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Abstract 

Theoretical models have been developed to understand how animals decide to withdraw from 

a contest. They provide testable predictions regarding the relationship between resource 

holding potential (RHP) and contest duration that assume linear relationships among RHP 

traits. However, RHP traits might scale with body size according to power laws. Furthermore, 

investment across different RHP traits may vary. Herein, we provide a model that encompasses 

the allometric relationship between body size and other RHP traits. First, we partition RHP 

traits into “offensive” traits (i.e., the ability to inflict damage) and “defensive” traits (i.e., 

persistence in a contest). Defensive traits may in turn be subdivided into “damage endurance” 

(DE) or the ability to absorb damage and “stamina.” We then model scenarios where: 1) there 

are power relationships among RHP traits; 2) individuals invest differently in defensive and 

offensive traits; 3) offensive traits and DE have a positive/negative relationship with body size. 

We modeled sized-matched injurious contests where 1) offensive capacity (OC) increases 

superlinearly with body size, 2) DE increases superlinearly, and 3) OC increases superlinearly 

but DE increases sublinearly. Our analyses indicate that if RHP traits scale linearly current 

predictions are upheld for injurious contests—contest duration increases with body size. 

However, with power relationships we can expect nonlinear relationships. Here, contest 

duration increased with body size until a maximum, decreasing afterwards. Thus, considering 

allometric relationships between body size and RHP traits may lead to new insights in animal 

contest theory and may help to solve discrepancies between current theory and empirical data. 

Key words: assessment models, agonistic behavior, resource holding potential, contest 

duration, allometric scaling. 

 

Introduction 

Animal contests resolve disputes over the ownership of a resource that influences fitness either 

directly (e.g., mating opportunities; Buzatto and Machado 2008) or indirectly (e.g., food, 

shelter; Bergman and Moore 2003). Typically, contests are terminated when 1 individual 

makes a decision to withdraw, and thus it is the losers rather than the winners that determine 

the duration of contests. This feature has been core to the analysis of how the giving up decision 

is made (e.g., Taylor and Elwood 2003; Arnott and Elwood 2009; Briffa and Elwood 2009). In 

such contests, a variety of components that contribute to the animals’ fighting abilities (i.e., 

resource holding potential, RHP sensu Parker 1974) are important in determining which 

opponent will win, because these traits determine how much the loser can endure before 

deciding to give up. RHP is thus typically associated with traits that increase/decrease the 

probability of winning a contest, such as body size, weaponry, and energy reserves (Arnott and 

Elwood 2009; Vieira and Peixoto 2013). However, the relationships between the different traits 

that contribute to an individual’s RHP are often assumed to be linear, whereas there are clear 

examples showing that this may not be the case (Copeland et al. 2011; Garcia et al. 2012). 

Analyses of RHP and contest duration typically focus on one (Garcia et al. 2014; Costa et al. 

2016) or more (e.g., Briffa 2008; Rudin and Briffa 2011; Arnott and Elwood 2009; Junior and 

Peixoto 2013; Palaoro et al. 2014) of the traits that might contribute to overall RHP. However, 

there are, in fact, 2 types of within-individual relationship involving traits that could contribute 

to overall RHP and hence influence the duration of contests. First, there is the relationship 

between specific RHP traits and an individual’s overall RHP. Second, there are relationships 



among the different traits that contribute to RHP. In both cases, the implicit assumption of the 

framework (Taylor and Elwood 2003) used to investigate giving up decisions is that these 

relationships should be linear. Later, we describe how this framework has been derived. We 

then go on to show that, while it is logical, its predictions should be modified if there is evidence 

for nonlinear relationships among RHP traits. We argue that such nonlinear relationships may 

be quite common in fighting animals and may have been overlooked. We show that nonlinear 

relationships can be important for contest duration whenever this is influenced by the difference 

in RHP between opponents (i.e., contests settled by both mutual- and self-assessment but 

involving damage; Briffa and Elwood 2009). 

 

Models of the giving up decision and tests of their assumptions 

Several models have been developed to understand how individuals make the decision to quit. 

