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Abstract

Human embryonic stem cells (hnESCs) undergo epigenetic changes in vitro which may com-
promise function, so an epigenetic pluripotency “signature” would be invaluable for line vali-
dation. We assessed Cytosine-phosphate-Guanine Island (CGl) methylation in hESCs by
genomic DNA hybridisation to a CGl array, and saw substantial variation in CGI methylation
between lines. Comparison of hESC CGI methylation profiles to corresponding somatic
tissue data and hESC mRNA expression profiles identified a conserved hESC-specific
methylation pattern associated with expressed genes. Transcriptional repressors and acti-
vators were over-represented amongst genes whose associated CGls were methylated or
unmethylated specifically in hESCs, respectively. Knockdown of candidate transcriptional
regulators (HMGA1, GLIS2, PFDN5) induced differentiation in hESCs, whereas ectopic
expression in fibroblasts modulated iPSC colony formation. Chromatin immunoprecipitation
confirmed interaction between the candidates and the core pluripotency transcription factor
network. We thus identify novel pluripotency genes on the basis of a conserved and distinct
epigenetic configuration in human stem cells.

Introduction

The application of human embryonic stem cells (hESCs) to regenerative medicine relies on
maintaining appropriate gene expression controlling self renewal or lineage specification in
vitro. Epigenetic modifications of DNA and chromatin control the expression patterns that
define cellular identity and function during development and in differentiated tissues [1].
Methylation of cytosine in cytosine-phosphate-guanine (CpG) dinucleotides is an epigenetic
mark conferring stability on gene expression states, notably by the establishment of a silent
chromatin state [2]. In normal sequence, where CpGs are relatively infrequent (~ 1 per

100 bp), most CpGs are methylated, but, in Cytosine-phosphate-Guanine Islands (CGIs),
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where CpGs typically comprise about 1 in 10 bp for sequences ~1 to 2 kb in length, they are
usually unmethylated. About 70% of CGIs are associated with gene promoters [3]. While CGIs
are normally unmethylated, exceptions include those associated with imprinted genes [4],
genes subject to X-chromosome inactivation [5], and transposable elements [6, 7].

Genetic changes are common in hESCs as a cell line adapts to culture [8, 9], and hESCs are
also neither epigenetically homogenous nor stable in vitro. Gene promoter methylation and X-
inactivation states vary between cell lines and even between different cultures of the same line
[10] [11-17]. The same is true for cells induced into pluripotency, which can retain a residual
epigenetic memory of their origin [18-22]. As not all epigenetic variations affect cell behaviour,
it is important to identify those relevant to a pluripotent phenotype.

DNA methylation in hESCs has been studied by various methods [12, 23] [24] [25]. We
have used a human CGI array (> 17,000 CGIs) to identify CGIs that are either methylated or
unmethylated in hESCs, and identify CGI methylation patterns conserved between hESC lines
and distinct from differentiated tissues assessed previously [26]. These conserved patterns
define putative biomarkers of the pluripotent state at an epigenetic level; that is, CGIs whose
methylation status is apparently unique to hESCs. Functional roles for selected candidates in
regulation of stem cell phenotype were confirmed by small RNA-mediated interference and
modulation of somatic cell reprogramming frequency. We propose a model whereby transcrip-
tional communication between “secondary” pluripotency-associated factors such as the epige-
netically-defined biomarkers described here and the core pluripotency network ensures that
expression of both groups of factors is achieved in pluripotent cells and modulated precisely in
differentiating cells.

Materials and Methods
Human embryonic stem cell lines

HESC lines were derived under license from the UK Human Fertilisation and Embryology
Authority (R0136). Their identity, provenance and culture conditions are summarised in table
A in S1 File and detailed previously [27, 28].

CGl analysis

For each hESC line, gDNA was prepared from 2 biological replicates (RCM1) or 4 biological
replicates (RH1, 3 and 4) of 10° cells per replicate. gDNA was purified, digested and ligated to
"catch linkers" prior to MBD2 column binding, elution and array hybridisation, all as described
previously [26].

MRNA expression analysis

Expression analysis was performed on samples concurrent with those used to evaluate the CGI
methylation of gDNA. RNA was prepared and array data analysed as described [27].

Annotation from Gene Ontology was processed through the Bioconductor package GO.db.
Statistical significance for overrepresentation of expressed sets of genes within GO categories
were derived through the hypergeometric test (equivalent to Fisher s exact test). P-values were
adjusted for multiple testing with the Benjamini-Hochberg procedure.

Screening of candidate gene function by RNA interference

Genes were knocked down in hESCs by transfection of siRNA molecules with RNAIMAX
Lipofectamine (Invitrogen) (S8 Fig). SIRNA sequences are shown in Table M in S1 File.
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RT-gPCR Analysis

Gene expression analyses were performed as described [29]. Table O in S1 File gives primer
sequences.

Immunocytochemistry

For OCT4 and NANOG immunohistochemistry, hESCs were fixed and immunostained as
described [30]. Immunostaining for methylated and hydroxymethylated DNA used a protocol
adapted from that previously reported [31] to permit costaining with DAPI and mC or 5-hmC
visualisation.

5-hmC ELISA

The 5-hmC content of genomic DNA was measured by a hydroxymethylated DNA quantifica-
tion kit (Quest 5-hmC DNA ELISA Kit, ZYMO Research) according to manufacturer’s
protocol.

Chromatin Immunoprecipitation

HESC chromatin was prepared using the ChIP-IT High Sensitivity kit (Active Motif), with
approximately 50,000 cell equivalents and 4 pg antibody to OCT4 (Santa Cruz SC-8628) was
used per reaction. Controls and data from the ChIP-IT qPCR analysis kit (Active Motif) were
used to create a standard curve and calculate the number of binding events per 1000 cells in
each sample. Primer sequences for the promoter regions of HMGA1, GLIS2 and PFDN5 incor-
porating OCT4 binding sites are shown in Table P in S1 File.

Reprogramming of Human Dermal Fibroblasts

10 independent transfections were carried out for each condition to ensure a statistically pow-
erful experiment. Briefly, 2x10°> HDFs (< passage 8; Cascade Biologics C0045C) were harvested
by trypsinisation and transfected in a 20 pl reaction containing 0.04 pmol of each plasmid
(pCXLE-OCT4sh53, pCXLE-UL, pCXLE-SK [32] and pCXLE-GW-HMGA1, pCXLE-GW-
GLIS2 and/or pCXLE-GW-PFDNG5 (513 Fig) using a Nucleofector X Unit running program
EN150 and nucleofection solution P2 (Lonza). Cells were plated out and cultured in fibroblast
medium (KO-DMEM, 10% FCS, L-gln, penicillin & streptomycin) for 5-8 days, then replated
on Matrigel and cultured in mTeSR1 medium until colonies appeared. Plates were fixed and
stained for alkaline phosphatase activity using the Stemgent AP2 kit according to the manufac-
turer’s instructions.

Statistical Analyses

Statistical analyses were performed in Graphpad Prism, using unpaired t-tests or ANOVA, as
appropriate.

Results
CGl Array Hybridisation of hRESC MAP-gDNA

As a pilot study of the significance of CGI methylation to pluripotency, 4 hESC lines, differing
in provenance, sex, passage number and culture conditions were assessed to identify a con-
served pattern of CGI methylation status (Table A in S1 File; summary of hESC lines
employed in this study). Three of these lines (RH1, RH3 and RCM1) were female, and one
(RH4) was male. To investigate hESC line CGI methylation status, we probed an array of
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biologically-defined CGIs used previously to study tissue-specific methylation[26] (S3 Table).
A CGI was designated as gene-associated (GA-CGI) if it mapped to within 1.5 kb of an anno-
tated gene or overlapped with the gene itself. Thus of 17,387 CGIs on the array, 13,657 were
gene-associated (78.5%; S3 Table).

