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A B S T R A C T
Background: Human papillomavirus (HPV) plays a role in the devel-
opment of benign and malign neoplasms in both sexes. The Italian
recommendations for HPV vaccines consider only females. The BEST
II study (Bayesian modelling to assess the Effectiveness of a vacci-
nation Strategy to prevent HPV-related diseases) evaluates 1) the cost-
effectiveness of immunization strategies targeting universal vaccina-
tion compared with cervical cancer screening and female-only vacci-
nation and 2) the economic impact of immunization on various HPV-
induced diseases. Objective: The objective of this study was to
evaluate whether female-only vaccination or universal vaccination
is the most cost-effective intervention against HPV. Methods: We
present a dynamic Bayesian Markov model to investigate transmis-
sion dynamics in cohorts of females and males in a follow-up period
of 55 years. We assumed that quadrivalent vaccination (against HPV
16, 18, 6, and 11) is available for 12-year-old individuals. The model
accounts for the progression of subjects across HPV-induced health
states (cervical, vaginal, vulvar, anal, penile, and head/neck cancer as
well as anogenital warts). The sexual mixing is modeled on
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the basis of age-, sex-, and sexual behavioral-specific matrices to
obtain the dynamic force of infection. Results: In comparison to
cervical cancer screening, universal vaccination results in an incre-
mental cost-effectiveness ratio of €1,500. When universal immuniza-
tion is compared with female-only vaccination, it is cost-effective
with an incremental cost-effectiveness ratio of €11,600. Probabilistic
sensitivity analysis shows a relatively large amount of parameter
uncertainty, which interestingly has, however, no substantial impact
on the decision-making process. The intervention being assessed
seems to be associated with an attractive cost-effectiveness profile.
Conclusions: Universal HPV vaccination is found to be a cost-
effective choice when compared with either cervical cancer screening
or female-only vaccination within the Italian context.
Keywords: dynamic Bayesian model, cost-effectiveness analysis, herd
immunity, HPV, vaccination programs.

Copyright & 2015, International Society for Pharmacoeconomics and
Outcomes Research (ISPOR). Published by Elsevier Inc.
Introduction

Human papillomavirus (HPV) is one of the main factors in both
the cause and development of invasive cervical cancer and in
other neoplastic malignant and benign lesions, affecting the
vulva, vagina, anus, penis, head-neck (head neck squamous cell
carcinoma [HNSCC]), lungs (recurrent respiratory papillomatosis),
and external genital area [1]. HPV places a considerable clinical
and economic burden on public health providers. In addition, it
has high impact on quality of life and life expectancy of affected
patients [2–7]. The most frequent route of infection for HPV is
through sexual contact with an infected partner, although other
pathways are possible.

Vaccines play an important role in preventing HPV trans-
mission, infection, and induced diseases. Currently, a quadriva-
lent vaccine (including HPV genotypes 16, 18, 6, and 11) and a
bivalent vaccine (genotypes 16 and 18) are available. In Italy, girls
aged 9 to 26 years have the opportunity to routinely receive an
ociety for Pharmacoeconomics and Outcomes Research (ISPOR).
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HPV vaccine [8]. When compared with the bivalent vaccine, the
quadrivalent vaccine shows a higher efficacy, protects against a
higher variety of HPV-induced diseases (including anogenital
warts) [9], and as a consequence is more cost-effective. The
cost-effectiveness of different HPV vaccination schemes (in
addition to screening programs) has been evaluated by a large
body of modeling studies [10–12]. The results for universal
vaccination strategies, however, have not been conclusive
[13,14], and uncertainty associated with the main parameters of
commonly used models has a large influence on results obtained.

In addition, an important factor in cost-effectiveness analyses
of vaccines is the impact of herd immunity [15]. Herd immunity
implies that nonvaccinated subjects are protected indirectly as a
consequence of decreasing overall prevalence of the infectious
disease in the population. Because HPV is highly prevalent in
sexually active populations [16–18], universal vaccination (i.e.,
including males) is highly likely to lead to a more rapid reduction
in the burden of HPV-induced disease than sex-specific vaccina-
tion [12,19–23].

Markov models (MMs) are often used in cost-effectiveness
analysis to model the disease progression through a set of
health states. It is not, however, easy to embed the effects of
herd immunity in a standard MM. Furthermore, standard MMs
are commonly deterministic and therefore do not address
issues relating to uncertainty. In infectious disease transmis-
sion modeling, parameters naturally incorporate a large
amount of uncertainty because it is often impractical or even
impossible to collect experimental data on most influential
parameters (e.g., the probability of pathogen transmission). As
a consequence, only limited evidence is typically available, or
clinical experts have to be consulted. A Bayesian statistical
approach that formally includes previous information taken
from several data sources as well as expert opinion can be used
to construct a probabilistic MM to characterize the uncertainty
associated with the outcomes [24,25], effectively providing
probabilistic sensitivity analysis (PSA) “for free” once the model
has been run.