These models are based on how individuals accrue costs and what kind of information they use 

during contests—do they use information only about themselves (i.e., self-assessment; Arnott 

and Elwood 2009), do they incorporate information about their opponent into their decision 

(i.e., mutual assessment; Arnott and Elwood 2009), or do they only use information about their 

opponent (i.e., opponent-only assessment; Elwood and Arnott 2012)? These different 

assumptions underpin some of the most influential models of animal contests. All self-

assessment models assume that individuals only use information about themselves, and war of 

attrition type models predict that individuals give up when they reach a threshold of costs 

(Bishop and Cannings 1978; Payne and Pagel 1997; Payne 1998). In contrast, models based on 

an assumption of mutual assessment, such as the Sequential Assessment Model (SAM) predict 

that losers should give up as soon as they perceive that they are the weaker opponent (Enquist 

and Leimar 1983), and, therefore, persisting until a cost threshold is reached is unnecessary. 

The opponent-only assessment is not a theoretical model but was proposed to explain some 

studies in which only the winner’s RHP influenced the decision to quit— the loser reaches their 

cost-threshold based solely on the winner’s RHP and not on information about his own RHP 

or cost-threshold (Elwood and Arnott 2012). Self-assessment models can be further subdivided 

into energetic wars of attrition (EWOA; Payne and Pagel 1997) and the cumulative assessment 

model (CAM; Payne 1998). The main difference between EWOA and CAM is that costs are 

accrued only through performance of costly displays under EWOA, whereas under CAM 

individuals can inflict damage on one another, with high RHP individuals inflicting more 

damage than individuals of lower RHP. Although most of these models make predictions 

regarding contest escalation patterns, most researchers focus on testing their assumptions (self-

, mutual-, and opponent-assessment) based on the frameworks provided by Taylor and Elwood 

(2003), Arnott and Elwood (2009), Briffa and Elwood (2009), and Elwood and Arnott (2012). 

This empirical framework is based on relationships between RHP traits and contest duration 

(Table 1). These tests assume linear relationships between RHP traits and contest duration, 

which are evidenced by the widespread use of parametric regression to test predictions (e.g., 

Rudin and Briffa 2011; Junior and Peixoto 2013; Palaoro et al. 2014; McGinley et al. 2015; 

McLean and Stuart-Fox 2015; Wofford et al. 2015). 

 

 



Animal growth and RHP 

A fundamental aspect of animal growth is the allometric nature of relationships between overall 

body size and the size of other traits including weapons (Emlen 2008), defenses (Lease and 

Wolf 2010; Swanson et al. 2013), and physiological capacities (Nilsson and Östlund-Nilsson 

2008). Typically, as body size (e.g., length and mass) increases during development all other 

traits develop alongside it according to power relationships (γ = a0 × Xa1, where γ is the trait 

size, X is body size, a0 is the normalization constant, and a1 is the scaling exponent; Huxley 

1924) rather than linear relationships. Huxley (1924) also noted that you could linearize this 

power relationship by log transforming the variables before regressing it (log(γ) = b0 + b1 × 

log(X), where log(γ) is the log-transformed trait size, log(X) is the log-transformed body size, 

b0 is the intercept, and b1 is the slope; Huxley 1924)—but this is not the same as linearly 

scaling variables and you are assuming that the traits have a common developmental pathway 

(Pélabon et al. 2014). Consequently, it is expected that the capacities of specific RHP 

components (e.g., the ability to inflict damage, to absorb damage, and physiological endurance) 

might also show nonlinear changes with overall body size. Such differential investment across 

different RHP traits is well documented because it may lead to extreme morphologies (Nijhout 

and Emlen 1998; Emlen and Nijhout 2000). An example of this in the context of weaponry is 

the horns of beetles, which in some species increase with a slope of 2.5, whereas legs, wings, 

and elytra increase with a slope of 1 with body size, and the eyes increase with a slope of 0.65 

(Johns et al. 2014). This means that there may be a disconnection between the RHP itself and 

how we deal with the relationships among RHP traits. Copeland et al. (2011) and Garcia et al. 

