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Abstract 
Objective: Diabetic retinopathy (DR) is a retinal vascular disease that is caused by complications of diabetes. Proliferative 
diabetic retinopathy (PDR) is the advanced stage of the disease which carries a high risk of severe visual impairment. This 
stage is characterized by the growth of abnormal new vessels. We aim to develop a method for the automated detection of 
new vessels from retinal images. 

Methods: This method is based on a dual classification approach. Two vessel segmentation approaches are applied to 
create two separate binary vessel maps which each hold vital information. Local morphology, gradient and intensity 
features are measured using each binary vessel map to produce two separate 21-D feature vectors. Independent 
classification is performed for each feature vector using an ensemble system of bagged decision trees. These two 
independent outcomes are then combined to a produce a final decision. 

Results: Sensitivity and specificity results using a dataset of 60 images are 1.0000 and 0.9500 on a per image basis. 

Conclusions: The described automated system is capable of detecting the presence of new vessels. 

Keywords 
Retinal images, Proliferative diabetic retinopathy, New vessels, Dual classification, Ensemble classification 

1 Introduction 
Diabetes is a condition that causes hyperglycemia (high blood sugar) resulting from defects in insulin secretion, insulin 
action, or both. Hyperglycemia can damage blood vessels, diabetic retinopathy (DR) is the resultant disorder affecting the 
retinal vasculature. DR can cause loss to vision and is recognized as the leading cause of blindness in the working age 
population [1]. Early detection of the disease can allow for timely intervention [2, 3], therefore diabetic patients are required 
to attend regular retinal screening appointments. Manual assessment of the retinal images (see Figure 1) captured from 
these appointments can be a time consuming and costly task, therefore this is a field that would significantly benefit from 
the introduction of automated detection systems [4]. 
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Blood and fluid from damaged retinal blood vessel will leak on the retina and form features such as microaneurysms, 
hemorrhages, exudates, cotton wool spots and venous loops [5]. As DR progresses, the blockages and damage to blood 
vessels cause areas of retinal ischemia to develop. These areas of the retina send signals to the body to grow new blood 
vessels for nourishment. The growth of new vessels represents the most advanced stage of DR known as proliferative 
diabetic retinopathy (PDR). This stage poses a high risk of severe vision loss due to the fragile nature of new vessels 
making them prone to extensive bleeding [6]. Patients presenting PDR require an urgent referral to an ophthalmologist. The 
role of retinal screening programs is to not only detect patients presenting the onset of DR, but also to differentiate those 
patients presenting the advance stages of DR.  

Figure 1. (a) Healthy retinal image. (b)-(c) Retinal images with DR 

For clarity, it should be stated that the terms PDR and new vessels are used synonymously in this paper and throughout 
literature in this field. In reality it is not as simple as this. New vessels will always be present in a PDR case, although  
they may be obscured or completely hidden from view by features associated with new vessels such as pre-retinal 
hemorrhages, vitreous hemorrhages, fibrosis tissue and tractional retinal detachment. These make up a small percentages 
of cases, therefore the main focus should remain on new vessel detection.  

New vessels can be categorized according to their location, new vessels at the optic disc (NVD) and new vessels elsewhere 
(NVE). They tend to be fine in calibre and more tortuous and convoluted then normal vessels. They start as loops or small 
networks and as they grow they form dense lacy networks which usually pass across the underlying veins and arteries [7]. 
New vessels grow away from the retinal surface, thus they tend to be out of the focal plane of the photograph and can 
appear blurry in appearance. Examples of new vessels as well as some other DR features (hemorrhages and exudates) are 
shown in Figure 2. 

Figure 2. Zoom-in regions of retinal 
images: (a) NVE. (b) NVD. (c) 
Hemorrhages (dark lesions). (d) 
Exudates (bright lesions)  

(a) (b) (c) 
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There are many studies investigating the automatic detection of DR focused on microaneurysm and haemorrhage  
detection [8-12], and exudate detection [13-16]. Only a small number of automated new vessel detection methods exist and 
these can be divided into two main categories. The first category is methods based on the inclusion of vessel segmentation. 
These methods analyze the morphology of the binary vessel map in search of abnormalities to its structure. The second 
category is methods based on analyzing texture from the images and thus avoids the difficulties that arise from vessel 
segmentation. 