Control (unpurified) input gDNA comparisons between lines gave similar levels of CGI
fragment: probe hybridisation for the autosomes (within 0.5 log,), as expected for euploid
human cell lines (S2 Fig). When RH4 (male) was compared with female lines, the X chromo-
some showed significantly weaker hybridisation in RH4 whereas the Y chromosome showed
stronger hybridisation (S2 Fig). This difference in DNA hybridisation signal is expected for the
sex chromosomes from lines of different sexes, and confirmed the CGI array system resolution
to within 2-fold. To identify methylated CGISs, arrays were probed with MBD2 methyl-binding
domain column-purified genomic DNA (MAP-gDNA), with hybridisation signal compared
against total gDNA (See S1 Fig for schematic overview). A CGI was designated as methylated
(Me-CGI) when the M value (log,[MAP-gDNA/Total gDNA]) was > 1.5 and the adjusted p
value < 0.1; otherwise it was designated as unmethylated. The complete CGI methylation data-
set is available (S5 Table). Examples of CGI methylation or lack thereof in different cell lines
identified by the CGI array were confirmed by sequencing of fragments amplified from bisul-
phite-treated gDNA (S3 Fig).

CGI Methylation of Human Embryonic Stem Cells

HESC MAP-gDNA hybridisation data showed that 12-16% of CGIs were methylated in
hESCs, depending on cell line (2119 Me-CGlIs in RH4 to 2717 in RH3). For consistency,
somatic tissue data reported previously[26] were reanalysed in parallel. Similar proportions of
CGIs were methylated in somatic tissues as in hESCs, varying from 10-14% (1785 Me-CGIs in
male blood to 2546 Me-CGlIs in muscle [Fig 1A; corresponding numbers and proportions of
unmethylated CGIs are listed in table Q in S1 File]). Overall CGI methylation levels are thus
similar in hESCs and somatic tissues. There was no significant difference in CGI methylation
rates between hESC lines and somatic tissues for CGIs generally, or for gene-associated CGIs
specifically (P = 0.142 in both cases; Kruskall-Wallis).

CGI methylation varied between hESC lines. Comparison of Me-CGIs between the female
lines RH1, RH3 and RCM1 revealed heterogeneity between pairs of lines (54 Fig). There were
frequent differences greater than 0.5-fold throughout the genome between RH1 and RCM1,
and between RH3 and RCM1 (S4A and S4B Fig). Individual CGIs were either hypermethylated
(red, M>1.5; difference between lines >0.75) or hypomethylated (blue, M<1.5; difference
between lines >0.75) in RH1 and RH3 cf. RCM1, rather than one cell line in a comparison
being consistently hypo- or hypermethylated with respect to the other. However, the sibling
lines RH1 and RH3 showed similar levels of autosomal CGI methylation (S4C Fig). In the case
of the X chromosome, RH1 CGI methylation was generally higher than that of RH3 (S4C and
$4D Fig), corresponding to methylation of 137 X-linked GA-CGIs in RH1, compared to 39 for
RH3, similar to that observed for the male line RH4 (33 CGIs). The female line RCM1 had 138
X-linked Me-GA-CGIs, similar to RH1 (Table B in S1 File; methylation of X-linked gene-asso-
ciated CGIs in hESC lines). RH3 and RH4 (male) have similar levels of X chromosomal and
autosomal CGI methylation (Table B in S1 File, no significant difference in X-linked Me-CGIs
from expected for RH3 or RH4). X-linked CGI methylation for RH1 and RCM1 was signifi-
cantly higher than expected (P<<0.001 for both lines; X> = 203.3 [RH1] or 265.8 [RCM1]).

Despite the heterogeneity of hESC CGI methylation, correlation of Me-CGI lists for differ-
ent lines identified 1111 CGIs (40.8%-52.4% Me-CGls, depending on cell line) methylated in
all hESC lines tested (Fig 1B and 1C and S1 Table and S2 Table) 311 of these CGIs are also
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ﬂ hESCLine | Mo-CGI % Mo-CGI Mo-GA-CGI | % Mo-GA-CGI

RH1 2621 15.1 1994 76.1

RH3 2717 156 2083 759
RH4 2119 122 1635 72

RCM1 2311 133 1735 75.1

Blood, 1785 103 1334 747
Blood, 1923 1.1 1465 762
Brain 1966 13 1467 746

Muscle 2546 146 1890 742

Fig 1. Genome-wide CGI methylation analysis of hESC lines. (A) Table showing the number of methylated CGls (Me-CGl) in each hESC line, and for
adult somatic tissues (lllingworth et al., 2008), the percentage of methylated CGls (% Me-CGl), number of methylated gene-associated CGls (Me-GA-CGl)
and the percentage of methylated CGils that are gene-associated (% Me-GA-CGl). Me-CGils are given in the supplementary file S1 Table. (B) Venn Diagram
shows heterogeneity of hESC CGI methylation. 1111 CGls are methylated in all 4 lines. (C-G) Genome maps depicting locations of various CGl groups: (C)
Me-CGis in hESC lines (red, gene-associated; green, not gene-associated). (D) 201 GA-CGls methylated in hESCs but unmethylated in somatic tissues. (E)
98 GA-CGls unmethylated in hESCs but methylated in somatic tissues. (F) hESC-expressed genes whose associated CGls are hESC-methylated and
unmethylated in somatic tissues. (G) hESC-expressed genes whose associated CGls are hESC-unmethylated and methylated in somatic tissues.
Autosomes ordered 1-22,23=X,24=Y.

doi:10.1371/journal.pone.0131102.9001

methylated in somatic tissues. The set of 1111 CGIs was reduced to 1079 by removal of 32
CGls for which there was more than one reporter which behaved differently in different lines
(Table Cin S1 File). 828 CGIs methylated in all hESC lines are gene-associated, significantly
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fewer than the expected proportion (78.5%) of methylated gene-associated CGIs (Me-GA-C-
GIs, 873 expected, X2=104,P = 0.0012). These 828 Me-GA-CGIs are associated with 891
genes (S2 Table). No localisation of CGI methylation to particular chromosomes was apparent
(Fig1Cand 1D, P =0.371, X2 =24.6). Comparison of CGI sets that were uniformly methylated
or unmethylated in hESCs with somatic tissues identified two subsets whose methylation pat-
terns were specific to hESCs. 201 GA-CGIs (associated with 220 genes, reduced to 216 as 4
genes were associated with multiple, differentially methylated, CGIs) were methylated in
hESCs and unmethylated in adult tissues; conversely, 98 CGIs (associated with 113 genes) were
unmethylated in hESCs and methylated in somatic tissues (Fig 1D and 1E and Table D in S1
File). As with the Me-CGls, genes with a CGI methylated in hESCs and unmethylated in
somatic tissues showed no significant chromosomal localisation (hESC-Me-GA-CGls, X* =
22.6, P = 0.244), nor did genes with an hESC-unmethylated/somatic methylated CGI (hES-
C-UnMe-GA-CGIs, X* = 25.199, P = 0.288).