The aim of this study was to evaluate whether female-only
vaccination or universal vaccination is the most cost-effective
intervention against HPV; cervical screening was included in both
interventions. To account for the effects of herd immunity, we
incorporated dynamic interactions between individuals into a
Bayesian MM. Some of the fundamental data (e.g., costs, some of
the utility measures, and the population structure) are specific to
the Italian context. Nevertheless, because many of the basic
parameters (e.g., those related to vaccination effectiveness) are
taken from the published literature, the model is easily extended
Fig. 1 – Overview of the health states included in the model. Dise
and penile cancer is a male-specific disease. Ellipses represent
cancer-related health states, including precancerous states, canc
represent possible transitions in either one or both directions. Ar
possible to remain in a given health state. Individuals can mov
to other comparable health care systems, such as the United
Kingdom and continental European countries.
Methods

Analytical Overview

An empirically calibrated static Bayesian MM for the assessment
of the cost-effectiveness of a multicohort HPV vaccination strat-
egy was presented by Favato et al. [26]. Here, the original model
was extended by including 1) a module for males; 2) population
dynamics in an open model structure; 3) various HPV-induced
diseases affecting the vulva, vagina, anus, penis, head/neck, and
external genital area; and 4) the dynamic effects of sexual mixing
to account for herd immunity. The incidence and prevalence
predicted by the model were calibrated using data on age-specific
incidence [27] and prevalence [28] obtained from the literature.

In the base-case scenario, we compared universal and female-
only vaccination with the quadrivalent vaccine in addition to cervical
screening against each other and against the null option of screen-
ing-only, which in Italy is currently offered to women aged 25 to 64
years once every 3 years. Female-only vaccination was offered to 12-
year-old females, and we assumed that universal vaccination was
offered to 12-year-old females and males.

Risk factors copromote the development of cancers and other
HPV-related diseases by weakening the mucosal barriers of body
organs, thus facilitating infection. Whenever possible, we
accounted for the impact of risk factors on the transition
probabilities [2,29–33].

All parameters were given suitable probability distributions,
reflecting the state of science. Most parameters, however, were
subject to a considerable amount of uncertainty, a common feature
of pathogenesis in human medicine that requires time-consuming
and expensive research. Uncertainty was propagated through the
model using Markov chain Monte-Carlo estimation [34].

The Model

In a MM, the natural progression of a disease is represented by a
set of health states that are considered to be mutually exclusive.
Individuals are assumed to move across states from one period to
the next according to specified transition probabilities, possibly
depending on age and sex or other individual characteristics.
Figure 1 shows a simplified version of the model structure.
The nodes drawn in ellipses represent single health states,
whereas the rectangles indicate sets of health states, including
ases of the cervix, vagina, and vulva can affect only females,
a single health state, whereas rectangles are a whole set of
er, and the tunnel postcancer states. Arrows between nodes
rows with origin and end at the same node indicate that it is
e to the absorbing state of death from any health state.
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Fig. 2 – Calibration of the HPV prevalence model output to
data taken from Baussano et al. [28]. The age- and sex-
specific prevalence estimates are displayed separately for
the three interventions screening-only, female-only, and
universal vaccination. The figure shows that the model
realistically predicts HPV prevalence, peaking in the
youngest age groups. HPV, human papillomavirus.
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pre-cancerous lesions, cancer and post-cancer states. The arrows
indicate possible transitions between the states. The complete
model includes 36 and 22 health states for the female and male
compartments, respectively.

At the beginning of the virtual observation period, the model
considered 14 cohorts of females and 14 cohorts of males, aged 12
to 35 years and followed up for a period of 55 years. In addition,
the cohorts of females and males aged 0 to 11 years at the
beginning of the follow-up were allowed to sequentially enter the
population as soon as they reached age 12 years (i.e., during the
first 10 years of the virtual follow-up). The number of cohorts and
the time period in which new cohorts entered the follow-up were
restricted so that real population data could be used to estimate
the numbers of new healthy individuals. Overall, 24 cohorts
per sex were included.

We assumed that both females and males could be affected by
anal cancer. In all cancers but HNSCC, one or several precancer-
ous states were distinguished. Furthermore, the occurrence of
anogenital warts in both sexes was integrated into the model.
Cancer survivors were considered cured 4 years after initial
diagnosis and were at increased mortality risk during this period.
Death could be reached from any other state, with probabilities
determined by official life tables [35].

Results obtained by Favato et al. [26] were used to initialize
the MM by distributing the cohorts over the health states, while
HPV incidence was estimated using data presented by Myers
et al. [36]. After sexual debut, healthy individuals move to the
state of “Exposure.” Once exposed to HPV, the probability of
becoming infected with the virus depends on age, sex, and
sexual behavior (categorized as “high-risk” and “average-risk”).
Note that there is no transition from “Exposure” to “Healthy”
because individuals are assumed to remain sexually active for
the rest of their lives. Also, there is no way back from
“Clearance” to a preinfection state (“Exposure”); however,
individuals can remain in the “Clearance” state unless they
become reinfected and subsequently develop a second HPV-
induced disease. An infection with the virus does not neces-
sarily result in disease development; most of the individuals
who are infected with HPV will clear the virus (on average, up
to 80%–90% within 2 years [37]) and develop natural immunity.
A persisting infection, however, is likely to result in HPV-
related disease.

In line with the literature, the risk of reinfection was asso-
ciated with behavioral factors such as smoking, the long-term
(five years or longer) use of oral contraceptives, multiparity (for
females), the overall number of sexual partners, and a history of
other sexually transmitted diseases such as chlamydia tracho-
matis, herpes simplex virus type 2, or syphilis [30–33].

To evaluate our model predictions, we present graphical
summaries on the natural history model outcome of HPV infec-
tion and disease progression. Figure 2 shows the results of the
model calibration in terms of age-specific HPV prevalence,
whereas Figure 3 displays the proportions of those affected and
unaffected by HPV over time, respectively, separately for the
two sexes.