Vessel segmentation is the most mature area of research in the field of retinal image analysis. A review of vessel 
segmentation is provided by Fraz [17]. The majority of these techniques strive to achieve a segmentation performance that 
would allow for accurate quantification of vessel calibre for cardiovascular studies. However, these techniques struggle to 
segment new vessels due to their fine calibre and irregular appearance. Ramlugun [18] addressed this problem with a 
technique designed for small vessel extraction. The main contribution was the varying of the clip limit for contrast limited 
adaptive histogram equalization (CLAHE) to allow more contrast for small vessels. Most techniques also do not put 
enough emphasis on removing false responses caused by artefacts and other lesions. In particular false responses to 
exudates can cause large local densities on the segmented map and therefore can be mistaken for new vessels. B. Zhang [19] 
proposed a matched filter with first-order derivative of the Gaussian and L. Zhang [20] described a modified matched filter 
that used double sided thresholding, both methods were designed to reduce false responses to exudates.   

The following methods include vessel segmentation prior to the described analysis methods for the detection of new 
vessels. Both Daxer [21] and Karperien [22] described the vasculature of the retina as a fractal and used the fractal dimension 
to measure its complexity to indicate the presence of new vessels. Hassan [23] applied a local region based technique, where 
a scanning sub-window was used to measure the number of vessels and the area of vessels to indicate new vessels. Another 
local region based technique was proposed by Welikala [24] which used five morphology features. This technique also 
included a step to discard the majority of normal vasculature and therefore simplified new vessel detection. Jelinek [25] 
applied the derivatives of Gaussian wavelets to the vessel skeleton to extract several morphological based features to 
detect new vessels. A comprehensive set of 15 features was developed by Goatman [26] to specifically detect NVD, this 
included the number of vessel segments, the mean vessel wall gradient and various tortuosity measures. Akram [27] 
proposed a ten dimensional feature set based on morphological, intensity and gradient based values along with a 
multivariate m-Mediods based classifier. 

The following methods describe the second category of new vessel detection methods, those based on extracting textural 
information. Frame [28] used the grey level co-occurrence matrix (GLCM) to calculate statistical texture measures in order 
to identify irregular distributions of pixel intensities associated with neovascularization. Texture features from the run 
length matrix and the GLCM were calculated by Acharya [29] to identify the stage of DR. Spectral texture analysis using 
multi-scale amplitude modulation frequency modulation (AM-FM) methods were proposed by Agurto [30] to characterize 
different retinal structures, including new vessels. However, Agurto [31] extended their work to include vessel 
segmentation and granulometry along with AM-FM to detect NVD. A new vessel detection method which combined 
statistical texture analysis, high order spectrum analysis and fractal analysis was proposed by Lee [32]. However vessel 
segmentation was required for multi-fractal analysis. The performances of six different texture based methods for the 
detection of neovascularization were compared by Vatanparast [33]. These include AM-FM, GLCM, Contourlet transform, 
Gabor filters and local binary patterns. 

The application of a dual classification approach to independently process the binary maps from two different vessel 
segmentation methods [34] was previously proposed by our research group. This included vessel segmentation by a 
standard line operator and a novel modified line operator. The former targets the accurate segmentation of new vessels and 
the latter (based on double sided thresholding) targets the reduction of false responses to non-vessel edges. The overall aim 
was to detect new vessels whilst reducing false responses caused by other retinal features.  
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This paper presents a new supervised method for the detection of new vessels by using an ensemble classifier of boot 
strapped decision trees combined with the dual classification approach [34]. The feature vector has been expanded to 
include morphology, gradient and intensity based features. The classifier based on the boot strapped decision trees is a 
classic ensemble classifier, which has been broadly applied in many application areas of image analysis [35], but has not 
been extensively utilized for detecting neovascularization. To the best of our knowledge, this is the first use of a decision 
trees based ensemble method for new vessel classification. An important feature of the bagged ensemble is that the 
classification accuracy can be estimated during the training phase, without supplying the classifier with test data. 
Moreover, the importance of each feature in classification can also be predicted during the training phase, which helps in 
identifying the most relevant features used in new vessel detection thus automatically reducing the dimensionality of the 
feature vector and boosting computational speed. Selecting the most relevant features also provides the potential to 
improve the classifier’s performance. Furthermore, as compared to other supervised methodologies utilized in retinal 
image analysis, the ensemble classifier is fast in training and classification and comparatively requires less number of 
training samples.  