(2012) highlighted this disconnection between RHP and body size/physiological 

competence—because RHP is an overall complex of different traits, it may not increase linearly 

with body size as previously thought. This leads to the key reason why growth allometries need 

to be considered in analyses of animal contests: if overall RHP scales nonlinearly with overall 

size, then RHP differences between larger and smaller individuals could be markedly greater 

or smaller than would be expected if linear relationships between RHP and body size are 

assumed. Moreover, if relationships between body size and the different traits that contribute 

to different aspects of RHP are not equivalent, then our ability to infer decision rules from 

RHP–duration relationships would be further complicated. This could be one of the reasons 

why Vieira and Peixoto’s (2013) meta-analysis did not find support for the role of physical 

strength in contests that involve physical contact or for physiological endurance in contests that 

do not involve physical contact. The problem is not in the selection of RHP traits (Vieira and 

Peixoto 2013), but maybe in how we are incorporating the relationship among the RHP traits 

and between RHP and contest duration. The possibility of differential relationships between 

different RHP components and overall body size seems particularly important in contests that 

involve direct physical contact. Such contests involve both inflicting and absorbing damage, 

each of which is dependent on different components of RHP. Causing damage should be related 

to the weapon used by the attacker, whereas enduring damage is related to defensive 

components of RHP, such as the thickness of exoskeletons and physiological endurance (e.g., 

Green and Patek 2015). As different parts of RHP are being used, there is the potential for 

differential investment in the relative abilities to inflict and to resist damage, such as the 

aforementioned example of the beetle. In this case, the empirical predictions for the assessment 

models about the relations between RHP and contest duration (Table 1) may not hold true. 

Thus, different types of allometric relationship between weapons, endurance, and stamina may 

offer a potential explanation for the discrepancy between current models and empirical 



evidence (Fawcett and Mowles 2013; Vieira and Peixoto 2013), especially those from contests 

with injuries. This possibility seems most important for contests settled by self-assessment, as 

assumed in the CAM and EWOA models. In the case of CAM, for example, it is assumed that 

the damage caused by the opponent has a fixed value, rather than increasing with size (Payne 

1998). Similarly, in tests of the EWOA, we assume that physiological endurance scales linearly 

with body size. Therefore, we model scenarios in which defensive (i.e., resisting damage and 

endurance) and offensive capacities (i.e., causing damage) are separate RHP traits that might 

scale differently from each other (e.g., offensive RHP might scale faster with size than the 

defensive RHP, e.g., sea anemones; Rudin and Briffa 2011), and compare our results with 

current predictions. Second, we model scenarios in which these traits might scale nonlinearly 

with size and also compare these with current predictions (Table 1). First, we provide a 

predictive model for contest duration based on underlying assumptions of the CAM. Our goal 

is to expand the empirical framework proposed by Taylor and Elwood (2003) by accounting 

for RHP traits that scale nonlinearly with body size. As described above, weapons might 

increase in size and strength during development at a different rate than defenses (e.g., the 

thickness of the cuticle or epithelium) or other physiological traits that contribute to endurance. 

We therefore compare scenarios with linear and power relationships for the development of 

RHP traits and make predictions in each case for relationships between body size and contest 

duration. We show that under these conditions we should not necessarily expect a positive 

linear relation between RHP and contest duration in contests settled via self-assessment. 

Second, we test whether the RHP of a pair of larger-sized individuals will vary more than the 

RHP of a pair of smaller-sized individuals for RHP under both scenarios (i.e., linear and 

nonlinear scaling). We argue that although the role of damage and trait allometry has been 

investigated empirically, it has yet to be incorporated into the body of contest theory dealing 

with assessment rules. Thus, we hope to pave the way for further development of this subject.  

 

Partitioning RHP traits: the role of damage endurance, stamina, and offensive capacity 

 

In our model, we focus on how much damage an individual can endure (henceforth “damage 

endurance” [DE]) and how much damage an individual can inflict (henceforth “offensive 

capacity” [OC]). Before considering the role of DE it is necessary to partition it from other 

variables that can influence an individual’s maximum persistence time in a fight. First, there is 

another form of endurance commonly discussed in studies of animal contests. This is generally 

defined as the ability to sustain demanding activity and is described as stamina or “endurance 

capacity.” In fact, stamina and DE are often considered together, such that fighting animals 

must pay a single pooled cost: the sum of injuries received and the metabolic costs of fighting 

that have accrued. We further note that these combined forms of endurance are often referred 

to as “RHP”; but during injurious fights, RHP will also be influenced by OC. Therefore, we 

consider DE, stamina, and OC as distinct RHP traits. Stamina and DE are the only traits that 

should influence a focal individual’s maximum persistence (although in real animals the 2 traits 

might covary; Figure 1), whereas OC affects the time taken to push the focal individual’s 

opponent towards its own maximum threshold. Finally, there is a third source of variation that 

could interact with stamina and DE to produce an individual’s maximum persistence time. We 

denote this (loosely) as “motivation,” which could be influenced by a range of intrinsic and 



extrinsic factors (i.e., resource value). We do not deal specifically with variation in motivation 

here, but we note its potential role in modifying maximum persistence. Motivation does not 

influence the maximum OC, DE, and stamina of a fighting individual. Rather, motivation will 

determine what proportion of these capacities an individual is willing to commit to the contest. 