Each model parameter was assigned a suitable probability
distribution reflecting current uncertainty, informed by clinical
trial data and published literature, when available, or through
expert opinion. Table 1 presents the distributional assumptions,
the means and 95% credible intervals as well as the sources for
the most important parameters. The model was calibrated using
age-specific incidence of cervical, anal, vaginal, vulvar, and penile
cancers, HPV-induced HNSCC, as well as the age-specific preva-
lence of the virus. Finally, each health state was associated with a
utility value in terms of quality-adjusted life years (QALYs).

PSA of the impact of parameter uncertainty on the results of
the cost-effectiveness analysis was performed using a simulation
approach based on Markov Chain Monte Carlo estimation in a
Bayesian framework. The cost-effectiveness plane, cost-
effectiveness acceptability curve (CEAC), and the expected value
of information (EVI) were computed and analyzed.

Although recent research indicated that two doses of the
quadrivalent vaccine are sufficient to prevent HPV infection [94],
we assumed full compliance (and hence full effectiveness) corre-
sponding to a course of three shots. For individuals who were not
fully compliant (i.e., who received only one or two doses of the
HPV vaccine), an average 50% reduction in vaccine efficacy was
assumed. We also considered lifetime protection for the vaccine,
but assessed the impact of this assumption in sensitivity analyses.

Data from published literature suggest that the vaccine is
extremely effective in the prevention of HPV-induced clinical
outcomes in girls aged between 16 and 26 years, especially in
those who have never been exposed to HPV [43,44,95]. Given
cross-protection against HPV genotypes other than those tar-
geted [96,97], the MM includes 10 additional HPV types (31, 33, 35,
39, 45, 51, 52, 56, 58, and 59) that are responsible for the
development of 20% of HPV-induced cancers [98]. The duration
of cross-protection against cervical infections has been found to
be limited to 5 years [99], accounting for 32.5% (6.0%–51.9%)
vaccine efficacy against these HPV types [96,97].

The Process of Sexual Mating

The main characteristic of our dynamic Bayesian model is that it
accounts for interactions between individuals of different sex in
the definition of the transition probabilities from “Exposure” to
“Infection.” We estimated HPV transmission by means of the
dynamic force of infection, which is defined as a function of HPV
transmission probabilities, partner acquisition rates, and popu-
lation prevalence [100,101].

Although estimates of HPV transmission probabilities were
available from the literature, they were not directly comparable.
Dunne et al. [102] estimated an HPV transmission probability
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Fig. 3 – Model outcome of the natural history of HPV infection and disease progression. Cumulative proportions of unaffected
and diseased individuals are displayed separately for the two sexes. The vast majority of individuals remain unaffected by
the virus, whereas a small age-dependent proportion (up to 4% of females and 2.5% of males) develop an HPV-induced
disease. anHSIL, anal high-grade squamous intraepithelial lesion; anLSIL, anal low-grade squamous intraepithelial lesion;
cervcanc, cervical cancer; CIN, cervical intraepithelial neoplasia; genwarts, anogenital warts; hncanc, HNSCC; HPV, human
papillomavirus; VaIN, vaginal intraepithelial neoplasia; VIN, vulvar intraepithelial neoplasia.
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per sex act of 40% (ranging from 5% to 100%); however, Burchell
et al. [103] estimated a probability of 42% (36%–47%) per partner-
ship. In line with Van de Velde et al. [104], we split the population
into two groups (termed “average-risk” and “high-risk,” respec-
tively, defined by the number of lifetime sexual partners); we
assumed 80% in the former group (1–10 lifetime sexual partners)
and modeled the risk of HPV infection also as a function of
smoking, education level, and age at sexual debut. The per-
partnership HPV transmission probabilities were assumed to
range from 17% to 36% in the average-risk group and from 29%
to 74% in the high-risk group, respectively, using information
found in the literature [102,103].

Data presented in Van de Velde et al. [104] were used to
model sex-, age-, and behavioral-specific partner acquisition
rates, describing the annual numbers of partners an individual
had sexual contact with. In particular, sexual mixing was
made to depend on age, with younger females generally more
likely to select older male partners and vice versa. On average,
males tended to have a higher number of partners than did
females.

Finally, the HPV population prevalence was estimated dynam-
ically by considering the proportion of infected individuals in the
population available for mating at a given time period and under
the three alternative interventions.

The force of infection was then computed as the product of
these three terms and resulted in rates that were rescaled into
probabilities [105]. As a consequence, the transition probabilities
from the state “Exposure” to the state “Infection” were dependent



Table 1 – Distributional assumptions, means, and 95% CIs as well as literature sources for the most important
model parameters.

Screening-related parameters

Variable Description Distribution Mean and 95% CI Source

σa Screening at 12–24 y Informative beta 0.0500 [0.0498; 0.0501] EO
σa Screening at 25–29 y Informative beta 0.1530 [0.1480; 0.1590] EO
σa Screening at 30–34 y Informative beta 0.2150 [0.2100; 0.2190] EO
σa Screening at 35–44 y Informative beta 0.2460 [0.2440; 0.2470] [38–42]
σa Screening at 45–54 y Informative beta 0.2600 [0.2540; 0.2660] [38–42]
σa Screening at 55–64 y Informative beta 0.2420 [0.2320; 0.2520] [38–42]
σa Screening at 65–74 y Informative beta 0.1840 [0.1640; 0.2020] [38–42]