2 Methodology 

2.1 Framework 

 

Figure 3. System architecture of the dual ensemble classification approach 

Following alternations to the dual classification framework of Welikala et al. [34], the architecture of the proposed method 

is shown is shown in Figure 3. Following spatial normalization and pre-processing the system splits into two pathways as 

two different vessel segmentation methods were applied to create two binary vessel maps. Each pathway had its own 

feature set produced, using the same set of 21 local features. Independent classification was performed for each feature set 

using an ensemble classifier. The system produced a final decision by combining the two individual classification 
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outcomes in which regions of the retina were labelled as new vessels or non-new vessels. The initial steps of the 

framework are identical to that from Welikala et al. [34]. Therefore sections prior to 2.3 shall be kept concise, for a full 

explanation with all parameters listed see Welikala et al. [34]. 

2.2 Line operator/modified line operator 

The line operator is a simple and effective method for vessel segmentation. The standard line operator is illustrated in 

Figure 4. The average grey-level of the pixels along a line passing through the target pixel was calculated for multiple 

orientations. The line strength of the pixel was obtained from the orientation with the largest value subtracted by the 

average grey-level of the similar orientated neighborhood. An empirically derived threshold was applied to the line 

strength image to produce the segmentation of the vessels. The modified line operator differed by being based on three line 

strength measures as opposed to one. This included measures that separately took into account the left and right side of the 

neighborhood. For full details and equations see Welikala et al. [34]. 

Figure 4. Standard line operator 
at different orientations  

Figures 5(e)-(h) show that the standard line operator segments normal and new vessels with a high level of accuracy, 

however it also responds to non-vessel edges (mainly exudates/bright lesions and reflection artefacts). These false vessel 

detections often cause large local densities and large curvatures which are indistinguishable from new vessels. Figures 

5(i)-(l) show the segmentation generated by the modified line operator has significantly reduced the false vessel detections 

to the extent that non vessel edges were distinguishable from new vessels. Unfortunately the segmentation of new vessels 

has worsened. This meant that new vessels were no longer so distinguishable from normal vasculature. Both of the 

segmentation methods showed disadvantages and therefore neither method alone was suitable for the detection of new 

vessels. However extraction of information from both maps could be used effectively and this lead to the development of 

the dual classification approach. 

2.3 Feature extraction 
The design of this method was aimed at the classification of image regions that contain new vessels. In a simple 4-D 

feature vector based on the description of new vessel regions that contain many vessel segments, which are closely packed 

and appear in multiple orientations was used [34]. However new vessels can be distinguished using other characteristics. 

New vessels tend to appear finer in calibre, shorter in length and possess a tortuous nature. New vessels also appear less 

homogeneous then normal vessels. Therefore, additional features were created based on these characteristics. This formed 

a 21-D feature vector (see Table 1) which contained morphology, intensity and gradient based features. 
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Figure 5. (a)-(d) Zoom-in regions of retinal images. (a) Normal vessels. (b) New vessels. (c) Exudates (bright lesions). (d) Reflection 
artefacts. (e)-(h) Segmentation of (a)-(d) using the standard line operator. (i)-(l) Segmentation of (a)-(d) using the modified line operator 

Prior to measurements of features, the binary maps were simplified. This included straight vessel removal and the creation 
of vessel segments (single pixel in thickness), for full details see Welikala et al. [34]. A sub window of size 151 × 151 pixels 
was created in order to calculate local features. This sub window was scanned through the image and at each pixel position 
the 21-D feature vector was calculated. This same set of features was measured from each of the pathways to produce two 
separate feature vectors. 

Table 1. Description of the features 

Feature 
Number 

Feature Name  Feature Description 

1 Number of vessel pixels The sum of all segment pixels within the sub window. 
2 Number of vessel segments The number of whole and partially included segments within the sub window. 
3 Number of vessel orientations The end points of a segment were connected by a straight line. The angle the line 

made with the x-axis that fell within the range -90ᵒ to 90ᵒ of the unit circle was 
calculated. The calculated angle was accordingly dropped into one of eight bins, 
each representing a range of angles. This was done for each segment within the 
sub window and the number of non-empty bins represented the number of 
orientations. 

4 Vessel density A segment was dilated with a disk structuring element with a radius of 20 pixels. 
The nusmber of vessel pixels within the dilated area was divided by the number of 
pixels within the segment to give its vessel density. This was done for each 
segment within the sub window and the mean vessel density was calculated.   