Transcriptome Analysis of hESCs

RNA transcriptome data were obtained for the three female hESC lines RH1, RH3 and RCM1.
RH4 data were not included as RH4 is male and thus hemizygous for X, unaffected by X chro-
mosome inactivation but expressing Y-linked genes.

Triplicate RNA samples from independent biological replicates concurrent with those used
to prepare gDNA for CGI methylation analysis were hybridised to Affymetrix U133Plus2 Gen-
eChips. Similar expression distributions were seen for all arrays. Arrays clustered to individual
cell lines (S5 Fig), indicating high reproducibility of microarray data. Whilst overall expression
patterns were similar for the three lines (Pearson correlation coefficient r>0.99), X-linked
expression for RH3 was consistently higher than RH1 and RCM1, which were similar to each
other (S6 Fig). The complete transcriptome dataset is available as supplementary S6 Table.

Correlation of CGl Status with Expression

Correlation of expression data with CGI methylation data defined two smaller gene sets. Of
216 genes associated with 201 hESC-Me-GA-CGIs (1.47% of GA-CGIs), 128 (59.3%) were
expressed in all three lines (Fig 1F, and Table E and Table F in S1 File). Similarly, of 109 genes
associated with 98 hESC-UnMe-GA-CGIs (0.72% GA-CGlIs), 56 (57.1%) were expressed in all
three lines (Fig 1G, and Table E and Table G in S1 File). As with CGI methylation generally, no
localisation of expressed genes with a methylated CGI was apparent (Fig 1F; expressed
hESC-Me-GA-CGIs, X* = 25.694, P = 0.265). However, distribution of expressed genes with an
associated hESC-unmethylated CGI was apparently non-random (Fig 1G; expressed hES-
C-UnMe-GA-CGIs, X = 33.886, P = 0.05), due to enrichment of chromosome 16 genes (9
observed; 2.5 expected, X* = 18.298, P = 1.9x10™).

There was a significant correlation in only three cases of differential methylation and
differential expression between a pair of hESC lines (RH1, RH3, RCM1; Table H in S1 File,
differential CGI methylation and gene expression in female hESC lines). These were genes
whose associated CGI was methylated in RH1 but unmethylated in RH3 and that were signifi-
cantly more highly-expressed in RH3, genes whose associated CGI was methylated in RCM1,
unmethylated in RH1 and that were more highly expressed in RH1, and genes whose associ-
ated CGI was methylated in RCM1, unmethylated in RH3 and that were more highly expressed
in RH3. Thus the methylation and expression states were consistent with the established
association of DNA methylation with gene silencing. Of 80 genes whose associated CGI was
methylated in RH1 but unmethylated in RH3 that were expressed in RH3 but not RH1, 50
were X-linked, a very significant result (Table I in S1 File, association of X chromosome with
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differential methylation and expression in female hESC lines). Similarly, X-linked GA-CGIs
differentially methylated between female lines and more highly expressed in the unmethylated
partner were significantly overrepresented in the RCM1: RH1 and RCM1: RH3 comparisons.
(Table Iin S1 File and S6 Fig).

Gene Ontology Identifies Candidate Epigenetic Biomarkers of hESCs

Correlation of Me-GA-CGIs and UnMe-GA-CGIs (Table D in S1 File) with transcriptome
data identified expressed genes with an hESC-specific CGI methylation state (Tables E-G in
S1 File). Of 109 gene loci with an hESC-UnMe-GA-CGI, 78 genes with non-redundant Entrez
IDs were expressed. Similarly, of 216 gene loci with an hESC-Me-GA-CGI, 169 unique genes
were expressed. The subset of CGI-associated genes may be enriched for functional categories,
so we first analysed the distribution of genes associated with CGIs on the array, and identified
11357 non-redundant Entrez IDs, about 2/3 (64.3%) of the genes annotated in Gene Ontology
(17673 genes). CGl-associated genes were enriched (e.g. transcription factor, developmental
process) or depleted (egg. receptors, signal transducers) for various categories (S7 Fig and
Table J in S1 File); thus the functional analysis of expressed hESC-methylated or unmethylated
genes was compared with the set of CGI-associated genes on the array. These hESC-specific
gene sets were tested for enrichment in Gene Ontology categories relative to the proportion
expected for CGI-associated genes. Transcriptional activators (GO:0016563) are significantly
overrepresented among genes with an hESC-unmethylated CGI (GO:0016563, P < 0.01,

FDR = 0.01; Table K in S1 File); similarly related GO categories including transcriptional regu-
lator activity (GO:0030528), transcription factor binding (GO:0008134), DNA binding
(GO:0003677) and sequence-specific DNA binding (GO:0043565) are also overrepresented
(Fig 2A). Only two genes associated with transcriptional repressor activity (MSX1 and TBX3)
have an hESC-UnMe-CGI. For genes with an associated hESC-Me-CGI, only two categories
were enriched (FDR < 0.25): phosphoinositide binding (GO: 0035091) and transcription
repressor activity (GO: 0016564); P < 0.001, FDR = 0.137 in both cases; Fig 2A).

We found no association between hESC-specific CGI methylation and genetic imprinting.
With respect to the set of hESC-expressed genes whose associated CGI is methylated in hESCs
and unmethylated in somatic tissues, there are no imprinted genes included. In the set of
hESC-expressed genes whose associated CGI is unmethylated in hESCs and methylated in
somatic tissues, there are two imprinted genes, GNAS and SLC22A3, but SLC22A3 is known to
be imprinted in a limited fashion, being only monoallelically expressed in the placenta during
the first trimester [33]. Comparing our epigenetic biomarkers dataset with the 231 known
imprinted genes as a proportion of the most recent estimate of ~19,000 human genes [34],
there was thus no significant overlap (x> = 0.692, P = 0.405, 1 DF).

Functional Significance of Epigenetically-Defined hESC Biomarkers

We tested the functional role of three candidate epigenetically-defined hESC biomarkers: the
transcriptional activators GLIS2 and HMGAL, and the repressor PEDNS5, as all are expressed
significantly over background (Table L in S1 File, microarray expression data for GLIS2,
HMGA1 and PFDNG5). Small Interfering RNA (siRNA) transfection conditions in hESC lines
were optimised (58 Fig). RH1 was selected to represent the cell lines in this study, with results
independently confirmed in H9 one of the most commonly-studied hESC lines. HESCs were
transfected with Lipofectamine RNAIMAX and siRNA oligonucleotides (Table M in S1 File,
sequences of siRNA oligonucleotides used in this study) twice, 24 hours apart, and samples
were taken at 48 and 96 hours after the first transfection. An siRNA targeting no human tran-
script (IDS-NULL, directed against IDS but containing 4 point mutations) was used as a
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Fig 2. Epigenetically-defined hESC biomarkers have a role in pluripotency. (A) Transcriptional
activators (Expressed hESC-UnMe-GA-CGils) and transcriptional repressors (Expressed hESC-Me-
GA-CGis) identified as functionally overrepresented hESC biomarkers. (B, C) Functional testing of
transcriptional regulators in RH1 hESCs by siRNA knockdown. (B) RT-gPCR data showing log, fold change
in expression of the siRNA-targeted gene, and associated effects on OCT4, NANOG and SOX2. Changes
are relative to GAPDH expression, normalised to RH1 hESCs treated with negative control siRNA IDS-NULL.
Asterisks indicate levels of statistical significance (unpaired t-test; *<0.05, **<0.01, ***<0.001,
**%*%<0.0001). ND: Not Detected, even at 40 cycles of PCR. (C) Immunohistochemistry for NANOG and
OCT4 72 hours after siRNA treatment. Scale bar = 100 um.