Therefore, motivation interacts with these RHP traits to produce the behavioral outputs that 

researchers measure in studies. Figure 1 shows the relationships between these different 

sources of variation and maximum persistence time. 

 

Nonlinear scaling of offensive and defensive RHP 

Endurance is a property of an individual’s morphology and physiological state, and should not 

be influenced by any other factors. Crucially, both types of endurance are intrinsic traits of the 

individual, liable to variation with a tendency to increase during growth. In the case of stamina, 

it is well recognized that greater energy reserves in larger individuals (mammals: Lindstedt and 

Boyce 1985; fish: Schultz and Conover 1999; insects: Hahn and Denlinger 2007) can allow 

them to persist for longer in a fight, both by being able to bear greater costs and by having more 

energy to perform costly aggressive acts. Similarly, in the case of DE there might be increased 

defences against damaging weapons in larger individuals. For example, thicker exoskeletons 

in larger arthropods (Lease and Wolf 2010) should increase the DE, again allowing for greater 

persistence. The same reasoning can be applied to OC. As the individual develops, weapons 

can increase in efficiency thus causing more damage, as seen in crustaceans’ claws (Palaoro et 

al. 2014), lizards’ jaws (Lappin and Husak 2005), and mammalian jaws and forelimbs (Morris 

and Carrier 2016), for example. This increase in efficiency usually occurs because of the steep 

allometric slopes (or high scaling exponent) these weapons show. Beetles are a good example 

of steep allometric slopes, because some species can scale their horns with a slope of up to 4.67 

(McCullough et al. 2015). Frogs can also show high scaling exponents when we regress body 

size with their arm girth, which can also change according to the competition they face during 

mating season—sites with lower male densities have frogs with thicker arms (Buzatto et al. 

2015). Literature is laden with examples of steep allometric slopes and high scaling exponents 

between body size and weapons, thus, it is clear that weapons are increasing damage at a 

nonlinear rate (McCullough et al. 2015; Voje 2016). During development, both DE and OC 

may vary. In some instances, causing damage may be more important and so OC may increase 

at a greater rate during development in comparison with DE (e.g., damages in the claws of 

crustaceans or the broken beetle horns; Rojas et al. 2012; McCullough 2014, respectively), 

while in other instances the opposite may be true (e.g., mantis shrimps’ abdomen carapace that 

absorbs the damage of the striking appendage, Green and Patek 2015). In the case of damage, 

the capacities to inflict and endure it might be dependent upon different traits (e.g., Green and 

Patek 2015). If these traits associated with injurious fighting scale differently, this may lead to 

a decoupling of offensive and defensive capacities (e.g., physical contact in fallow deer; 

Jennings et al. 2010), a possibility that does not have formal predictions based on any model 

of contest behavior. Indeed, although models such as the CAM allow attack rate to vary, they 

do not incorporate the possibility that the severity of damage inflicted can vary (Payne 1998; 

Kokko 2013). In the next section, we present our model that considers the variation in DE and 

OC, also considering 2 types of trait scaling—linear and power scaling.  

 



Model specifications 

We only modelled contests between size-matched opponents because this is the situation where 

the importance of both offensive (i.e., the ability to inflict damage) and defensive RHP is likely 

to be starkest in most taxa (Hardy and Briffa 2013). Indeed, when opponents are size-matched 

other traits than size become more important in deciding contests (e.g., weaponry, Sneddon et 

al. 2000; Lailvaux et al. 2005; Kelly 2006; physiological competence, Copeland et al. 2011; 

Junior and Peixoto 2013). Nevertheless, our model could also be parameterized for asymmetric 

(in terms of body size) contests. OC, DE, and stamina scaled either linearly or nonlinearly with 

body size (see below). We used body size values between 1 and 100 in intervals of 1, using the 

following equation for linear relationships between RHP and body size: 

γ = 1+ b × x         (1) 

Where γ is the RHP trait, 1 is the value of the intercept, b is the slope, and x is the body size. 