(Table 1 continued on page 78) 
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Table 1. (continued.) 

Feature 
Number 

Feature Name  Feature Description 

5 Tortuosity 1 The tortuosity of each segment was calculated using the true length (measured 
with the chain code) divided by the Euclidean length. The mean tortuosity was 
calculated from all the segments within the sub window. 

6 Tortuosity 2 The maximum tortuosity amongst all segments in the sub window. 
7 Vessel length The mean true length (in pixels) of all segments within the sub window. 
8 Number of bifurcation points The number of bifurcation points removed within the sub window when creating 

segments. 
9 Grey level mean The mean grey level of all segment pixels within the sub window. 
10 Grey level coefficient of variation The ratio of the standard deviation to the mean of the grey level of all segment 

pixels within the sub window. 
11 Gradient mean The mean gradient magnitude along all segment pixels within the sub window. 

Calculated using the Sobel gradient operator applied on the pre-processed image.   
12 Gradient coefficient of variation The ratio of the standard deviation to the mean of the gradient of all segment 

pixels within the sub window. 
13 Line strength The mean line strength of all segment pixels within the sub window. 
14 Vessel width Skeletonization correlates to vessel centre lines. The distance from the segment 

pixel to the closest boundary point of the vessel using the vessel map prior to 
skeletonization. This gives the half-width at that point which is then multiplied by 
2 to achieve the full vessel width. The mean is calculated for all segment pixels 
within the sub window. 

15 Mean vessel wall gradient As for the vessel width above, the closest boundary point was assumed to be the 
vessel wall. The mean gradient magnitude along all vessel wall pixels within the 
sub window. 

16 Vessel wall gradient coefficient   of 
variation 

The ratio of the standard deviation to the mean of the vessel wall gradient along all 
vessel wall pixels within the sub window. 

17 Compactness The full vessel map prior to skeletonization and straight vessel removal was used. 
Area and perimeter within the sub window were measured and used in the 
circularity equation, C = 4π.area/perimeter2. 

18 Connectivity The full vessel map prior to skeletonization and straight vessel removal was used. 
The vessel area was divided by the number of objects within the sub window. 

19 Local grey level mean The mean grey level of all pixels within the sub window using the pre-processed 
image. 

20 Local grey level max The maximum grey level amongst all pixels within the sub window using the 
pre-processed image. 

21 Local grey level variation The standard deviation of all pixels within the sub window using the 
pre-processed image. 

Note. The term segment refers to the skeletonized vessel segments. 

2.4 Dual ensemble classification 
In this work two individual decisions have to be made. Therefore the two same sets of features measured from two 
different sources were kept separate and independent classification was performed on each. Classifier 1, associated with 
the feature set measured from the standard line operator approach, was intended to distinguish new vessels from normal 
vessels. Classifier 2, associated with the feature set measured from the modified line operator approach, was intended to 
distinguish new vessels from exudates and reflections. Combining the outcomes then removed the false new vessel 
responses that each classifier made. Alternatively, the conventional approach would be to combine all features into a 
single feature set. The classifier’s decision boundary would attempt to deal with making both decisions. However, such a 
boundary would compromise each of the decisions. 
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All features were normalized so that each feature had zero mean and unit standard deviation. Independent classification 
was performed for each of the two feature sets using an ensemble classifier of boot strapped decision trees (explained in 
section 2.5). Each pixel in the retinal image was characterized by a vector in 21-D feature space. 

Fv(x,y) = [f1(x,y), f2(x,y),…,f21(x,y)] 

Each classifier independently labelled the candidate pixel as new vessels or non-new vessels when its representation in 
feature space Fv(x, y) was known. The system produced a final decision by combining the two outcomes. The candidate 
pixel achieved a new vessel label only when both classifications agreed on its identity being new vessels, otherwise it 
achieved a non-new vessel label. When complete, all pixels labelled as new vessels were dilated with a structuring element 
the size of the sub window to illustrate the new vessel regions. 

2.5 Ensemble classifier 
The process of consulting multiple experts or seeking multiple opinions ahead of final decision making is almost our 
second nature. The wide-spread gains of such a procedure in automated decision making applications give rise to the 
ensemble classification framework. 