doi:10.1371/journal.pone.0131102.9002
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negative control for sample normalisation from the same cell line and time point. An siRNA
directed against OCT4 was used as a positive control for effects on pluripotency, and an siRNA
directed against YAPI to control for responses to knockdown of an hESC-expressed gene
unnecessary for pluripotency[35]. Response to knockdown of all three genes was similar (RHI,
Figs 2-5 and H9, S9-512 Figs). Target transcript knockdown was significant and strong
(typically > 90%) by 24 hours post-siRNA treatment 2 (Fig 2B and S9A Fig). Despite rapid (24
hr.) downregulation of YAP1 to ~10% normal levels, we saw no effect on OCT4, NANOG or
SOX2 in RH1 (Fig 2Bi) and minimal effects in H9 (S9Ai Fig). However OCT4 knockdown was
accompanied by significant reductions in NANOG and SOX2 (Fig 2Bii and S9Aii Fig). These
controls show that our siRNA knockdown system was (1) not “swamping” the cellular RNA
degradation system, inducing non-specific effects that perturbed normal phenotype, (2) effi-
cient, producing a measurable target knockdown, and (3) yielded expected effects when target-
ing genes of known function.

HMGA1, GLIS2 and PFDNS5 were significantly downregulated by siRNA treatment (Fig
2Biii-v and S9Aiii-v Fig). In RH1 cells HMGA1 and PFDNG5 expression remained downregu-
lated (~10% normal transcript levels) at 72 hours, but GLIS2 transcripts recovered to approxi-
mately normal levels by this time (Fig 2Biii-v and S9Aiii-v Fig). In H9 cells, GLIS2 and PFDN5
knockdowns were very efficient, HMGA1 less so, appearing to recover and "overshoot" normal
transcript levels by 72 hrs. (S9Aiii-v Fig). Whenever GLIS2, HMGA1 or PFDN5 expression
was knocked down, OCT4, NANOG and SOX2 were also downregulated with respect to con-
trols (Fig 2Aiii-v and S9Aiii-v Fig).

Immunostaining of anti-OCT4 siRNA-treated hESCs showed no OCT4 signal, as expected,
or for NANOG, consistent with RT-qPCR data showing NANOG falling on OCT4 knockdown
(Fig 2C and S9B Fig). Both, however, were readily detectable in cells treated with either anti-
YAP1 siRNA or IDS-NULL (Fig 2C and S9B Fig). Anti-HMGA1,-GLIS2 and-PFDN5 siRNA-
treated hESCs showed no detectable OCT4 signal or, in the cases of GLIS2 and HMGAL,
NANOG signal. Anti-PFDN5 siRNA-treated hESCs did show a detectable NANOG signal, but
noticeably weaker than negative controls (Fig 2C and S9B Fig).

OCT4, NANOG and SOX2 downregulation induced by siRNA to OCT4 or HMGAL1,
GLIS2, or PFDN5 was accompanied by morphology changes consistent with differentiation. In
contrast, siRNAs anti-YAP1 and IDS-NULL induced no such changes (Fig 3 and S10 Fig). As
stem cell differentiation is accompanied by loss of genomic DNA hydroxymethylation (Ruzov
etal., 2011) we evaluated effects on this epigenetic mark and on expression of TET dioxy-
genases (TET1, 2, 3). Compared with anti-YAP1 and IDS-NULL, knockdown of OCT4,
HMGA1, GLIS2 and PEDNS5 reduced genomic levels of 5-hmC in both lines, as shown by
quantitative ELISA (Fig 4B and S11B Fig; P<0.001). Consistent with these results, the immu-
nofluorescence-detectable signal for 5-hmC in both cell lines was attenuated (Fig 4A and S11A
Fig). This reduction in 5-hmC levels could not be attributed to a reduction in TET expression
as transcript levels were either unchanged or only modestly so (< 2-fold; Fig 4C and S11C Fig).
In some cases, most notably with the RHI cell line (Fig 4), there was also some apparent reduc-
tion in global mC levels detectable by immunofluorescence, but it should be noted that the
same effect was observed with OCT4 as well as with HMGA1, GLIS2 and PFDN5.

To determine whether GLIS2, HMGA1 and PFDN5 knockdown resulted in undirected dif-
ferentiation or biased lineage selection, we quantified lineage-associated markers by RT-qPCR.
In RH1 cells, OCT4 downregulation caused small reductions of most lineage markers exam-
ined, except upregulation of the mesodermal marker Brachyury and the ectodermal marker
NF200 (Fig 5). H9 cells responded differently, upregulating AFP and other trophoblast and
endodermal markers including CDX2, CGo. and GATA4, consistent with previous data (S12
Fig, [36]). GLIS2 downregulation induced changes in several genes, including upregulation of
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Fig 3. Epigenetically-defined hESC biomarkers are required for stem cell phenotype. Morphological
changes in RH1 hESCs knocked down for (A) OCT4 and (B-D) knockdown of GLIS2, HMGA1 and PFDNS5,
respectively. Normal hRESC morphology was maintained with (E) anti-YAP1 or (F) IDS-NULL negative control
siRNA treatment. Scale bar = 100 pm.

doi:10.1371/journal.pone.0131102.9003

the endodermal markers o-fetoprotein (AFP), albumin and either HNF4o (RH1) or GATA6
(H9) (Fig 5 and S12 Fig). Trophoblast markers were also upregulated in both lines on GLIS2
knockdown (Fig 5 and S12 Fig). While AFP was also upregulated in cells of both lines knocked
down for HMGA1, most endodermal and trophoblast markers other than CGa. (upregulated)
were downregulated. PEDN5 knockdown also induced AFP upregulation but, as with
HMGALI, other endodermal markers tended to be downregulated or unchanged. In RH1 cells,
PEDN5 also resulted in upregulation of HAND1 (expressed by multiple early lineages) and
Brachyury (mesendoderm), but H9 differed; here both were downregulated. Overall therefore,
there were similarities in response, but even the OCT4 knockdown response was not uniform
between lines. GLIS2 knockdown gave the most consistent response between cell lines.
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doi:10.1371/journal.pone.0131102.9004
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As perturbation of either OCT4 or HMGA1, GLIS2 or PFDN5 (all transcriptional regula-
tors) results in loss of stem cell phenotype, and biomarker knockdown also results in downre-

gulation of OCT4, NANOG and SOX2, a transcriptional connection between the core

pluripotency factors and biomarkers is possible. GLIS2, HMGA1 and PFDN?5 all apparently
contain OCT4 binding sites in their promoters (Fig 6A-6C; [37, 38] R. Young, Whitehead
Institute, Cambridge, MA [unpublished dataset], and [25], and also binding sites for other

transcription factors which interact with OCT4, NANOG and SOX2, including EOMES,

TRIM28, E2F1, CDX2 and ETSI.

