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On the use of the Radon transform to estimate
longshore currents from video imagery

Rafael Almar1,⇤, Stanislas Larnier2, Bruno Castelle3, Timothy Scott4, France
Floc’h5

Abstract

A direct estimation of longshore currents using in-situ instruments is di�cult

and costly, and often limited to punctual measurements over short durations.

Video remote sensing systems o↵ers an alternative when drifting features, like

foam induced by breaking waves or other streaks, are visible. In this paper we

describe a method based on the application of the Radon transform on longshore

spatio-temporal images. The sinogram from the Radon transform is used to find

the angle of the drifting, further converted into current. Our approach is first

tested using synthetic fields created using anisotropic Gaussian random currents

and waves. Comparison is also made with in-situ currents from the Grand Popo

2014 experiment in Benin (Gulf of Guinea, West Africa). Results show an

overall good agreement (O(30%)) in the swash, surf and inner shelf zones while

the method o↵ers best skills in the surf zone (17%) where the drifting foam

induced by wave breaking is evident. The width of the Radon peak is found to

be a good proxy of accuracy. This remote sensing method allows a long term

monitoring of the longshore current and its cross-shore structure, which brings

new perspectives in quantifying sediment drift variability.
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Remote sensing, Grand Popo, Benin

1. Introduction1

Longshore current has attracted a major attention in the nearshore science2

for decades, generally within the scope of estimating longshore sediment trans-3

port (Komar, 1998). It is generated by oblique breaking waves, is rather verti-4

cally uniform and can reach values up to meter per second (Komar & Inman,5

1970; Lippmann, 1970). Observations have shown that longshore current peaks6

at the location of the maximum of breaking and can present a multi-modal struc-7

ture in case of barred beach (Schoonees & Theron, 1993; Putrevu & Svendsen,8

1995; Haller & Svendsen, 2002; Feddersen, 2014). Tidal modulation of wave9

breaking and subsequent longshore current can be large, in particular at low10

tide terrace and barred beaches (Thornton & Guza, 1986; Feddersen, 2003),11

and intense current (> 0.5 m/s) have shown to present a substantial variability12

at low frequency scales (minutes), likely explained by shear instabilities (Allen13

et al., 1996; Oltman-Shay et al., 1989). At longer term, seasonal to inter-annual14

fluctuations are likely to be induced by wave conditions modulation due to cli-15

matic modes (Splinter et al., 2012; Almar et al., 2015). Suited documentation16

on its multi-scale spatio-temporal evolution has long been hampered by di�cul-17

ties in measuring such fluctuating structures by conventional in-situ instrument18

arrays, while the application of recent shore-based remote sensing methods has19

a large potential.20

Radars and video imagery have proved to be very e�cient tools in monitoring21

the nearshore and in particular the surface current (Holman & Haller, 2013), for22

a reasonable running cost and over typical areas of kilometers and footprint of23

meters. Radar-based Doppler e↵ect of backscattered signal from rough surface24

(Haller & Svendsen, 2014) is probably the most direct way in estimating surface25

currents. Video systems have been developed for over twenty years (Holman &26

Haller, 2013). From their incomparable low cost (< 1000 eur) and intuitive use,27

video stations are rapidly growing over world coasts, including developing coun-28
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tries, o↵ering the exciting potential of an unequaled documentation of coastal29

zones from local to regional scale (Mole et al., 2013). Video methods were ap-30

plied originally to estimate submerged and intertidal bathymetry (Lippmann31

& Holman, 1990; Stockdon & Holman, 2000) and time-varying location of the32

shoreline (Plant & Holman, 1997). Following the improvement of sensors resolu-33

tion, an increasing number of methods have been developed recently to quantify34

wave’s characteristics (Lippmann & Holman, 1991; De Vries et al., 2011; Stock-35

don & Holman, 2000; Almar et al., 2012) but only a few were dedicated to36

surface currents (Holman & Haller, 2013), though its key importance.37

In this paper, we are interested in estimating the longshore current from38

video, in a similar way to (Chickadel et al., 2003). This contrasts with the two-39

dimensional approach based on a Particle Image Velocimetry (PIV) method40

(Holland et al., 2001; Puloe et al., 2003) generally applied in laboratory experi-41

ments (Cox & Anderson, 2001; Kimmoun & Branger, 2007) because it requires42

high temporal and spatial resolutions. Our choice of a one-dimensional ap-43

proach rises from the availability of video spatio-temporal images (also called44