We kept the value of the intercept at 1 because altering it would mainly increase the starting 

value of the RHP trait, which in turn could prevent the comparisons between the models 

starting value due to the additive or multiplicative nature of this part. By keeping it at 1, we 

simplified interpretations and made both models more directly comparable due to the low 

influence of the intercept and the normalization constant. When RHP traits scaled nonlinearly, 

we used the following equation: 

γ = 1× xa         (2) 

Where γ is the RHP trait, 1 is the normalization constant, a is the scaling exponent, and x is the 

body size. The slopes (Equation 1) and scaling exponents (Equation 2) were modelled between 

0.5 and 2 because values beyond these limits are rare in nature (Voje 2016). Although we 

modelled a range of values, only the most representative were used for the figures and analyses 

here. We also provide the model in the Supplementary Files alongside an R-code. Stamina and 

motivation were considered invariant and did not covary with OC and DE. Note that in the case 

of motivation this means that any damage that an individual attempts is equal to its OC, because 

low motivation could reduce the amount of damage attempted (e.g., Condon and Lailvaux 

2016) but high motivation cannot increase it beyond the upper limit of OC. Furthermore, the 

individual that starts the contest and inflicts the damage on the opponent is decided by chance—

this rule was used when calculating contest duration, but not when we only calculated the RHP 

of the individuals (see below). To calculate contest duration, we used the following equation: 

Cd  = Stamina (receiver) + OC (initiator) -  DE receiver    (3) 

Where Cd is the contest duration, OC is the offensive capacity, and DE is the damage 

endurance. In case of negative Cd we considered it zero. We highlight that we kept motivation 

fixed at 1 and that is why OC, DE, and stamina are directly used in the calculation of contest 

duration. For simplicity, motivation was fixed at 1 in each of the following simulations. 

Therefore, we assume that both opponents are equally motivated (i.e., place the same value on 

the resource) and that both will commit all available offensive and defensive capacities to the 

contest. Within the 2 types of RHP scaling patterns we developed 3 scenarios. The first scenario 

is where OC scales with an exponent higher than 1 (i.e., it increases super-linearly) and DE is 

fixed at 1 (i.e., it increases linearly). The second scenario is where DE scales with an exponent 

higher than 1 and OC is fixed at 1. In the last scenario, we tried to simulate a more biologically 

relevant result. As it is perfectly plausible that OC and DE might covary, we simulated a 



scenario in which OC increases superlinearly (slope or scaling exponent > 1), and DE increases 

sublinearly (slope or scaling exponent < 1). In other words, both OC and DE could be either 

linearly or nonlinearly related to body size. In each case, we analysed the effects of RHP 

variation on contest duration, across a range of scaling component values, thus providing 

similar predictions as what is currently used for the assessment models. Modelling was 

performed with Microsoft Excel. To test if RHP varies more between fights of larger 

individuals than between fights of smaller individuals, we extracted the 30 highest and 30 

lowest body sizes from a simulated population (N = 200, mean = 50, standard deviation = 20) 

and these were our focal individuals. To generate RHP-matched opponents with a difference 

corresponding to what is regularly used in the current animal contest literature (Briffa et al. 

2013), we multiplied the body size of the focal individual by 0.75, thus generating individuals 

that were 15% smaller than the focal individual. We then calculated the RHP component for 

both individuals (i.e., focal individuals and opponents) in the same way we did for first 

scenario. Specifically, we used Equations 1 and 2 and varied only the OC slope or scaling 

exponent superlinearly (>1). Although we ran the same slopes and scaling exponents as in the 

previous analysis, we chose only the most relevant to show here. As our goal is to test the 

difference in the RHP components between the pair, we used only the component that scaled 

superlinearly (i.e., OC) to test that prediction. We thus subtracted the OC of the focal individual 

by the OC of the opponent. We tested the differences among groups (i.e., large vs. small pairs 

and linear vs. nonlinear scaling) using a 2-way Anova. These analyses were run in the R 

software (R Development Core Team 2015). 