OCT4 knockdown in hESCs perturbed GLIS2, HMGA1 and PFDN5 expression (Fig 6D),

but although statistically significant, the mRNA changes were smaller than those seen for

OCT4, NANOG and SOX2 in response to GLIS2, HMGA1 or PFDN5 knockdown, where the
pluripotency factors were rapidly and completely repressed. OCT4 knockdown downregulated
GLIS2 by ~2-fold, and upregulated HMGA1 and PFDNS5 by ~2.5-fold in both lines (Fig 6D).
To confirm the proposed link between the epigenetic biomarkers and core pluripotency net-
work, we performed ChIP-qPCR for transcription factor promoter binding in hESCs (Fig 6E).
We used Matinspector (Genomatix software; [39]) to predict OCT4, SOX2 and NANOG bind-
ing sites in the promoters of HMGA1, PFDN5 and GLIS2, and similarly HMGA1 and GLIS2

binding sites in the promoters of OCT4, SOX2 and NANOG. Amplification of HMGAI,

GLIS2 and PFDN5 promoter regions from cross-linked, sheared chromatin immunoprecipi-
tated with an antibody to OCT4 indicated that OCT4 is DNA-bound at the predicted loci in
hESCs (Fig 6E). We were unable to identify antibodies for HMGA1 and GLIS2 suitable for
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Fig 6. Association of candidate epigenetically-defined biomarkers with the core pluripotency
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Panels created by Geneprof (geneprof.org) using OCT4 ChlP-seq data from Young and colleagues
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read number from the dataset indicated. (D) OCT4 knockdown in hESCs as described perturbs HMGA1,
GLIS2 and PFDNS5 transcript levels. Asterisks indicate levels of statistical significance (unpaired t-test;
*<0.05, **<0.01, ***<0.001, ****<0.0001). (E) Chromatin immunoprecipitation (ChIP)-gPCR suggests
that HMGAT1, GLIS2 and PFDNS5 expression is regulated by OCT4. Immunoprecipitation of hESC chromatin
with an antibody to OCT4, followed by quantitative amplification of gene-specific promoter regions above

PLOS ONE | DOI:10.1371/journal.pone.0131102 July 7, 2015

13/24


http://geneprof.org

@’PLOS ‘ ONE

Epigenetic Identification of Stem Cell Regulators

background (a silent region of the genome) in hESCs. (F) Representative experiment whereby human dermal
fibroblasts (HDFs) were transfected with a set of three episomal plasmids expressing OCT4, SOX2, KLF4,
L-MYC, LIN28 and a short hairpin RNA directed against p53 (OKSML/hn53) alone (left-most column) or with
OKSML/hn53 supplemented with either HMGA1, GLIS2 or PFDNS, or all three, followed by detection of
alkaline phosphatase positive colonies (No. AP+ Colonies) representative of pluripotent cells. Error bars
indicate standard deviation of the mean; **** indicates the level of statistical significance (P<0.0001).

doi:10.1371/journal.pone.0131102.9006

chromatin-immunoprecipitation to confirm their binding to the promoters of OCT4, SOX2
and NANOG.

Ectopic Expression of Epigenetic Biomarkers in Differentiated Cells

Unlike the pluripotency factors OCT4 and NANOG, expression of HMGA1, GLIS2 and
PFDNG5 is not limited to stem cells. To identify a role in conferring pluripotency as well as its
maintenance, we reprogrammed human dermal fibroblasts by transfection with episomal plas-
mids expressing OCT4, KLF4, SOX2, L-MYC, LIN28 and a short hairpin RNA directed against
p53 [32], and added similar plasmids expressing HMGA1, GLIS2 or PFDN5 (5§13 Fig). In 4
experiments supplementing the basic reprogramming set with HMGA1, GLIS2, or HMGAL1,
GLIS2 and PFDNG5 together, the epigenetically-identified factors either had no significant effect
on the number of colonies obtained that were positive for the early pluripotency reprogram-
ming and stem cell marker alkaline phosphatase, or reduced it. This effect was more noticeable
with GLIS2 than HMGALI. PFDNS5 however, apparently increased AP+ colonies, either signifi-
cantly (Fig 6F) or not where greater variability in colony numbers between treatment replicates
was seen, but the general trend was seen in all experiments (Fig 6F and S14 Fig).

Discussion

We have defined a CGI methylation map specific to hESCs. Whilst overall CGI methylation in
hESCs is similar to adult tissues, gene-associated CGI methylation is reduced, consistent with
the view that pluripotent cells possess an open chromatin structure permissive of gene expres-
sion (Fussner et al., 2010; Gaspar-Maia et al., 2011; Meshorer et al., 2006). Gene association of
CGIs (within 1.5kb of or overlapping an annotated gene) included “orphan” CGIs of uncertain
significance. Such CGIs may indicate novel promoters for alternative transcripts or non-coding
RNAs regulating gene expression [40, 41]. Expression of a gene associated with an Me-CGI
could reflect suppression of an alternative transcript or non-coding RNA, detailed sequence
based maps for which now exist for hESCs [42, 43].

As in other hESC DNA methylation studies [14-17, 44], we saw substantial variation in
CGI methylation between lines, probably related to differences in line provenance, cultivation
method and passage number. This variation was particularly evident on the X-chromosome,
probably reflecting the 3 classes of X inactivation status seen in hESC lines (See supplementary
discussion A in S1 Document).

Cross-referencing of the CGI methylation map to the transcriptome yielded a panel of 184
hESC-expressed genes as putative epigenetically-defined biomarkers of a pluripotent pheno-
type (515 Fig). Expressed genes whose associated CGI was methylated in hESCs were unbia-
sedly distributed throughout the genome, but those whose CGI was unmethylated were over-
represented on chromosome 16. These included GLIS2 (16p13.3), and Cadherin Type 1
(16q22.1), a recognised pluripotency factor [45], and seven other genes implicated in signal
transduction and chromatin remodelling which have not been assigned roles in pluripotency.

HESC epigenetically-defined biomarkers were significantly enriched for transcriptional
control functions, generally transcriptional activators for those associated with UnMe-CGls,
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and repressors for those associated with Me-CGIs. We chose the transcriptional activators
GLIS2 and HMGAL, and the repressor PEDNS5 as candidates to test for a role in pluripotency.
GLIS2 encodes a zinc finger transcription factor which interacts with p120 catenin (a member
of the pluripotency-associated WNT pathway); it is expressed modestly in hESCs (Table L in
S1 File). The GLIS2 homologue GLIS1 promotes reprogramming of fibroblasts to iPS cells
[46]. HMGA1 has been implicated in tumour development [47] and recently, but unknown at
the time our study was initiated, as a reprogramming factor [48]. It is known to interact with
molecules influencing hESC phenotype including Lin28, WNT, MYC, STAT3 and GSK3 and
its transcription is modulated by KLF4 and OCT family members. PEDNG5 is a molecular chap-
erone highly expressed in hESCs (Table L in S1 File) and interacts with both MYC and WNT,
genes with important roles in growth and self renewal of ECSs [49]. Collectively, these interac-
tions are consistent with our findings that interference with these genes initiates differentiation.
Downregulation of candidate biomarkers resulted in variable effects on the expression of spe-
cific lineage-associated markers. GLIS2 is associated with both neural (ectodermal) and kidney
(mesodermal) development [50]. Downregulation of GLIS2 upregulated multiple markers of
endodermal and extraembryonic lineages, consistent with these roles. HMGA1 and PFDN5
knockdown also upregulated endoderm-associated AFP, but effects on other endodermal and
extraembryonic markers were less pronounced or inconsistent. However, we only assessed line-
age marker abundance at one timepoint, and differences may be due to variation in interfer-
ence kinetics or cell response, perhaps in turn related to epigenomic differences between lines.