Vaccine-related parameters

Variable Description Distribution Mean and 95% CI Source

γ1 Vaccine efficacy cervix Informative lognormal 0.7816 [0.6847; 0.8888] [43–45]
γ2 Vaccine efficacy anus Informative lognormal 0.7019 [0.6055; 0.7981] EO
γ3 Vaccine efficacy head/neck Informative lognormal 0.5008 [0.4563; 0.5497] [46], EO
α1 Vaccine coverage rate Informative beta 0.9048 [0.6597; 0.9992] [20,22,23,47], EO

Infection-related parameters

Variable Description Distribution Mean and 95% CI Source

ρ2 Risk increase in anal cancer in females
compared with males

Informative gamma 1.6975 [1.5055; 1.9026] [48], EO

ρ3 Risk increase in anal cancer in MSM
compared with MSF

Informative gamma 17.1880 [0.8714; 53.5615] [49]

ζ Proportion of population at increased risk Informative beta 0.3139 [0.2140; 0.4054] [29–33]
τ1 Probability of conization in CIN I (immediate) Informative beta 0.3029 [0.2101; 0.4180] [50]
τ2 Probability of conization in CIN I (delayed) Informative beta 0.1701 [0.1525; 0.1909] EO
μ1 Probability of HPV transmission (average risk) Informative normal 0.2532 [0.1707; 0.3607] EO
μ2 Probability of HPV transmission (high risk) Informative normal 0.5220 [0.2915; 0.7439] EO

Transition probabilities

Variable Description Distribution Mean and 95% CI Source

δ0a Infection - Exposure (40–49 y) Informative beta 0.2048 [0.1118; 0.3022] [51–54], EO
δ1 Infection - CIN I Informative beta 0.0450 [0.0279; 0.0661] [36], EO
δ2 Infection - CIN II Informative beta 0.0115 [0.0034; 0.0234] [36], EO
δ3 Infection - LSIL Informative beta 0.0286 [0.1003; 0.1387] [49,55], EO
δ4 Infection - HSIL Informative beta 0.0104 [0.0008; 0.0496] [49,55,56], EO
δ5 Infection - VaIN I/II Informative beta 0.0073 [0.0054; 0.0069] [57]
δ6 Infection - PeIN Informative beta 0.0002 [0; 0.0014] [58]

Probabilities of diagnosis

Variable Description Distribution Mean and 95% CI Source

η1 Diagnosis CIN II (without screening) Informative beta 0.0247 [0.0001; 0.1010] EO
η2 Diagnosis CIN III (without screening) Informative beta 0.0758 [0.0576; 0.0982] EO
η3 Diagnosis LSIL Informative beta 0.0496 [0.0400; 0.0606] EO
η4 Diagnosis HSIL Informative beta 0.0997 [0.0920; 0.1087] EO
β1
(hn) Diagnosis HNSCC stage I Flat normal 0.2260 [0.1039; 0.4043] [59–62]
η5 Diagnosis VaIN I/II Informative beta 0.1998 [0.1798; 0.2190] EO
β1
(vulv) Diagnosis vulvar cancer stage I Flat normal 0.3549 [0.0028; 0.9926] [63,64]
β1
(pen) Diagnosis penile cancer stage I Flat normal 0.5905 [0.5275; 0.6512] [65]

Probabilities of survival

Variable Description Distribution Mean and 95% CI Source

ϕ1,1
(cerv) 1-y survival cervical cancer stage I Informative beta 0.9782 [0.8931; 0.9999] [5–7], EO

ϕ1,1
(an) 1-y survival anal cancer stage I/II Flat normal 0.9900 [0.9800; 1.0000] [66,67]

ϕ1,1
(hn) 1-y survival HNSCC stage I Flat beta 0.9839 [0.9334; 1.0000] [68]

ϕ1,1
(vag) 1-y survival vaginal cancer stage I Flat beta 0.9531 [0.8014; 0.9999] [69]

continued on next page
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Table 1 – continued

ϕ1,1
(vulv) 1-y survival vulvar cancer stage I Flat normal 0.7808 [0; 1] [70]

ϕ1,1
(pen) 1-y survival penile cancer stage I Flat beta 0.8933 [0.7584; 0.9822] [71]

Cost of vaccination and diagnostic procedures

Variable Description Distribution Mean and 95% CI Source

cadm Administration Informative lognormal 6.64 [5.05; 8.65] [72–74]
cacq Dose of vaccine Informative lognormal 56.10 [36.48; 77.43] [72–74], EO
cpap Papanicolaou test Informative lognormal 17.07 [14.05; 20.83] [75]
ccol Colposcopy Informative lognormal 54.27 [49.63; 59.49] [75]
ccyt Anal cytology Flat lognormal 43.03 [23.59; 83.06] [76]
cdna HPV DNA test Informative lognormal 79.10 [76.98; 81.13] [77,78]

Cost of HPV-induced diseases

Variable Description Distribution Mean and 95% CI Source

c1
cin CIN I Informative lognormal 309.33 [225.36; 405.64] [50,79]
c2
cin CIN II Informative lognormal 1,342.30 [1,032.51; 1,701.10] [50]
c3
cin CIN III Informative lognormal 1,750.03 [1,381.00; 2,193.80] [50]
c1
cerv FIGO I Informative lognormal 14,782.17 [2,459.13; 44,084.05] [80]
cgw Anogenital warts Informative lognormal 283.48 [242.04; 328.56] [79,81]
clsil LSIL Informative lognormal 115.46 [76.56; 166.75] [82]
chsil HSIL Flat lognormal 2,389.34 [1,165.65; 4,360.13] [55,76]
c1
an Anal cancer stage I Flat lognormal 7,618.94 [3,885.66; 12,058.58] [83,84]
c1,2
hn HNSCC stage I/II Flat lognormal 10,081.71 [5,457.09; 18,036.06] [4,85,86]
cvain VaIN I/II/III Flat lognormal 3,236.98 [1,686.22; 5,376.87] [87]
c1
vag Vaginal cancer stage I Flat lognormal 2,939.32 [1,684.02; 5,029.46] [83,88]
cvin VIN Flat lognormal 3,158.80 [1,920.52; 5,405.63] [87]
c1
vulv Vulvar cancer stage I Flat lognormal 8,304.24 [4,650.56; 14,302.42] [88]
cpein PeIN Flat lognormal 437.13 [63.13; 811.13] [89]
cpen Penile cancer Flat lognormal 5,807.15 [3,472.35; 9,233.68] [90,91]