In ensemble classification [36], multiple classifiers and models are tactically generated and combined in order to give the 
solution to a machine learning problem; with a goal of obtaining better performance than could be obtained from any of the 
constituent classifiers/models. This process is used to abbreviate the likelihood of inadequate or unfortunate selection 
while improving the performance of the classifier. We use this strategy instinctively in our day to day activities, where we 
consider the opinion from several experts, evaluate and mingle their recommendations for establishing a well optimized 
and well-versed conclusion. In the same manner, the ensemble methods utilize multiple classifiers / models to accomplish 
gain in classification performance by mixing/aggregating the outcomes from several weak learners into one high-class 
classifier, with the goal of reducing the variance and amplifying the confidence in the decision. In this approach, we used 
the decision trees as the classification model and the results of these weak learners were combined using bootstrap 
aggregation also known as bagging. 

Breiman’s bagging [37] is among the most primitive ensemble methods, which is most perceptive and simplest to 
implement, with surprisingly fine results. In bagging, the component classifiers (in this case the decision trees), are 
developed on the bootstrap replicas of the training dataset. This is done by a random selection of N training instances out of 
N with replacement, where N is the size of the training set. Majority voting is used to combine the responses of the 
individual component classifier (the decision trees). The decision of ensemble is the class chosen by most of the 
component classifiers. Traditionally, the component classifiers are of the same general form; for example, all hidden 
Markov model, all neural networks or all decision trees, which was the case in this work.  

Given the original training set T, multiple sets of training data Tb are created, where b = 1,2, … B, by randomly sampling T 
with replacement. B is the number of component classifiers used in the ensemble system. On average, each training set Tb 
only contains two-thirds of the original samples. The bagging algorithm as explained by Polikar [38] is illustrated below, 

Inputs for bagging algorithm 

• Training data T={x1,x2,…,xN}, xi ϵ X, provided with correct class labels  

wi ϵ Ω = {w1,…,wC}. N is the size of training set.  

• WeakLearn, (the weak learning algorithm).  

• The Integer B specifies the total number of iterations. 

Do b = 1 …… B 
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1. Acquire the bootstrap sample Tb by randomly choosing N observations, with replacement, 
from the training set T. 

2. Call the routine WeakLearn with Tb and obtain the hypothesis from the classifier 

hb : X → Ω. 

3. Add hb to the ensemble, E. 

End Do Loop 

Test the algorithm with simple Majority Voting  

Given the unlabelled data instance z 

1. Estimate the ensemble E = {h1,…,hB } on z. 

2. Suppose the classifier hb gives vote to the class wj as, 

  vb,j = 1 or 0   (1) If hb picks class wj, (0) otherwise 

3. The total votes obtained by each of the class are,  

  Vj = ∑ , ,   j = 1,…,C. 

4. The final classification/label is the class that gains the majority votes. 

3 Experimental evaluation 

3.1 Materials and evaluation 
Evaluation was performed using images collected from the publicly available MESSIDOR retinal image database [39] and 
the St Thomas’ hospital ophthalmology department. A dataset of 60 images was created, 20 images with confirmed new 
vessels and a further 40 images without new vessels. The image data from each source were as follows: 

• MESSIDOR: 5 new vessel images, 20 normal images and 20 images with other DR pathology (mainly bright 
lesions) and strong reflection artefacts. These images were acquired from a color video 3CCD camera on a 
Topcon TRC NW6 fundus camera with a 45 degree field of view (FOV) and an image resolution of 2240 × 1488 
pixels. 

• St Thomas’ Hospital: 15 new vessel images acquired with a Nikon D80 digital SLR camera on a Topcon TRC 
NW6 fundus camera with a 45 degree FOV and an image resolution of 2896 × 1944 pixels. Ethical approval was 
obtained for the use of these images. 

Images were spatially normalized using a technique proposed by Zhang [40] along with bicubic interpolation and 
anti-aliasing. All images were required to be captured with the same FOV angle. Images were normalized to have a FOV 
width of 1379 pixels. Cropping was used to remove some of the surrounding black border to produce images of size  
1479 × 1479 pixels. 