Interaction of Epigenetic Biomarkers with the Core Pluripotency Network

We confirm a role for GLIS2, HMGAL1 and PFDN5, and by inference other genes with an
hESC-specific CGI-methylation state, in the maintenance of pluripotency transcription factor
expression and pluripotency-associated epigenetic marking (DNA hydroxymethylation). For
GLIS2 and PFDNS5, and some functions of HMGAL, these roles are novel and suggestive of an
epigenetically-defined network of stem cell regulation by genes also expressed in some differen-
tiated cells. We surmised that this network would be controlled in turn by pluripotency-deter-
mining factors, and indeed ChIP confirmed the existence of predicted OCT4 binding sites in
the promoters of all three genes [25, 37, 38]. Probable binding sites for NANOG and/or SOX2
in the biomarker gene promoters were also identified (data not shown). Our observation of a
modulating effect on fibroblast reprogramming (positive for PFDN5, negative for HMGA1
and GLIS2) transfected with established reprogramming factors is consistent with the hypothe-
sis that the biomarkers interact with the core pluripotency factors at some level. The inhibitory
effects of HMGA1 and GLIS2 may reflect time- or phase-dependent roles for these factors in
reprogramming which our experimental design did not address, as recently described for
MBD?3 [51], or reflect competing interaction with other factors. HMGA1-induced augmenta-
tion of reprogramming was achieved by co-transfection with OCT4, KLF4, SOX2 and L-MYC
[48], whereas our study also included LIN28 and a short hairpin RNA directed against p53.
Further studies are required to confirm interactions of GLIS2 and PFDNS5 with pluripotency
transcription factors. Binding sites for GLIS2 are predicted in the promoters of OCT4 and
NANOG (data not shown). PEDNS5 is known to repress c-MYC activity which regulates genes
involved in many processes including cell-cycle control, metabolism, signal transduction, and
cell-fate decisions as well as self-renewal (Chappell and Dalton, 2013). HMGA1 binding sites
are predicted in the promoters of OCT4 and NANOG (data not shown) and have been shown
by chromatin immunoprecipitation in SOX2, LIN28 and ¢-MYC [48]. The reduction in DNA
hydroxymethylation, not accompanied by similar falls in TET gene transcription, following
interference with HMGA1, GLIS2, or PFDN5 suggests that these effects are secondary events
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Fig 7. Model of the relationship between epigenetically-regulated hESC biomarkers and the
pluripotency transcription system. Changes in the expression of an epigenetically-regulated
transcriptional regulator (e.g. HMGAT1, GLIS2, PFDNS5) achieved by siRNA transfection [1], or changes in
associated CGI methylation [6], feed through the cellular transcription network, resulting in a reduction in core
pluripotency transcription factors (OCT4, NANOG, SOX2, [2]) and differentiation [3]. The core pluripotency
transcription factors are permanently downregulated [4], and epigenetic changes to gene promoters, CGls
and other regulatory regions of the genome occur to confer stability on the differentiated phenotype and
prevent reversion to pluripotency or quasi-pluripotency [5]. These changes confer permanent changes to the
expression of the epigenetically regulated transcriptional regulators [6], and thus stabilise the differentiated
phenotype [7].

doi:10.1371/journal.pone.0131102.9007

following disruption of core pluripotency functions. Collectively, our data suggest a model as
shown in Fig 7. Downregulation of biomarker expression, either experimentally by RNA inter-
ference, or by methylation changes at associated CGIs modulating gene expression, results in
downregulation of the core pluripotency transcription network, directly or indirectly. Differen-
tiation is initiated, with the particular lineage decision decided by the presence or absence of
secondary transcription regulators, such as epigenetically-regulated factors identified here. Sta-
bility of the differentiation process is conferred both by downregulation of pluripotency genes
(NANOG, SOX2 and OCT4), and also by epigenetic changes, e.g. OCT4 promoter [52, 53], or
methylation changes in CGIs associated with particular lineages. The methylation changes con-
fer stability and heritability on the gene expression changes, and hence on the resulting cellular
phenotype.

In conclusion, we identify epigenetically defined biomarkers of a pluripotent phenotype.
The methylation state of these biomarkers is independent of variables such as culture condition
or derivation method, and their expression is required for pluripotency. Appraisal of the

PLOS ONE | DOI:10.1371/journal.pone.0131102 July 7,2015 16/24



@’PLOS ‘ ONE

Epigenetic Identification of Stem Cell Regulators

methylation state of the CGIs described here could be a useful criterion for hESC line valida-
tion, or for assessing how well adult cell-derived IPSCs have established a true embryonic stem
cell epigenetic state.

Supporting Information

S1 Document. Supplementary Discussion. (A) X-inactivation status of female hESC lines
RHI, RH3 and RCML1. (B) The relationship between expression profile and genomic methyla-
tion, and cell line derivation and culture conditions.

(DOCX)

S1 File. Supporting Information Tables. (A). Summary of hESC lines employed in this study.
(B) Methylation of X-linked gene-associated CGIs in hESC Lines. (C) CGIs removed from con-
sideration as methylated in all hESC lines because of inconsistent behaviour between multiple
reporters. (D) hESC-specific gene associated methylation. (E) Correlation of hESC-specific
CGI methylation status and transcriptome. (F) Expressed genes with an associated CGI which
is always methylated in hESCs and always unmethylated in somatic tissues. (G) Expressed
genes with an associated CGI which is always unmethylated in hESCs and always methylated
in somatic tissues. (H) Assessment of differential CGI methylation and differential gene expres-
sion between female hES lines. (I) Differentially methylated and expressed genes are strongly
associated with the X chromosome in female hESC lines. (J) Enrichment and depletion of func-
tional categories in Gene Ontology of genes with an associated CGI in the human genome. (K)
Summary of GO analysis indicating over-represented functions of epigenetically defined bio-
markers of hESCs. (L) Microarray probe data for selected candidate epigenetic biomarkers
GLIS2, HMGA1 and PEDNS5 in female hESC lines. (M) Sequences of siRNAs employed in this
study. (N) Microarray probe data for XIST expression in female hESC lines. (O) Primers used
for RT-qPCR analysis. (P) Primer sequences for amplification of indicated gene promoter
region after chromatin immunoprecipitation for OCT4 in hESCs. (Q) Table listing unmethy-
lated CGIs in hESCs and somatic tissues.

(DOCX)

S1 Fig. Schematic depicting the isolation of methylated genomic DNA from human ES
cells, column purification of methylcytosine-rich sequences (i.e., methylated CGlIs) and
input and MAP-purified DNA hybridisation to a custom array of 17,000 CGIs. CGI Array
Notes: CGI sequences on this array were identified on the basis of column-based binding

of Msel-cloven genomic DNA from human blood mononuclear cells (pooled from 3 male
donors) to a recombinant cysteine-rich CXXC3 domain of mouse Mbd1, which is characterised
by a high affinity for non-methylated CpG sites (Voo et al., 2000; Jorgensen et al., 2004). Msel
cleaves the sequence TTAA, and as such normal gDNA is cloven into small fragments (pre-
dicted average size 125 bp) containing typically 1 or 2 CpG dinucleotides. TTAA sites are
underrepresented in CGIs, resulting in CGI-derived fragments of an average size of ~625 bp,
and containing typically 50-60 unmethylated CpGs, enabling purification and subsequent
sequencing of CGI-containing fragments. Because of Mbd1’s non-methylated CGI affinity
based-purification, the resulting array excluded the small fraction of CGIs that are fully methyl-
ated in somatic cells, estimated to be less than 3% (Weber et al., 2007). Large scale sequencing
of the column-bound fraction identified both CGIs predicted by CGI prediction algorithms
and annotated in the ENSEMBL database, but also many CGIs that were predicted and only
identified by their interaction with the mbd1 domain. As such, the CGIs on the array are bio-
logically defined rather than defined by an algorithm.