Utilities of HPV-induced diseases

Variable Description Distribution Mean and 95% CI Source

uascus ASCUS Informative beta 0.8302 [0.5725; 0.9767] [2]
u1
cin CIN I Informative beta 0.8396 [0.2058; 0.9999] [2]

u2
cin CIN II Informative beta 0.7967 [0.0469; 0.9999] [2]

u3
cin CIN III Informative beta 0.8396 [0.1845; 0.9999] [2]

u1
cerv FIGO I Informative beta 0.5769 [0.2766; 0.8641] [2]

um
gw Anogenital warts in males Informative beta 0.6961 [0.1172; 0.9999] [2]

uf
gw Anogenital warts in females Informative beta 0.7761 [0.0520; 0.9999] [2]

ulsil LSIL Informative beta 0.9793 [0.9517; 0.9955] [92]
uhsil HSIL Informative beta 0.9793 [0.9480–0.9959] [92]
u1,m
an Anal cancer stage I in males Informative beta 0.6654 [0.1847; 0.9850] [2,3]

u1,f
an Anal cancer stage I in females Informative beta 0.7275 [0.0669; 0.9999] [2,3]

u1,2,m
hn HNSCC stage I/II in males Informative beta 0.8171 [0.0135; 1] [2,4]

u1,2,f
hn HNSCC stage I/II in females Informative beta 0.7413 [0.2500; 0.9911] [2,4]

upen PeIN, Penile cancer all stages Informative beta 0.7922 [0.7489; 0.8455] [93]

Notes. The notation A - B indicates the transition from state A to state B. This plays a role in context of the transition probabilities between
the health states reported. We assumed that administration costs include costs generated by additional medical consultations induced by
mild adverse effects of vaccination. We assumed that approximately 1.8% of the vaccines require an additional visit to a general practitioner.
Approximately 75% of Papanicolaou tests are performed using conventional cytology and 25% with liquid-based cytology. A gynecological
office visit (at a fee of €20.66) [2] is included in colposcopy costs.
ASCUS, atypical squamous cells of undetermined significance; CI, credible interval; CIN, cervical intraepithelial neoplasia; EO, assumption
based on expert opinion; FIGO, International Federation of Gynecology and Obstetrics; HNSCC, head neck squamous cell carcinoma; HPV,
human papillomavirus; HSIL, high-grade squamous intraepithelial lesion; LSIL, low-grade squamous intraepithelial lesion; MSF, males who
have sex with females; MSM, males who have sex with males; PeIN, penile intraepithelial neoplasia.
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on the population dynamics and were, in turn, directly integrated
into the health state allocation algorithm of the MM. This allowed
us to take the effects of herd immunity into account.
Economic Parameters

We considered sex-specific utilities, where available, ranging
between 0 and 1 (0 representing death and 1 perfect health). In
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asymptomatic health conditions such as HPV-induced precan-
cerous stages, we assumed that a utility loss occurred after the
diagnosis of the corresponding disease.

Only direct medical costs associated with screening, diagno-
sis, and management of HPV-related diseases were included in
the model. We assumed that two Papanicolaou tests and two
colposcopies were conducted in females affected by cervical
intraepithelial neoplasia I to III, and an HPV DNA typing was
performed in those suffering from cervical intraepithelial neo-
plasia II and III or cervical cancer. According to Lazenby et al. [76]
and Santoso et al. [106], an anoscopy with corresponding biopsy
was conducted in addition to anal cytology in individuals with
precancerous stages of anal cancer. For the other HPV-induced
diseases, we did not specifically account for diagnostic costs
because the information in the literature was not sufficient; we
included only the related treatment costs.

In Italy, the vaccination program is financed at the regional
level and can therefore largely differ in terms of age and the
number of target cohorts, catch-up programs, and access proce-
dure. The follow-up procedures and monitoring of vaccinated
individuals are different as well. For these reasons, the cost per
dose of vaccine is subject to wide variability across regions as
well as over time. To formally account for this fact, we modeled
the vaccine costs using a distribution ranging from a potential
minimum price (i.e., €40) to the maximum price for local health
units (i.e., €104, which is the ex-factory price per dose negotiated
by the Italian agency for medicines) [72–74]. Cost and utility data
available from Favato et al. [26] were updated using Mennini et al.
[2], Baio et al. [83], and Marcellusi et al. [107]. For the remaining
parameters, an extensive literature review was performed to
identify the treatment cost of anal [55,82,108], vaginal [87], and
vulvar [87] precancerous lesions, as well as anal [84], vaginal [88],
vulvar [88], and penile [90,91] cancer and HNSCC [4,85,86].