 

RHP trait scaling and model predictions 

 

Linear and nonlinear scaling for RHP traits with body size 

Figure 2 illustrates how RHP traits might scale according to body size across the range of 

scenarios that we simulated. In comparison with simple linear relationships, subtle increases in 

body size can result in large differences between RHP traits when they scale in a power 

relationship with body size (e.g., Figure 2f). This is in accordance with weaponry growth 

studies, where changes in body size are accompanied by a large growth in the morphological 

trait (Emlen et al. 2012). The scaling factor of DE might also show nonlinear variation with 

overall body size. For instance, the relationship between exoskeletal chitin mass and body mass 

differs between flying insects (slope: 0.97) and nonflying insects (slope: 1.03; Lease and Wolf 

2010). Although similar and near linear, these slopes are different from each other and from a 

linear scaling (slope: 1). Uca crabs are another potential example of disproportionate 

investment in weapons and defenses. Although their claws rarely break during combat, the 

cephalothorax can be easily indented (Swanson et al. 2013). Overall, these examples illustrate 

the point that we should expect disproportionate investment across different RHP traits during  

development. 

 

Effects of linear and nonlinear scaling of RHP on contest duration 

 



Figure 3 illustrates differences in contest duration among scenarios where RHP traits scale 

linearly with body size and those with a power relationship with body size. When RHP traits 

scale linearly with body size (Figure 3a–c), Taylor and Elwood’s (2003) predictions for self-

assessment size-matched contests are upheld—contest duration increases with loser body size 

indefinitely, regardless of the scenario. However, when RHP traits scale in a power law (Figure 

3d–f), the predictions for contests resolved by self-assessment change dramatically. First, a 

nonlinear relationship between offensive RHP and body size (e.g., Figure 2d) produces a 

nonlinear relationship between duration and body size, i.e., a power relationship. Thus, the 

relationship can be sublinear (downward bend; Figure 3d), or superlinear (upward bend; Figure 

3e), depending on the type of allometric relationship between body size and weapon size. When 

the OC (e.g., weapon size) increases sublinearly with body size, but DE increases linearly or 

superlinearly, DE will be greater than OC. This would lead to an upward bent curve indicating 

that contest duration increases exponentially (Figure 3e,f). On the other hand, when OC 

increases superlinearly with body size—and DE increases linearly or sublinearly—an 

interesting scenario that is not predicted arises. Under these scenarios, OC is increasing faster 

than DE. Thus, once a particular threshold of body size has been exceeded, OC will be greater 

than DE. This produces a curve with a maximum peak, which then decreases. In other words, 

damage will be so massive that losers will withdraw from the contest at an early time and 

contests will be short. Thus, as body size increases so does the mismatch between body size 

and the severity of damage. This scenario is possible when animals are under selective pressure 

to invest in powerful and efficient weapons. Weapons may increase in performance as the 

individuals grow such as claws and jaws (Lappin and Husak 2005; Dennenmoser and Christy 

2013), and may have a larger investment than DE (or stamina) due to sexual selection (e.g., 

claws that break their opponent’s exoskeleton; Rojas et al. 2012). In some cases, weapons cause 

so much damage that they seem very likely to have increased in efficiency at a rate greater than 

the DE capacity. Examples include the forelimb spines of gladiator frogs, Hypsiboas 

rosenbergi, that can pierce opponent’s eyes or eardrums (Dyson et al. 2013), or the specialized 

fighting tentacles of the sea anemone, Actinia equina, that cause necrosis in the skin of the 

opponent (Rudin and Briffa 2011). These extreme forms of damage probably have very large 

contributions to the total costs of fighting, leading to the maximum persistence threshold being 

rapidly exceeded. This possibility was not considered either in the CAM (Payne 1998) or its 

predictions (Taylor and Elwood 2003; Table 1), which explicitly incorporates the costs of 

receiving damage but increasing in proportion with the accrual of energetic costs. In other 

words, the individual is always causing the same damage, what changes is the number of strikes 

delivered during the fight. When significant damage costs accrue very rapidly, however, the 

OC of the winner will have the most immediate effect on the loser’s decision to withdraw, 

while the loser’s stamina or DE will be less important. Therefore, during self-assessment 

contests the positive relationships between RHP traits and duration predicted by Taylor and 

Elwood (2003) might not describe such contests accurately. This increased importance of the 

winner’s RHP could also be a viable explanation for the opponent-only assessment. In this type 

of assessment the winner’s RHP is the most important factor to settle contests, being negatively 

correlated with contest duration (e.g., Rillich et al. 2007; Prenter et al. 2008; Reddon et al. 