(TTF)
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S2 Fig. Genome-wide CGI hybridisation analysis. Chromosomes are ordered 1-22, X (23),

Y (24), top to bottom. Each vertical tick mark represents an annotated CGI. Blue indicates
<0.5 (log2) hybridisation in RH4 (male hESC line) with respect to RH3 (female hESC line) (i.e.
reduced DNA hybridisation), yellow indicates broadly similar hybridisation (0.5 [log2] > qty
<1.5[log2]) and red indicates greater hybridisation in RH4 than RH3 (>1.5 [log2]). RH3 c.f.
RH4 gDNA input control comparison shows globally similar levels of hybridisation (yellow)
throughout the genome, as expected for total DNA from two euploid human cells lines, with
the exceptions of (1) X chromosome hemizygosity and hence reduced signal (blue) in RH4
(male line), with the exception (2) of the pseudo-autosomal region PAR1 (close to the telomere
of the short arm [left hand end of chromosome 23]). PAR2 is close to the telomere of the long
arm of the X chromosome, but is smaller (320 kb as opposed to 2.6 Mb for PAR1) with fewer
mapped CGIs, and hence less visible, and (3) Increased hybridisation (red) in the Y chromo-
some (24).

(TIF)

S$3 Fig. Bisulphite Sequencing of hESC CGIs confirms CGI methylation array data. (A)
Details of two X-linked gene-associated CGISs used for verification of array-defined CGI meth-
ylation status and relationship of gene expression. (B) CGI 124453 (associated with SCML1)

is confirmed as differentially methylated, being methylated on one allele in RH1 and both
alleles being unmethylated in RH3, as indicated in the CGI array data, whereas (C) CGI 124952
(associated with IDS) is unmethylated in both cell lines. In all examples, black circles indicated
methylated CpGs, and white circles indicate unmethylated CpGs. (D) Affymetrix U133Plus2
genechip probe data (Log2 probe signal for RMA-normalised data; three independent repli-
cates for each cell line) for SCMLI and IDS. (Entrez references 6322 and 3423 respectively)
show expression in female hESC lines RH1 and RH3. SCMLI is expressed at approximately
1.5-fold higher levels in RH3 compared to RH1, consistent with expression from both alleles in
RH3 and one allele in RH1. IDS is expressed at approximately equal levels in both cell lines
(RH3 ~1.18 fold higher levels than RH1). All fold changes are given as Log2.

(TTF)

S4 Fig. Heterogeneity of CGI methylation between hESC Lines. In all panels, chromosomes
are ordered 1-22, X, Y, top to bottom. Each vertical mark represents an annotated CGI. Blue
indicates <0.5 (log2) hybridisation compared with the other line (i.e. reduced CGI methyla-
tion), yellow indicates broadly similar hybridisation (0.5 [log2] > qty <1.5[log2]) and red
indicates greater binding/methylation (>1.5 [log2]). (A) RH1 c.f. RCM1 MAP- gDNA shows
heterogeneity between the two lines, similarly (B) between RH3 and RCM1, indicating hetero-
geneity in levels of CGI methylation between both pairs of cell lines. (C) RH1 c.f. RH3 shows
these two lines are more similar to each other in their CGI methylation than to RCM1 through-
out the genome, but that RH1 has higher levels of CGI methylation on the X chromosome (line
23, red ticks frequent). (D) Comparison of X chromosome hybridisations indicating similar
total input gDNA content for the X chromosome in the two female lines RH1 and RH3 (i.e.,
both are euploid female lines with a 46XX karyotype) (i), but over-representation of methylated
CGIs in RH1 compared with RH3 when the MAP-gDNA is examined (ii, see also C)

(TTF)

S5 Fig. Summary of Affymetrix U133Plus2 Genechip analysis of hESC Lines’ transcrip-
tome. (A) Summary indexes (probe set expression levels) after RMA processing including
quantile normalisation show very similar distributions for all nine arrays. (B) Scatter plots of
expression values between different arrays of the same cell line show a high correlation (Pear-
son correlation coefficient r>>0.99), and thus (C) the arrays cluster according to biological
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samples of the three cell lines. (D) Codes for the three replicates of each cell line.
(TIF)

S6 Fig. X-Linked gene expression in female hESC lines suggests X inactivation in RH1 and
RCM1, but not RH3. (A) Annotated X-linked probe relative expression level for RMA nor-
malised data along the length of the X chromosome, comparing the pairs of cell lines indicated,
shows broadly similar expression levels for RH1 and RCM1 (top panel; yellow tick indicates
Signalgcmi > 0.75 x Signalgyy; and < 1.5 x Signalgyys; red tick indicates Signalgyy; > 1.5 x Sig-
nalgcy and blue tick indicates Signalgyy; < 0.75 x Signalgcyy; ). However, RH1 X-linked genes
show frequently lower levels of expression when compared with RH3 (middle panel; blue
ticks), with the exception of the pseudoautosomal region 1 located at Xp22 (left hand end, yel-
low ticks). Similarly, when RH3 is compared with RCM1 (lower panel), X-linked gene expres-
sion in RH3 is typically > 1.5-fold the levels observed in RCM1 (red ticks). Few significant
biologically-relevant differences in expression of genes in the pseudoautosomal regions (B)
PARI1 or (C) PAR2 were observed between the female hESC lines RH1, RH3, and RCM1. N =3
independent replicates for each probe, plots indicate Log2 signal + SD.

(TIF)

S7 Fig. Gene Expression in hES cells. Expression threshold was set using probe set present/
absent calls generate by the MAS5 algorithm (Affy R package). Calls were averaged with respect
to corresponding Entrez Gene ID and subsequently over replicate samples. Genes were desig-
nated as expressed if average P > 0.5. Overlap of the genes expressed in RH1 (11902), RH3
(12004) and RCM1 (11742) showed most genes were expressed in all three lines, as expected.
See also Table F in S1 File.

(TTF)

S8 Fig. Optimisation of siRNA transfection in hES Cells. Lipofectamine RNAiMAX (Invitro-
gen), JetPRIME (Polyplus), INTERFERin (Polyplus) and Safectin (Deliverics, in the presence
of either mTeSR1 hESC medium, or Optimem low-serum transfection medium) were com-
pared for their ability to generate red channel-positive cells when used to transfect RH1 hESCs
with a Cy3-labelled negative control siRNA directed against no human transcript (IDS-NULL).
(A) Lipofectamine RNAIMAX showed the highest rates of transfection of the four reagents
tested. No significant difference in the proportion of positive cells was observed between
INTERFERIn and JetPRIME or between Lipofectamine RNAIMAX and JetPRIME; nor did the
medium in which Safectin was employed affect the transfection efficiency. (B, C) With Lipofec-
tamine RNAiMAX-mediated siRNA transfection, siRNA quantity (B) but not the volume of
transfection reagent used (C) affected transfection efficiency, summarised in (D) ANOVA
results table.