The training data comprised of a specific selection of pixels chosen from the dataset. For convenience, a pixel can be 
referred to as an image patch as features were extracted using information from the local neighborhood contained within 
the sub window centred over the target pixel. An ophthalmologist labelled each image patch as either new vessels or 
non-new vessels. Separate training data was used for each classifier. Classifier 1 was trained with 50 new vessel patches 
and 50 normal vessel patches. Classifier 2 was trained with 50 new vessel patches and 50 patches made up of a variety of 
bright lesions, dark lesions and reflection artefacts. Note that each new vessel patch correlated to a pixel selected in the 
centre of a new vessel region. 
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Testing was performed across the whole of each retinal image, in terms of the classification process being performed at 
every pixel location. Splitting the data set to create separate training and testing sets was not suitable due to the limited size 
of the dataset. Instead, the leave-one-out cross validation method was applied. This meant the training data available to the 
classifiers was obtained from all the patches from all the images except those from the single test image, and this process 
was repeated for each image. The feature value normalization was also recalculated each time, leaving out the test image. 

All pixels classified as positive by the system were dilated by the size of the sub window in order to represent the local 
neighborhood in which information had been extracted from. The effect of this was the delineation of the new vessel 
regions. However, the performance was assessed on a per image basis as this is more useful from a clinical point of view. 
An image simply achieved a new vessel label if it contained any delineated regions. Prior to this, an ophthalmologist 
labelled all images using the same labels as before but on a per image basis. 

3.2 Ensemble classifier evaluation 
An important feature of the bagged ensemble is that the classification accuracy can be estimated during the training phase 
without supplying the test data. Moreover, the importance of each feature in classification can also be predicted during the 
training phase. The trustworthy estimates of classification accuracy and the feature importance during the training of 
classifier is a smart feature of bagging. 

3.2.1 Out-of-Bag classification error  
In bagging, the component classifiers (in this case the decision trees), were developed on the bootstrap replicas of the 
training dataset. This was done by a random selection of N training instances out of N with replacement, where N is the size 
of the training set. The phenomenon of choosing the N out of N training instances with replacement leaves out 37% of 
instances on average for every component classifier in the ensemble. The left-overs were called the out-of-bag (OOB) 
observations and were used in the estimation of the predictive power of the ensemble. The OOB predicted responses were 
compared against the observed responses of all the training instances to estimate the average OOB error, which is an 
unbiased estimator of the true ensemble error. Figure 6 and 7 show the plot of the OOB classification error computed for 
the classifiers comprised of 100 decision trees for each of the classifications respectively. 25 and 30 trees were the optimal 
choices for classification 1 and classification 2 respectively as OOB classification error remained constant with the 
increase in the number of decision trees in the ensemble. 

 

Figure 6. Out-of-Bag classification error for classification 1 
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Figure 7. Out-of-Bag classification error for classification 2 

 

3.2.2 Feature analysis 

Initially we have used a feature vector consisting of twenty one features, which are summarized in Table 2, and detailed in 
section 2.3. For establishing the importance of each feature, the feature importance index was computed during the 
classifier training phase. The OOB observations were used to determine the significance of each individual feature from 
the feature vector in the classification. In order to predict the feature importance, the OOB data was randomly permutated 
across one variable and the increase in OOB error due to this permutation was estimated. This increase was directly 
proportional to the importance of the feature in the classification. The larger the increase, the more important the feature 
was in the classification. 

Table 2. Summary of feature vector 
Feature 
Number 

Feature Name Feature Number Feature Name 

1 Number of vessel pixels 12 Gradient coefficient of variation 
2 Number of vessel segments 13 Line strength 
3 Number of vessel orientations 14 Vessel width 
4 Vessel density 15 Mean vessel wall gradient 
5 Tortuosity 1 16 Vessel wall gradient  coefficient of variation 
6 Tortuosity 2 17 Compactness 
7 Vessel length 18 Connectivity 
8 Number of bifurcation points 19 Local grey level mean 
9 Grey level mean 20 Local grey level max 
10 Grey level coefficient of variation 21 Local grey level variation 
11 Gradient mean   

Figure 8 and 9 shows the graphs for feature importance index (FII) calculated from classifiers created with 100 decision 
trees. The lowest ranked feature was removed (without return) from the feature vector and the system’s performance was 
evaluated. This was performed simultaneously for both feature vectors. This procedure continued until there was a drop 
off in the optimal operating point, the feature vector prior to this drop off was chosen. This resulted in 33% of the most 
significant features being kept for both feature vectors. The objective was to reduce the dimensionality of the feature 
vector which in turn decreases the computational cost of feature generation, classifier training and classification. Selecting 
the most relevant features also provides the potential to improve the classifier’s performance. 
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Figure 8. Feature Importance 
Index, classification 1 

 

Figure 9. Feature Importance 
Index, classification 2 

3.3 Performance measures 
As mentioned above, the performance was assessed on a per image basis. An image was classified as either new vessels or 
non-new vessels. Consequently there are four outcomes, two classifications and two misclassifications which are defined 
in Table 3. The algorithm was evaluated in terms of sensitivity (SN), specificity (SP) and accuracy (Acc). These are often 
used in machine learning and are measures of the quality of binary classification. These metrics are defined in Table 4. 