2011; Jennings et al. 2012; Peixoto and Benson 2012). It is possible that, in some of these 

studies, the winner is inflicting more costs than the loser is able to bear, which although not 

predicted in any of the current models, is predicted in our model. If true, then the opponent-

only assessment may not be a model on its’ own, but rather an extension of the CAM in which 



damage output increases with the size of the individual and this is not expected in the theoretical 

model. In this scenario, our model predicts that the physical contact part of the fight would be 

a short interaction with a high probability that 1 of the individuals is injured or physiologically 

exhausted shortly afterwards. It would thus be interesting to see some of these studies 

reanalyzed considering our model as an alternative. 

 

RHP differences between small fighting pairs and large fighting pairs 

Our prediction that RHP would differ more in paired large individuals than in paired small 

individuals was corroborated, but not as predicted. We predicted that this difference would 

occur only in nonlinear scaling, but all groups differ from each other regardless of the scaling 

pattern considered (Table 2; Figure 4a–c). Despite this, difference in the OC was larger in 

nonlinear scaling than in linear scaling—small differences in the scaling exponent of OC 

caused a large increase in the difference between focals’ and opponents’ OC (i.e., the median 

increases as we increase the slope/ scaling exponent, Figure 4). In addition, when comparing 

variance within the same size-matching method (e.g., between small pairs), the variance was 

always larger under nonlinear scaling. Variance also increased more under nonlinear scaling 

(Figure 4a–c). Our results only reinforce the idea that RHP is not scaling linearly with body 

size (Copeland et al. 2011; Garcia et al. 2012)—RHP is scaling faster in larger individuals than 

they do in smaller individuals. This could be 1 of the factors influencing the variable level of 

support for the assessment models provided by empirical studies—we could be misinterpreting 

how the overall RHP is formed, typically assuming that different components are equivalent 

and that they all relate to overall RHP in the same ways. 

 

Future directions for contests and RHP allometries 

As all RHP traits have the same importance in decision-making in our model, the role of 

stamina would be to decrease the impact that OC has on contest duration. We only take into 

account injurious contests, but in an escalating contest, stamina and DE would surely be 

important in different stages of the contest. In the beginning of the contest, where most displays 

occur, OC and DE would be irrelevant and stamina would be the sole RHP trait that determines 

contest duration. If this hypothetical contest continues to escalate to physical contact, then 

stamina would decrease in importance while OC and DE would increase their importance. This 

view is similar to the recently modeled switching assessment strategy (Mesterton-Gibbons and 

Heap 2014), but instead of switching from self to mutual assessment (or vice versa), individuals 

would rely on different RHP traits during different stages of the contest. Therefore, our model 

can also be further developed to incorporate different views of the importance of the RHP traits. 

Our model has divided the persistence component of RHP in 2 different traits: stamina and DE. 

While stamina has been the focus of research for quite some time and is relatively well 

understood for some species (Briffa and Sneddon 2007), DE has been largely neglected. A 

clearer understanding of how animals develop both OC and DE should provide new insights 

of contests where damage is an integral part of fighting. Biomechanical studies should prove 

invaluable to compare either within individuals or among populations. Another aspect that 

could provide further insights to animal contests is the covariation between stamina and the 

other RHP traits. As noted above, under some circumstances, DE and stamina might covary 



during development, and thus, distinguishing between them might be difficult because it is 

possible that both of these traits use the same pathways to increase. Therefore, studies aiming 

to understand this covariation are needed. 

 

 

Conclusion 

Herein, we have shown that a slight change in the assumptions commonly used to predict 

contest duration (i.e., the scaling of RHP traits) can alter the predictions for decision-making 

in a contest. Current predictions have implicitly assumed a linear relationship between RHP 

traits, and we show that if a more realistic view (i.e., body size-RHP traits scale with power 

relationship, and that damage increases during development) is taken into account, these 

predictions are altered. Furthermore, we also show that RHP scales faster in larger individuals 

than it does in smaller individuals, highlighting the allometric nature of the RHP. 

Understanding the influence of this inherent variation in RHP traits related to inflicting and 

receiving damage, and how they influence decision-making could be central to answering a 

persistent question in animal contest studies: how do losers decide to give up? Our analyses 

show that when RHP scales nonlinearly with body size, determining how this decision is made 

may require adjusting our expectations of linear relationships between RHP and duration. This 

logic applies to contests settled by mutual-assessment and to contests settled by self-

assessment, as long as opponents inflict direct costs on one another using weapons. 