Overall costs and utilities were calculated by multiplying the
unit costs and unit utilities associated with each health state by
the estimated number of individuals for each year of the
observation period and each intervention. Because of the model’s
long-term horizon, it was necessary to discount the resulting
estimates to present value. Approaches to this differ [109]: In an
Italian context, ISPOR guidelines [110] suggested discounting both
costs and benefits at a 3% rate, although the National Institute for
Health and Care Excellence (NICE) [111] recommended a slightly
higher value of 3.5%, with a 0% to 6% range for sensitivity
analyses. Rates actually applied varied between countries, rang-
ing from 1.5% to 10% for benefits and 0% to 10% for costs [112]. In
line with Capri et al. [110], the annual discount rates were set at
3% for both benefits and costs, combined with extensive sensi-
tivity analyses.

The economic evaluation was performed using the incremen-
tal cost-effectiveness ratio (ICER), accounting for the amount of
Table 2 – Population size, overall costs in euro, and QAL

Intervention Population
size, mean

Overall c

Mean 95% CI

Screening-
only

149,652,365 187,189,634 [169,986,589–
204,392,679]

Female-only
vaccination

149,727,525 484,357,417 [478,212,474–
490,502,360]

Universal
vaccination

149,736,770 948,732,541 [937,699,221–
959,765,861]

CI, confidence interval; QALY, quality-adjusted life-year.
money spent per QALY gained. Costs averted by the implemen-
tation of vaccination as well as QALYs gained were also esti-
mated. In the absence of an Italian official threshold, a
willingness-to-pay value of €25,000 to €40,000 per QALY gained
[113,114] was used. This benchmark of value for money [113]
roughly corresponds to the value of £20,000 to £30,000 adopted by
NICE in the United Kingdom [115].
Results

Natural Disease History

Figure 2 presents calibration results for the predicted age-
dependent HPV prevalence to data from Baussano et al. [28].
For screening-only, our model estimates HPV prevalence in a
realistic way; the predictions show a good approximation to the
data, with peak HPV prevalence in the youngest, decreasing in
older individuals. For the interventions female-only and univer-
sal vaccination, our model predicts prevalence reductions by
factors around 1.4 and 1.65, respectively. Male HPV prevalence
is higher than female as a consequence of more frequent partner
change in males [104]. Because of nonexisting diagnostic proce-
dures on HPV infection in males [116], we calibrated the model
output for both sexes to data on females.

Figure 3 shows the cumulative proportions of individuals in
the health states over the observation period, separately for the
two sexes and for diseased and unaffected individuals, respec-
tively. The vast majority remains unaffected by HPV-induced
diseases. A small proportion (up to 4% of females and 2.5% of
males), however, acquires a disease at a particular time point of
the follow-up. Anogenital warts and early precancerous stages
mainly affect younger individuals, whereas more severe precan-
cerous lesions and HPV-induced cancers commonly occur at a
later stage in life. We do not display extremely rare cases of
cancers of the anus, vulva, vagina, and penis.
Overview Tables on Population Size, Overall Costs, and
QALYs

Table 2 presents the mean population size, mean and median
costs, and mean QALYs per intervention over the whole obser-
vation period along with the corresponding 95% credible inter-
vals. The cost distribution in the screening-only scenario is
highly skewed to the right, resulting in a median that is 10 times
lower than the mean. In contrast, the costs in the interventions
female-only and universal vaccination are symmetrically distrib-
uted; as a consequence, their mean and median are similar. Costs
and QALYs are reported for the population as a whole. With
Ys for the three interventions in the total follow-up.

ost (€) Overall QALY

Median 95% CI Mean 95% CI

18,279,665 [13,007,644–
28,495,706]

127,935,994 [127,884,948–
127,987,040]

478,135,234 [469,493,395–
487,530,520]

128,409,504 [128,399,222–
128,419,785]

941,748,716 [929,302,951–
951,984,667]

128,449,826 [128,444,388–
128,455,264]
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Fig. 4 – Cost-effectiveness plane for a comparison of
universal to female-only vaccination. The graph shows
positive skewness of the joint distribution of cost and
effectiveness differentials, resulting in a cost-effectiveness
acceptability curve with values below 80% cost-effectiveness
for the whole range of willingness-to-pay values. ICER,
incremental cost-effectiveness ratio; QALY, quality-adjusted
life-year.
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screening-only, population size is the lowest since more individ-
uals die due to the higher incidence of HPV-induced cancers.

Mean overall cost differed by a factor of five between
screening-only and universal vaccination, reflecting the larger
population to which the vaccine is made available in the latter
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Fig. 5 – The figure presents probabilistic sensitivity analysis by m
the left and the expected value of information (EVI) on the right
never reaches 80% (the value defined as reasonable cost-effectiv
distribution of cost and effectiveness differentials. The EVI indic
parameters is very much limited, never exceeding €320,030,305
case. Interestingly, QALYs were also highest under universal
vaccination. When comparing universal vaccination to the other
two alternatives in the base case, the ICER was about €1,500 in
comparison to screening-only and about €11,600 in comparison
to female-only vaccination.

Probabilistic Sensitivity Analysis

The uncertainty around the cost-effectiveness estimates is ana-
lyzed by means of cost-effectiveness planes, CEACs, and EVI
analysis.