Hovmoller diagram or timestack) widely used to conserve high frequency infor-45

mation of cross-shore and longshore waves and current components, avoiding46

saving the whole high frequency video, which is particularly pertinent for long47

term monitoring. The second interest is because spatio-temporal format is per-48

fectly suited for angle separation methods based on the Radon transform (RT,49

(Radon, 1917)). The RT has recently been successfully applied to ocean waves,50

in particular for the detection of ship wave (Copeland et al., 1995) and more51

recently to nearshore wave dynamics (Yoo et al., 2011; Almar et al., 2014a)52

and swash (Yoo et al., 2009) but no attempt was conducted to estimate the53

longshore current, despite the high potential of use.54

In the next section our method is tested over synthetic data and field observa-55

tion from Grand Popo, Benin (Gulf of Guinea, West Africa). The Bight of Benin56

is subject to increasing erosion due to anthropic perturbation of the strong long-57

shore sediment transport (approximately 500.000 m3/yr, (Almar et al., 2015))58

exacerbated by the rapid development of deep water harbors in the main cities59

3
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from Accra to Lagos. Observing and quantifying this longshore drift is crucial60

here to improve coastal zone management. The RT algorithm is described in61

the first section and the synthetic and field datasets used in this paper are pre-62

sented in the second section. In third section, the method’s skills are tested63

against these synthetic and field data, an application is provided to illustrate64

the potential of the method and finally some concluding remarks are given.65

2. Radon transform and algorithm66

2.1. Radon transform67

The Radon transform (Ramm & Katsevich, 1996; Mallat, 2008; Feeman,68

2010) R(⇢, ✓) over a bi-dimensional field µ(x, y) can be defined as:69

R (⇢, ✓) =

‹
µ(x, y)�(x cos(✓) + y sin(✓)� ⇢)dxdy (1)

where � is the Dirac delta function, ✓ and ⇢ are respectively the angle and70

distance from origin of the integration line defined as ⇢ = x cos(✓) + y sin(✓).71

The origin is the center of the two-dimension field. The Radon transform R(⇢, ✓)72

is defined for all possible values of ✓ from [0 to 180�] and ⇢ from 0 to the diagonal73

length.74

[Figure 1 about here.]75

The Figure 1 shows the application of the RT to a disk and inclined lines.76

The projection of a disk in Figure 1.a has a constant density at all angles while77

the projection of the lines in Figure 1.d has two peaks, indicating their angles78

✓.79

[Figure 2 about here.]80

2.2. Orientation detection algorithm81

Figure 2 illustrates the application of the RT to a realistic video longshore82

timestack (120⇥120 pixels, with spatial and temporal resolution of dx = 0.2583

m/pix and dt = 0.5 s/pix respectively. Figure 2.a shows the raw image where84

4
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both wave crests and drifting foam can be seen. A high-pass radius filter (run-85

ning average) is applied in the polar space to isolate highly-textured small-scale86

foam streaks and remove signal longer than a threshold (here ⇢ < 20 points)87

associated to water background intensity value, remaining foam and long wave88

crests. Figure 2.b shows the resulting image used to determine the orientation89

of the current. Figure 2.c shows the RT of the image in Figure 2.a where prop-90

agating features are clearly visible as local maxima. RT resolution increases for91

oblique angles around 45�; it is recommended that the user adapt either spatial92

or temporal resolution in order not to squeeze signal at 0� or 90� (horizontal93

or vertical lines). The maximum of variability in the polar domain provides94

the dominant propagation angle ✓ (see previous section), which can be further95

converted into current velocity V = tan(✓)dx/dt, where dx and dt are spatial96

and temporal resolution, respectively. V stands for the dominant velocity of the97

features over the image. Noteworthy, a localized RT or local maxima detection98

can be applied to retrieve the velocity V (x, t) of individual features.99

3. Data100

3.1. Synthetic cases101

In order to perform a first validation of a current orientation detection algo-102

rithm, it is possible to simulate synthetic longshore timestacks (Chickadel et al.,103