The use of the receiver operating characteristic (ROC) curve allows for the visualization of the performance of a binary 
classifier system, expressing the trade-off between increased detection and false alarms. This was created by plotting the 
true positive rate (SN) versus the false positive rate (1-SP) at various threshold levels of the probability score of the 
classifier.   

With a dual classifier approach and therefore two probability scores, the creation of ROC curves was not a 
straight-forward task. This was resolved with the addition of a third axis to the conventional 2D ROC plot to accommodate 
for varying the threshold of the probability score of the additional classifier that arises in the dual classification approach. 
The resultant was a 3D ROC surface that explored all combinations of thresholds for the dual classification. Information 
from this 3D ROC surface was extracted to create a conventional 2D ROC curve. Full details of the procedure are 
described in Welikala et al. [34]. From this 2D plot the area under the curve (AUC) was extracted and used as a performance 
measure. 

Maximum Acc is often used as the criteria to select the optimal operating point from the ROC curve. However, the 

algorithm could reach a SN of 100% at a high SP. This was important as from a clinical point of view a SN of 100% was 
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considered an essential requirement for assessment on a per image basis. Max Acc may not always equate to an operating 

point with a SN of 100%. Therefore an application specific performance measure was created, in which the operating point 

with the highest SP at a SN of 100% was selected as the optimal operating point. 

Table 3. New vessel classification 

New vessels present New vessels absent 
New vessels detected True positive (TP) False positive (FP) 
New vessels not detected False negative (FN) True negative (TN) 

Table 4. Performance measures for new vessels detection 

Measure Description 
SN TP/(TP+FN) 
SP TN/(TN+FP) 
Acc (TP+TN)/(TP+FP+TN+FN) 

3.4 Results 
The ROC curve of the proposed system for evaluation on a per image basis is depicted in Figure 10. This represents the 

performance with the feature vector reduced in dimensionality. The features retained are shown in Table 5. The AUC 

value is 0.9505. The optimal operating point according to the application specific performance measure is a SN of 1.0000 

and a SP of 0.9500. Table 6 shows these results along with the reported results from other new vessel detection methods. 

Figure 11 provides the manual delineation of new vessel regions marked by an ophthalmologist. Examples of classified 

images are given in Figure 12. Classified new vessel regions have also been indicated with a white boundary. Images 

containing any delineated regions are classified as new vessel images. 

The MATLAB Code took 683 seconds on an Intel(R) core(TM)2 Quad CPU Q9300 at 2.5 GHz to process each image 
using the full 21-D feature vector. This was reduced to 498 seconds once the feature vector had been reduced in 
dimensionality. 

 

Figure 10. ROC curve for the performance of the proposed method (7 features) 
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Table 5. Selected features 

Classification Features 

1 4, 2, 1, 8, 17, 3, 7 
2 2, 1, 3, 17, 8, 4, 19 

Table 6. Reported results for new vessel detection methods 
Method Year Database Level AUC Acc SN SP 

Hassan [23] 2011 Combination Pixel 0.7045 - 0.6390 0.8940 
Welikala [24] 2013 Public Image - - 1.0000 0.7000 
Jelinek [25] 2007 Local Image 0.9000 - 0.9400 0.8200 
Goatman [26] 2011 Local Image 0.9110 - 0.8420 0.8590 
Akram [27] 2013 Public Segment 0.9800 0.9800 0.9800 0.9700 
Agurto [31] 2012 Local Image 0.9400 - 0.9600 0.8300 
Lee [32] 2013 Public Image 0.9930 0.9850 0.9630 0.9910 
Vatanparast [33] 2012 Local Patch - - 0.9962 0.9661 
Welikala [34] 2014 Combination Image 0.9682 0.9333 1.0000 0.9000 
Proposed (21 features) 2015 Combination Image 0.9734 0.9667 1.0000 0.9500 
Proposed (7 features) 2015 Combination Image 0.9505 0.9667 1.0000 0.9500 

 

 
Figure 11. Location and delineation of new vessel regions marked by an ophthalmologist 
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Figure 12. Results of the proposed system, 
per image basis (7 features). (a)-(d) True 
positive images, (e)-(f) true negative images. 