Universal versus female-only vaccination
Figure 4 shows a cost-effectiveness plane comparing universal to
female-only vaccination, with the effectiveness differential on
the x-axis and the cost differential on the y-axis. Each point
represents the result of a simulation. The gray portion of the
plane indicates the “sustainability area” corresponding to a cost-
effectiveness threshold of €25,000 [115]. Points in the sustain-
ability area portray “possible futures” in which universal vacci-
nation turns out to be a cost-effective strategy, in comparison to
female-only vaccination. Points outside the sustainability area
indicate cost-ineffectiveness for the reference intervention,
regardless of distance from the threshold. Most of the points lie
at the limit of the sustainability area, with low CEAC values as a
consequence (see Fig. 5). Mean cost and effectiveness differ-
entials, however, do indicate cost-effectiveness, resulting in an
ICER of around €11,600, well below the cost-effectiveness thresh-
olds set above. This is substantially due to herd immunity. As a
consequence, the higher overall cost of the universal vaccination
strategy is clearly compensated by the gain in utilities.

Figure 5 presents a graphical summary of PSA. The left panel
contains the CEAC. Typically, low values of the CEAC indicate the
presence of a large amount of parameter uncertainty [25]. In
Figure 5, the values are below 80% for the whole range of choices
for the willingness-to-pay values displayed. Yet, the CEAC meas-
ures only the probability of cost-effectiveness, but fails to reflect
the impact of uncertainty on the consequences of a “wrong”
decision. The panel on the right shows the EVI, again as a
Expected Value of Information
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Fig. 6 – Cost-effectiveness plane for a comparison of
universal vaccination to screening-only. In comparison to
Figure 4, the joint distribution of cost and effectiveness
differentials is less skewed to the right, resulting in a cost-
effectiveness acceptability curve nearly reaching values of
60% cost-effectiveness. ICER, incremental cost-effectiveness
ratio; QALY, quality-adjusted life-year.
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function of willingness-to-pay values. The EVI is a decision-
theoretic measure that quantifies how much the decision maker
should be willing to pay to buy new information (i.e., in the form
of additional research) that would reduce parameter uncertainty
to zero [25]. In the present case, EVI was at most €2.1 per subject
and €320,030,305 for the overall population, representing the
extremely low future financial investment necessary to resolve
parameter uncertainty. These values indicate that the impact of
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Fig. 7 – Probabilistic sensitivity analysis using the cost-effectiven
of information (EVI) on the right. The CEAC shows that the proba
around 60% at a willingness-to-pay value of €50,000. This is a co
effectiveness differentials. The EVI on the right indicates that th
very much limited, never exceeding €553,291,173 for the overal
parameter uncertainty on the results of the model is extremely
low, despite the low CEAC values, which are induced by a
markedly skewed distribution for the underlying cost and effec-
tiveness differentials. Under these circumstances, the results of
the cost-effectiveness analysis are rather stable, despite the
underlying parameter uncertainty.

Universal vaccination versus screening-only
The incremental cost of applying universal vaccination compared
with screening-only is higher than in the preceding section
because fewer individuals were potentially vaccinated. Incremen-
tal QALYs, however, are higher, too, as a consequence of the
reduced effects of herd immunity. Figure 6 shows the corre-
sponding cost-effectiveness plane. In comparison to the former
analysis, a higher number of points lie within the sustainability
area, and the joint distribution of cost and effectiveness differ-
entials is less skewed to the right.

Thus, the CEAC exhibited in the left panel of Figure 7 has
higher values, nearly reaching 60%. In addition, EVI indicates a
higher value of further research amounting to up to €3.7 per
individual and €553,291,173 for the whole population. This is still,
however, a comparatively low value, suggesting a low impact of
parameter uncertainty. Therefore, one can conclude that despite
the low CEAC, universal vaccination is a highly cost-effective
alternative when compared with screening-only.
Discussion

In this article, the standard framework of Markov models is
extended to account for dynamic elements such as new individ-
uals entering the population during years of follow-up and the
effect of herd immunity, which modifies the rate of infection
according to the proportion of individuals who at any given time
are infected and exposed to the virus.

Usual methods applied to perform epidemiological and eco-
nomic evaluations of infectious diseases are based on ordinary
differential equations [117]. Although particularly effective in
modeling the dynamic transmission of infectious diseases, these
Expected Value of Information

Willingness to pay

E
V

P
I

0 10,000 20,000 30,000 40,000 50,000

0
20

0,
00

0,
00

0
50

0,
00

0,
00

0

ess analysis curve (CEAC) on the left and the expected value
bility of cost-effectiveness reaches a maximum value of only
nsequence of the positively skewed distribution of cost and
e value of resolving parameter uncertainty in the model is
l population.



V A L U E I N H E A L T H ] ( 2 0 1 5 ) ] ] ] – ] ] ]10
are usually too complex for a stochastic formulation, limiting the
possibility of performing extensive PSA. As a consequence, they
can be conducted only when applying additional retrospective
simulation procedures such as the Latin hypercube sampling [118].

PSA, however, is fundamental in any health economic evalu-
ation [25,119,120] and particularly so in the case of infectious
disease modeling, in which uncertainty surrounding the param-
eters and assumptions of the model may dramatically affect cost-
effectiveness results. In contrast to most ordinary differential
equation–based models, the dynamic Bayesian Markov model
developed in this article is probabilistic in nature, permitting to
accommodate PSA in a straightforward way. At the same time, by
using discrete time rather than continuous time for modeling the
Markov cycle, we are able to include the dynamics of infection
and population characteristics. Regulatory bodies such as NICE
may benefit from our methodology because it produces a full
economic evaluation based on a tool they are familiar with; also,
PSA can be directly embedded in the model. In addition to the
advantages previously discussed, it considerably reduces the
effort on implementation and computation when compared with
standard ordinary differential equation–based methodology.