Additionally, this logic can also be applied to contests in which the winner’s RHP is the most 

important driver of contest outcome (i.e., opponent-only assessment). In other words, nonlinear 

investment in weapons (and defenses) should influence the duration of any fights where the 

decision to quit is driven either by the difference in RHP between winners and losers, or solely 

by the RHP of the winner. 

 

Supplementary material 

Supplementary material can be found at http://www.beheco.oxfordjournals.org/. 
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Table 1: Predictions of the assessment models and our model regarding RHP and contest 

duration between RHP-matched opponents 

 

 

 

Table 2: Results of the 2-way Anova we performed to test if the difference in OC between a 

focal individuals and its’ opponents differs between scaling method (i.e., linear and power 

scaling of RHP with body size) and pairing method (i.e., size-matching small individuals or 

size-matching large individuals) 

 

 

 

 

 



 

Figure 1: Factors contributing to RHP and their behavioral outputs. First, RHP traits that 

depend on the animal’s morphology or physiology are endogenous RHP traits, and they are 

subdivided into 2 types of traits: offensive (dark grey), and defensive RHP traits (light grey). 

Offensive capacity (OC) is how much damage an animal causes to its opponent given its ability 

(e.g., weapon size). The defensive RHP traits are subdivided into damage endurance (DE), 

which is how much damage from the opponent the individual can take, and stamina, which is 

how long the individual can sustain demanding activity (e.g., perform costly acts during a 

contest). Second, motivation is defined loosely as extrinsic and intrinsic factors that can 

influence the motivation of the individual to fight (i.e., resource value). This must have a value 

between 0 and 1, because motivational state cannot increase an individual’s maximum 

persistence threshold or damage attempted. Rather it will determine the proportion of this 

maximum that an individual is prepared to allocate to a contest. Lastly, the behavioral outputs 

are the variables we can measure in a fight. For instance, damage attempted could be the 

number of strikes, and the maximum persistence threshold could be the contest duration. Our 

model deals mainly with how DE and OC interact to determine how long it takes to exceed the 

maximum persistence threshold. 

 



 

Figure 2: Scaling of RHP traits according to 2 different relationships between the variables 

and 3 scenarios. The top row illustrates linear relationships and the bottom row illustrates 

power laws. The upper and lower panels on the left show when OC increases with a slope or 

scaling exponent larger than 1 but DE is fixed at 1. The middle panels illustrate the 

opposite—DE varies and OC is fixed at 1. The upper and lower panels on the right indicate 

offensive capacities increasing superlinearly (slope or scaling exponent > 1), and sublinear 

increases for DE (slope or scaling exponent < 1). In each case the distance between lines for 

offensive and defensive RHP represents the amount of damage that an offensive act would 

inflict on the recipient for a pair of size matched individuals. If DE is larger than OC, than the 

individual is sustaining no damage at all thus highlighting the role of stamina in terminating a 

contest. Values between panels indicate the slope or scaling exponents parameters (b or a—

see Equations 1 and 2) used to generate the curves.  

 

 

 

 

 

 

 

 



 

Figure 3: The top row (a–c) shows the expected contest duration between RHP-matched 

individuals in a model that the different components of RHP (see Figure 2) are scaling 

linearly with body size (see Equation 1), as assumed by current animal contest theory. In 

contrast, the bottom row (d– f) shows the expected contest duration between RHP-matched 

individuals in a model that the different components of RHP are scaling with power 

relationships with body size (see Equation 2). The left panels (a and d) demonstrate the 

predictions when OC has a slope (a) or scaling exponent (d) larger than 1 and DE is fixed at 

1. The middle panels (b and e) illustrate the opposite scenario: DE increases with a slope (b) 

or scaling exponent (e) larger than 1 and OC is fixed at 1. The right panels (c and f) illustrate 

a more realistic scenario in which OC increases with a slope (c) or scaling exponent (f), and 

DE increases with a slope or scaling exponent of 0.5. Values indicate the slope parameters (b) 

or scaling exponents (a) used to generate the curves.  

 

 

 

 

 

 

 

 

 

 

 



 

Figure 4: Difference in OC between RHP-matched (15% of difference) individuals. Large pairs 

(gray boxes) indicate pairs that were formed between the 60 largest individuals of a random 

population, and Small pairs (white boxes) indicate pairs formed between the 60 smallest 

individuals. (a) OC scaling exponent (nonlinear scaling) or slope (linear scaling) set at 1.1; (b) 

OC set at 1.12; (c) OC set at 1.2. Values above or below the boxes indicate variance. 