2003). The approach proposed in this article is based on anisotropic Gaussian104

random fields.105

The Matlab code titled ”Generation of Random, Autocorrelated, Periodic106

Fields” by Cirpka, O.A., available online on http://m2matlabdb.ma.tum.de was107

used to create anisotropic Gaussian random fields. The method utilizes the108

fact that the Fourier transform of the covariance function is the power spectral109

density function of all realizations. Random autocorrelated fields are generated110

by creating random phase spectra meeting the conditions of real numbers in111

the physical domain. The realizations are then given by back-transformation of112

the power- and phase-spectrum into the physical domain. Since the method is113

5
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based on the discrete Fourier transformation, the generated fields are periodic114

rather than stationary.115

The synthetic cases generated for this paper have 100 ⇥ 100 pixels size,116

Gaussian laws of mean 0 and variance 10. Figures 6.a-c present one synthetic117

case created with our approach. Figure 6.a shows a first anisotropic Gaussian118

random field representing the foam pattern. The anisotropy can be compared to119

an ellipse with a major and minor axes, which are described here by correlation120

lengths of the signal in x and y, and an orientation ✓. If the ratio of correlation121

lengths decreases, the ellipse is more elongated and the anisotropy increases.122

The correlation lengths in Figure 6.a are 20 and 2 pixels in x and y, respectively.123

The orientation is ✓ = 55� A second anisotropic Gaussian random field is shown124

in Figure 6.b representing the incoming waves with correlation lengths in x and125

y of 50 and 2 pixels, respectively. The orientation of the wave field is ✓ = 0�.126

In Figure 6.c, they are combined to obtain a realistic test case.127

Based on this initial wave-current field, Figures 6.d-f illustrate the influence128

of the correlation length ratio on the anisotropic Gaussian current fields. The129

correlation length ratio are 0.05, 0.15 and 0.25. Foam anisotropy decreases when130

correlation length increases, making streaks angle less evident.131

To take into account for di↵erent levels of drifting streaks signature with132

waves and lighting conditions, an intensity threshold is applied. In Figures133

6.f-h, the level of kept information are described by the percentage of pixels134

not changed, 30%, 50% and 70%, respectively. The lower the percentage of135

kept information is, the weaker are the foam streaks and more di�cult their136

detection.137

3.2. Field observations138

The Bight of Benin(Figure 3) is a sandy open wave-dominated microtidal139

environment exposed to long period swells (ECMWF Erainterim reanalyse 1979-140

2013 annual deep water wave averages: Hs=1.36 m, Tp=9.4 s, Dir=S � SW ,141

see Dee (2011)) generated at high latitudes in the South Atlantic. The beach142

(Figures 2 and 3) presents an longshore-uniform low tide terrace and a steep143

6
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upper shoreface. An eastward littoral drift of 0.8 to 1.5 m3/yr has been reported144

in the literature (Anthony & Blivi, 1999; Blivi et al., 2014), driven by year-round145

oblique long swells (Almar et al., 2015).146

A field experiment was conducted at Grand Popo beach (6.2�N, 1.7�E, Fig-147

ure 3) from 10 to 18 March 2014 (Almar et al., 2014b). Inner shelf waves and148

currents were measured using an Acoustic Doppler Current Profiler (ADCP)149

moored in 10-m depth. Every day, various drifters releases were conducted in150

the surfzone around mid-tide to determine longshore current variability (Castelle151

et al., 2014). An Acoustic Doppler Velocimeter (ADV) was deployed in the152

swash zone during daylight hours. Hourly wind observations are provided by153

Cotonou airport, 80-km distant from Grand Popo and 500 m from the shore154

(i.e. sea breeze is observed). Figure 8 shows that during the experiment, tide155

varied from neap to spring tidal ranges, from 0.3 m to 1.2 m, respectively).156

Waves were energetic and relatively long (1.2 m < Hs < 1.6 m and Tp = 10-12157

s), with initial higher waves (up to 1.8 m), coming from south-west, generating158

consistent eastward longshore currents. Surf zone longshore current varied from159

0.4 m/s to 0.8 m/s, inner shelf current from 0.05 to 0.3 m/s, and swash current160

from 0 to 0.5 m/s.161

A long-term video camera VIVOTEK IP7361, 1600x1200 pixels (Figure 3.c)162

was deployed in February 2013 (Almar et al., 2014b) on a 15 m-high semaphore163

belonging to the navy of the Republic of Benin, 80-m distant from the shore164

(i.e. which is the approximate beach width). During the experiment, full 2-Hz165

videos were stored. Rectification of images from pixels into real world coor-166

dinates was accomplished by direct linear transformation using GPS ground167

control points (Holland et al., 2013) after a correction of the lens radial dis-168

tortion (Heikkila & Silven, 1997) (Figure 3.d). Although varying somewhat169

throughout the field of view, the pixel footprint was less than 0.1 and 0.05 m in170