(TTF)

S9 Fig. Epigenetically-defined hESC biomarkers have a role in maintenance of pluripo-
tency. H9 hESCs were treated with siRNAs directed against the mRNAs indicated, with two
treatments of siRNA at 0 and 24 hours. Samples were taken at 48 and 96 hours for gene expres-
sion analysis (24 and 72 hours after the final siRNA treatment). (A) RT-qPCR data showing
log;, fold change in expression of the targeted gene, and associated effects on the stem cell
transcription factors OCT4, NANOG and SOX2. Changes are relative to GAPDH expression,
normalised to H9 hESCs treated with an siRNA which does not target any gene in the human
genome (IDS-NULL). Asterisks indicate levels of statistical significance, as calculated by
unpaired t-test (*<0.05, **<0.01, ***<0.001, ****<0.0001). ND: Not detected by 40 cycles of
PCR. (i) Knockdown of YAPI, a gene expressed in hESCs but not required for a pluripotent
phenotype was successful, but as expected had a minimal effect on the pluripotency markers
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OCT4, NANOG and SOX2. (ii) Knockdown of OCT4 also results in significant downregula-
tion of associated pluripotency transcripts (NANOG and SOX2). (iii-v) In all cases where tran-
script levels of an epigenetically-defined biomarker was knocked down, (oo indicates "infinite
KD", i.e., no target transcript was detectable), the knockdown was accompanied by significant
reductions in levels of the hESC markers OCT4, NANOG and SOX2. (B) Immunohistochemis-
try for the hESC markers NANOG and OCT4 at 72 hours after treatment with siRNAs directed
against epigenetically defined biomarkers showed that protein levels of the pluripotency mark-
ers OCT4 and NANOG are downregulated in association with the reduction in mRNA tran-
script levels of GLIS2, HMGA1 or PFDNG. Scale bar = 100 pm.

(TTF)

$10 Fig. Epigenetically-defined hESC biomarkers have a role in maintenance of the stem
cell phenotype. H9 hESCs were treated with siRNAs directed against the mRNAs indicated,
with two treatments of siRNA 24 hours apart. Morphology changes were observed in hESCs
post-siRNA treatment, with (A) OCT4 knockdown (pluripotency factor) and (B-D) with the
epigenetically-defined biomarkers GLIS2, HMGA1 and PFDNS5, respectively, but a normal
hESC morphology is maintained if either a gene not required to maintain pluripotency is
knocked down (E, YAP1), or if a mutant oligonucleotide which does not target any transcripts
in the human genome is used (F, IDS-NULL). Scale bar = 100 pm.

(TIF)

S11 Fig. Interference with transcription of epigenetically-defined biomarker genes perturbs
the hESC epigenome at a global level. H9 hESCs were treated with siRNAs directed against
the mRNAs indicated, with two treatments of siRNA 24 hours apart as described previously.
(A) Immunohistochemical staining for the epigenetic marks 5-methylcytosine (5-mC) and
5-hydroxymethylcytosine (5-hmC) showed that after knockdown of OCT4, GLIS2, HMGA1

or PFDNG5, the stem cell-associated mark 5-hmC becomes more difficult to detect. However,
knockdown of either YAPI or a negative control oligonucleotide (IDS-NULL) had no effect on
5-hmC in hESCs. Scale bar = 100 pum. (B) Quantification of 5-hmC levels by ELISA in cells as a
percentage of total cytosine residues in genomic DNA confirms the result of immunochemical
staining of 5-hmC, showing a large (>80%), statistically significant reduction in 5-hmC levels
in H9 hESCs in which either OCT4 or one of the three epigenetically-defined biomarkers
expression is knocked down by siRNA. (C) RT-qPCR data showing fold change in expression
of the three TET oxidases in response to knockdown of OCT4 and the epigenetically defined
biomarkers GLIS2, HMGA1 and PFDN5. Changes in TET enzyme transcript levels were
mostly not significant or modest (within ~1.5-fold) in response to knockdown by OCT4,
GLIS2, HMGAL1 and PFDNG5. Asterisks from 1-4 indicate levels of statistical significance calcu-
lated by ANOVA with Dunnett’s post-hoc test, in comparison to the IDS-NULL control.

(TIF)

$12 Fig. Embryonic lineage preference in hESCs after downregulation of epigenetically-
defined biomarkers of the pluripotent state. H9 hESCs were treated with siRNAs directed
against the mRNAs indicated, with two treatments of siRNA at 0 and 24 hours and samples
were taken at 72 hours for gene expression analysis (48 hours after the final siRNA treatment).
RT-qPCR data showing log;, fold change in expression of the indicated embryonic lineage
marker gene. Changes are relative to GAPDH expression, normalised to H9 hESCs treated
with an siRNA which does not target any gene in the human genome (IDS-NULL). Asterisks
indicate levels of statistical significance, as calculated by unpaired t-test (*0.05, **<0.01,
***<0.001, ****<0.0001). ND: Not detected by 40 cycles of PCR. As hESCs initiate differentia-
tion, multiple markers of different embryonic germ layers are up- or downregulated as the cell
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commits to a particular lineage. Knockdown of GLIS2 upregulated endodermal markers and
trophoblast markers. HMGA1 knockdown produced a mixed response with respect to tropho-
blast markers (extraembryonic tissues) and endodermal markers, but also some ectodermal
markers were upregulated. PEDN5 knockdown still perturbed lineage marker expression, but
in a non-uniform manner, not apparently favouring any one particular lineage over others,
with the exception of the ectodermal markers tested, which were not significantly affected. In
contrast to the response shown by RH1 hESCs, the multi-early lineage marker HAND1 was
significantly downregulated in H9 cells subjected to PFDN5 knockdown.

(TIF)

$13 Fig. Episomal plasmids derived for the ectopic expression of epigenetically-defined bio-
markers in mammalian cells.
(TIF)

S14 Fig. Epigenetically-regulated biomarkers, though required for pluripotency, do not
necessarily have a role in reprogramming of fibroblasts to iPSCs. Transfection of human
dermal fibroblasts (HDFs) with either a set of three episomal plasmids expressing OCT4,
SOX2, KLF4, L-MYC, LIN28 and a short hairpin RNA directed against p53 (Y4) alone (left-
most column) or with the Y4 set supplemented with either HMGA1, GLIS2 or PFDN5 (See
S12 Fig), or all three (Y4 + HMGA1/GLIS2/PFDN5), generated phenotypically pluripotent col-
onies as assessed by alkaline phosphatase staining (No. AP+ Colonies). Three independent
experiments are shown, (A, B), n = 10 independent transfections for each condition; (C) n =5.
Statistically significant differences in AP+ colony number (from Y4 alone) are indicated by
asterisks: *, P<0.05, **, P <0.01, ***, P < 0.001, **** < 0.0001.

(TTF)

S15 Fig. Graphical summary showing the steps leading to identification of epigenetically-
defined markers of pluripotency.
(TIF)

S$1 Table. CGIs methylated in hESCs.
(Z1P)

$2 Table. Genes whose associated CGI is consistently methylated in hESCs.
(Z1P)

$3 Table. Human CGI array. Table giving location information and Affymetrix probe IDs of
associated genes, if any. Location data refer to human genome build NCBI 36 (hg18).
(ZIP)

$4 Table. The number of gene-associated CGIs on each chromosome.
(Z1P)

S5 Table. CGI methylation dataset for all of the hESC lines and somatic tissues. Correlated
expression results, relative between the two lines indicated, are also included. U = CGI desig-
nated as unmethylated, M = CGI designated as methylated.

(Z1P)

S6 Table. Transcriptome dataset for the female hESC lines RH1, RH3 and RCM1.
Table showing RMA-normalised results for all probes for each individual sample, together

with essential gene details and the mean probe signal for each line.
(ZIP)
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