4 Discussion and conclusion 
In this paper, we have presented an effective new vessel detection method based on an ensemble classifier of boot strapped 
decision trees combined with dual classification. This also included the dimensionality reduction of a 21-D feature vector 
consisting of morphology, intensity and gradient based features. 

The main contribution of this paper was the integration of ensemble classification which replaced the support vector 
machine classification used in Welikala et al. [34].  The ensemble method utilized multiple classifiers to accomplish gain in 
classification performance by mixing the outcomes from several weak learners into one high-class classifier. Decision 
trees were used as the classification model and the results of these weak learners were combined using bootstrap 
aggregation (bagging). An advantage of using the bagged ensemble was its ability to predict the importance of each feature 
during the training phase. This was useful to identify the most relevant features, allowing for the reduction of the feature 
vector dimensionality and thus increasing the computational speed of the system. 
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The results from table 6 show the proposed system performs better than Welikala et al. [34], achieving a SN of 1.0000 and 
a SP of 0.9500 compared to a SN of 1.0000 and a SP of 0.9000 on a per image basis. The AUC value also increases from 
0.9682 to 0.9734. From the examples of classified images shown in Figure 12 it is clear that the algorithm responds well to 
a range of new vessel formations, including NVE, NVD, new vessels with associated fibrosis and obscure new vessels. 
Also evident is the algorithm’s ability to avoid false responses despite the presence of bright lesions, dark lesions and 
reflections artefacts.  

Feature removal using the feature importance index allowed for large reductions in the dimensionality of the feature 
vectors and therefore saved significantly on computational time. More than 66% of features were removed, with only 7 
features being retained for each feature vector. These were features 4, 2, 1, 8, 17, 3, 7 for classification 1 and features 2, 1, 
3, 17, 8, 4, 19 for classification 2 (see Table 5). The retained features are mainly morphology based, see table 2 for a 
summary of the features. However, on this occasion feature removal did not result in an increase to the classifier’s 
performance, with the system’s performance remaining the same at a SN of 1.0000 and a SP of 0.9500 (there was a slight 
drop in the AUC value to 0.9505).  

The system puts no emphasis on correctly detecting all new vessels. Instead identifying any part of any new vessel region 
in the image is sufficient for the image to achieve a new vessel label. Figure 12(b) illustrates how there is no requirement to 
identify all new vessels in the image, with only one out of the five new vessel networks being identified. Figure 11(b) 
shows the same image with the location of all five new vessel networks marked by an ophthalmologist.  Such an approach 
assists in ensuring a higher specificity is obtained. 

It is evident from Figure 12 that the proposed method delineates new vessel regions to some extent, despite this it was not 
an objective to evaluate its performance in these terms. Striving to achieve a more complete delineation of new vessel 
regions would make the algorithm more susceptible to false positives. Therefore, our main concern is to identify whether 
new vessel regions are present in an image, as opposed to their accurate delineation. This suits the clinical requirements for 
identification of new vessels within a retinal screening program. 

From Table 6 it is evident that the proposed method performs well in comparison to the other published methods.  
However, true comparisons are difficult to make as there exist no standard datasets for testing. Therefore, to assist in the 
development of PDR detection algorithms it is vital that a large new vessel data set becomes publicly available. Another 
difficultly in making comparisons is due to the variability in terms of their application. Jelinek [25] applied their methods on 
fluorescein images as opposed to conventional retinal images. Goatman [26] and Agurto [31] seek to only detect NVD. 

Further developments of this method will involve the inclusion and evaluation of the boosting technique for comparison to 
our current methodology. Boosting [41] also creates an ensemble of classifiers by re-sampling the data, which is then 
combined by majority voting but it takes a different re-sampling approach than bagging. Our final goal is to develop an 
interactive retinal image analysis software tool focusing on early detection of PDR in screening programs. Prior to this our 
algorithm will need to be more stringently tested by using a larger new vessel data set. Therefore the aim is to continue to 
work in collaboration with local hospitals in expanding the data set, with the intent to publicly release. 

In conclusion, this paper has demonstrated an automated system that is capable of detecting the presence of new vessels 
whilst reducing false responses to bright lesions, dark lesions and reflection artefacts. This involved the use of an ensemble 
classifier combined with dual classification. 
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