 

between multiple people by detecting their individual actions independently and 
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combining them by a set of interaction rules to infer the interaction. This modular 

approach is applicable for NUI and enables interaction between people that are 

not in the same physical location. Actions from different people are detected 

independently. At each frame, these detections are combined to infer the current 

interaction. The interaction rules include the valid combinations of actions (as 

depicted in Table 1) together with timing constraints. The action (a) and counter 

action (ca), are checked at each frame together with a timing constraint (f) to 

detect interactions in real time using Eq. 8. The timing constraint depends on the 

scenario, for example all the interactions in boxing are instant (f = 0), the action 

and counter action co-occur. 

𝜓 (𝑎𝑠,𝑎𝑒 , 𝑐𝑎𝑠, 𝑐𝑎𝑒)  =  �1 𝑖𝑖 (𝑎𝑠 + 𝑖 ≤  𝑐𝑎𝑒) 𝑎𝑛𝑑 (𝑐𝑎𝑠  ≤  𝑎𝑒 + 𝑖) 
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

Where 𝑠 and 𝑒 represent the start and end of the action segment respectively and 

𝑠 ≤  𝑒. 

4.5. Results 

Our method (HiTS) outperforms existing state of the art approaches for fast 

online action and interaction recognition, as shown in Figure 155. Both AdaBoost 

and CSTM show a significant drop in accurately detecting actions on the G3Di 

(Fighting) dataset in comparison with previously published results [17] on the 

G3D (Boxing) dataset. This is significant especially as the G3Di (Fighting) 

actions are a subset of the G3D (Boxing) actions but confirms our hypothesis that 

compound actions are more difficult to detect than multiple actions that are 

temporally well separated. 

Additionally, we highlight the recognition accuracy for each category of action 

and interaction for a more detailed analysis of each method, as shown in Figure 

16. A significant outcome is that even though CSTM [17] can detect all of the 

action categories it is unable to detect any interactions which are comprised of 

actions with duration, specifically the block interaction. In addition to showing the 

limitation of this approach it also highlights a weakness of the action point metric 

[11] which does not incorporate the duration of the action peak. Interaction 

detection is improved by our baseline method Peak Segment Matching (PSM) 

which instead of a binary decision for matching a peak key pose introduces a 

threshold which can detect the duration of the peak. The key contributions of this 
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paper are the hierarchical body model (HSM) and a transfer learning strategy 

(TSM). Individually, applied to our baseline method these contributions actually 

decrease the action and interaction recognition but together (HiTS) they form a 

powerful combination that significantly increases the action and interaction 

recognition, as shown in Figure 12. Intuitively, our hierarchical representation is 

only useful if adapted to the target dataset. 

In this paper we are exclusively interested in action recognition approaches that 

are suitable for NUI applications. Research has shown that a delay of 100ms is not 

perceivable by the user [35]. Therefore, in this section we have only compared our 

method against online action recognition methods that are capable of fulfilling 

this requirement. Table 3 shows that all the methods we evaluated are capable of 

detecting actions with a low average latency of approx. 2 frames, which is 

equivalent to 66ms. We did not evaluate online action recognition methods with 

high latency (830-1500ms [16], 2000ms [14]) as they are better suited to other 

applications. 
Table 3 A comparison of the average action latency 

Method Average Action Latency 

 (frames) 

AdaBoost  2.12 

CSTM 2.00 

PSM 1.60 

TSM 1.41 

HSM 1.94 

HiTS 2.36 

 

Figure 17 illustrates a typical failure case caused by noisy skeleton data at the 

action level resulting in an incorrect interaction to be inferred. The main limitation 

of our approach is that we only utilise the skeleton modality which is subject to 

interference from sunlight.  

The dependency of the proposed transfer learning methodology on the amount 

of training data used from the target dataset is investigated. Specifically, Figure 18 

demonstrates the action and interaction recognition performance (F1) for varying 

number of training subjects. The proposed method may achieve similar results to 

other competitor methods, i.e. around 0.6 and 0.4 F1 score for action and 
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interaction recognition respectively (see Figure 15) with almost half the training 

data from the target dataset, i.e. 6 subjects. 

Regarding the template size s in theory it is possible to use different values in 

the matching process. However, in practice it was not computationally feasible to 

test all of these combinations so in our experiments we actually used a single 

parameter s which was learnt on the training part of the target dataset. Figure 19 

shows how this parameter affects performance. This parameter does not model the 

duration of the action as the graph shows that even 3 frames (100ms) can 

accurately detect the action peak and overall performance is fairly consistent for 

higher values. 

 

 
Figure 15 Performance comparison of the different approaches. Our method (HiTS) 

outperforms the others for both action and interaction detection. 
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Figure 16 Action recognition results (left) and interaction recognition results (right) for each 

category of the G3Di (Fighting) dataset using different algorithms 

  

Figure 17 Example of a typical failure case caused by noisy skeleton data. The colour image 

(right) shows that this is a block interaction but our algorithm detects an attack interaction 

as the defend action is not correctly detected due to incorrect skeleton data for the player on 

the left. This instance will be penalised twice by the action point metric, firstly a FP for the 

attack and secondly a FN for the block. 
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Figure 18 The relationship of the required number of training subjects and the obtained 

accuracy (F1 score) both for action and interaction analysis. 

 

  
Figure 19 An example that indicates the relationship between the template size and the 

obtained accuracy (F1 score). 

 

5. Conclusion 

In this work we presented a novel hierarchical transfer learning algorithm for 

fast online action recognition. It overcomes the limitations of existing approaches 

by representing the human body hierarchically and learning the most 

discriminative body parts to detect compound actions. A transfer learning strategy 

was introduced to allow the tasks of action segmentation and whole body 

modelling to be performed on a related but simpler dataset. Combined with 
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hierarchical model adaptation on a more complex dataset to introduce 

independence between limbs and provide the flexibility to recognise poses that are 

not in the source dataset. Evaluation on a public target dataset that is more 

challenging and realistic than the source dataset shows our hierarchical transfer 

learning algorithm significantly increases performance at low latency. As the 

target dataset was recorded whilst users were actually playing a game the actions 

are more natural than subjects that are given instructions or restrictions and 

demonstrates the viability of our algorithm for use in real-world applications.  

The limitation of our approach is that we only utilise the skeleton modality 

which is subject to interference from sunlight. Our future work is improve the 

robustness of our algorithm by fusing features from the depth or colour with our 

hierarchical skeleton features and evaluate its effectiveness using the G3Di multi-

modal dataset. 
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