The use of a Bayesian approach is particularly relevant in the
case of infectious disease modeling because it is likely that many
of the fundamental parameters are informed by a combination of
evidence, some of which may be based on expert opinion. Thus, it
is important to fully account for the underlying uncertainty—
failure to do so may result in an underestimation or overestima-
tion of the economic performance of the interventions being
investigated. A full Bayesian analysis also has the advantage of
making the conduct of the all-important PSA relatively straight-
forward because the uncertainty in the model parameters is
directly accounted for in the main model computations. Using
tools such as the R package BCEA [121] or the SAVI web app [122],
it is fairly easy to systematically compute the relevant summary
assessments such as CEAC and EVI analysis.

The ICER values are sensitive to some of the model parame-
ters. For example, they increase as a consequence of
1.
 higher vaccine efficacy;

2.
 accounting for cross-protection effects against other

HPV types;

3.
 lifelong duration of vaccine-induced immunity;

4.
 lower unit cost of vaccination;

5.
 increased sexual activity;

6.
 lower frequency of cervical screening;

7.
 longer observation time period;

8.
 including a higher number of HPV-induced diseases; and

9.
 higher rate of discount.

Eight studies [10,11,47,123–127] come to the conclusion that
female-only vaccination is superior to universal vaccination. Their
ICERs range from €84,750 [11] to €329,680 [47], or even to €623,840
in a sensitivity analysis [10]. They all use a deterministic method-
ology, with the exception of Kim and Goldie [11], in which sexual
mating continues to be modeled in a deterministic way. In all but
two publications showing lack of cost-effectiveness [10,11], the
ICERs only account for HPV-induced diseases related to the cervix
[47,127], and in some cases also for anogenital warts [123–126].

In contrast, universal vaccination is estimated to be cost-
effective according to seven studies [12,19–23,128], with ICER
values ranging from €4,470 [128] to €31,240 [19] compared with
screening-only and €93 [20] to €21,677 [12] compared with female-
only vaccination, respectively (across a large range of scenarios).

This study suggests universal vaccination targeting the same
age group (12 years) to be an extremely cost-effective strategy in
comparison to screening-only or to a single cohort of females
vaccinated at the age of 12 years. The discounted costs per QALY
gained correspond to €1,500 (EVI ¼ €3.7 per subject) and €11,600
(EVI ¼ €2.1 per subject), respectively. These values are well below
the monetary threshold of sustainability for health interventions.

Moreover, recent research indicates that vaccinating individ-
uals with only two doses of the HPV vaccine is sufficient to
prevent HPV infection [94], thus reducing vaccination expenses.
The conservative vaccination schedule includes three doses for
full protection; it therefore strengthens the evidence that univer-
sal vaccination can be a cost-effective intervention.

The present analysis differs from previous studies in six ways:
1) incorporation of the full set of HPV-induced diseases (apart
from recurrent respiratory papillomatosis); 2) a lifelong duration
of vaccine-induced immunity without booster application; 3) a
comparatively low unit cost of vaccination; 4) a very high vaccine
coverage rate; 5) a comparatively low vaccine efficacy; and 6) a
shorter follow-up of 55 years. The first three points contribute to
lower ICER values, whereas the last three points tend to
increase them.

The following four aspects seem to drive the results of this
study [13,14]:
1.
 The dynamic force of infection, incorporating sexual mating
between females and males, thus automatically considering
changes in mixing patterns and population prevalence over
time. In contrast, a static force of infection in standard MMs
depends only on covariates such as age;
2.
 The inclusion of a high variety of HPV-induced diseases
compared with other health economic evaluations that
account only for cervical cancer [19,47,127];
3.
 The assumption of lifelong immunity following initial HPV
vaccination with three doses, without the necessity of a
booster application, in contrast to Danish Centre for Health
Technology Assessment [19], Olsen and Jepsen [21], Taira et al.
[47], Zechmeister et al. [127], and Hughes et al. [129]; and
4.
 The considerably low unit cost of vaccination compared with
the official list price of the vaccine on the Italian market.

Although the network model presented by the Danish Centre
for Health Technology Assessment [19] by definition accounts for
dynamic effects of sexual mating, it considers only cervical
cancer and its precancerous stages. A possible explanation for
the higher ICERs presented by Elbasha and Dasbach [12] could be
that vaccination is made available for individuals aged 9 to 26
years; vaccinating such a high number of age cohorts at a
relatively high unit price of around €99 leads to increased
vaccination costs. Another network model is presented by Olsen
and Jepsen [21]; however, an even higher vaccine price of around
€138 is assumed. Furthermore, the authors let immunity wane
after 15 and 25 years. As for HPV-induced diseases, only anogen-
ital warts and cervical cancer are included. A reason for the
higher ICER shown in Chesson et al. [23] compared with that in
this study could be the fact that the authors consider only one
group of sexual activity without accounting for high-risk sexual
behavior. Yet failure to account for frequent partner change leads
one to underestimate the HPV population prevalence, resulting in
an underestimate of the cost-effectiveness of HPV vaccination.

In the future, the benefits of HPV vaccination will be further
increased because a nonavalent vaccine including genotypes 16,
18, 31, 33, 45, 52, 58, 6, and 11 is being developed. The preliminary
results of the corresponding clinical trials are promising [130].
Therefore, the cost-effectiveness of universal HPV vaccination is
likely to further improve, creating added potential to optimize the
control of the disease.

Sources of financial support: The study was funded by an
unrestricted research grant from Sanofi Pasteur MSD. GB is
partially funded by an unrestricted research grant sponsored by
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