the region of interest (surf-swash zones of the instrumented zone) for cross-shore171

and longshore direction, respectively (Figure 4). In the video data, the location172

of swash and surf zones were estimated from 10-min averaged cross-shore pixel173

intensity timestacks; the location of the surf being estimated as the maximum174

7
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of breaking-induced intensity and the swash as the transition between the beach175

and surf (see illustration in Figure 5). Inner shelf video point is chosen constant,176

close to the location of the ADCP. For the use of the RT, 100-m long longshore177

spatio-temporal images (Figure 4) are reinterpoled on a regular grid of 0.25 m178

and separated into subwindows of 5 m (see sensitivity analyze of the RT on res-179

olution and windows size in Section 4.2), for resulting sub-images of 20 pixels180

in space and 120 pixels in time and a regular spatial grid of 5 m both in the181

cross-shore and longshore directions.182

[Figure 3 about here.]183

[Figure 4 about here.]184

[Figure 5 about here.]185

[Figure 6 about here.]186

4. Results and discussion187

4.1. Tests on synthetic data188

A numerical study is performed to determine the sensitivity of the method’s189

skill on the drifting streaks anisotropy, intensity and orientation (i.e. velocity).190

Numerous synthetic realistic timestacks are generated to cover a wide range of191

conditions. Figure 7 presents the results of the sensitivity analysis. Figure 7.a192

shows that method’s skills increase with anisotropy (and decrease with correla-193

tion length ratio) of the Gaussian random current fields. Figure 7.b shows that194

the threshold value on the current field has not a substantial influence, which195

indicates that the method is able to detect weak drifting streaks, as encountered196

o↵shore of the surf zone. Results in Figure 7.c show that the orientation a↵ects197

the estimation, with a better accuracy at oblique angles close to 45�.198

[Figure 7 about here.]199

8



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4.2. Comparison with in-situ measurements200

Figures 8 and 9 show that video and in-situ currents are in good agreement,201

with a RMS error of 0.07 m/s (35%, R2 = 0.65, significant at the 95% level).202

RMS errors are 0.06 m/s (17%), 0.09 m/s (44%) and 0.07 m/s (29%) for the203

surf, swash and inner shelf zones, respectively. The RT method o↵ers better204

skills in the surf zone because of clear drifting foam (Figure 4) but is able to205

estimate the current at more challenging zones where optical signature is weaker:206

oscillating drift in the swash and turbidity streaks at the inner shelf. These207

results show the ability of the RT-based method in estimating the whole cross-208

shore profile of longshore surface current with a better spatial and temporal209

resolution than any in situ deployment, though accuracy is lower (O(30%)).210

Figure 10.a shows that the error is linked to the width of the RT peak width211

in the polar space (correlation coe�cient of 0.42, significant at 95% level), the212

uncertainty increasing with the peak width. This can be used as a proxy to213

discard estimates with large uncertainties encountered for afternoon sea breeze214

or sun glint. Figure 10.b shows that the choice of the spatial dimension has215

only a minor influence. In the contrary, the method accuracy increases with216

resolution. The resolution might explain part of the errors in the inner shelf,217

where the pixel footprint worsen to 1-2 m/pixel (Figure 4). Finally, even if218

the main source of discrepancy can be attributed to the video method itself219

and geometrical characteristics, in-situ data can cause some spreading in our220

results, though it is di�cult to quantify. Some studies reported accuracy of 0.01221

to 0.5 m/s (MacMahan et al., 2009) for instant drifter velocities, which is largely222

reduced by our hourly averaging. The longshore current is considered vertically223

uniform. However, some discrepancies may arise between video estimate at224

the surface and in-situ measurements in the water column: 35-cm and 1-m225

average from the surface for the ADCP and the drifters, respectively, and a few226

centimeters above the bed for the swash ADV.227

To illustrate the potential of our method, Figure 11 shows its application228

to the cross-shore structure of the longshore current. Video-derived profile in229

Figure 11.a shows a good agreement with in-situ measurements, peaking in the230

9
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surf zone and extending to the inner shelf. Swash, surf and inner shelf currents231

have di↵erent behavior. A multiple linear regression with the main forcing232

(longshore wave energy flux, tide and wind) was conducted over the experiment233

duration (hourly averaged, when video estimates are available). The relative234

contribution of each forcing was computed as the ratio of individual variability235

(variance) over the total reconstructed variance by the multiple liner regression.236

Figure 8 shows that the swash is dominantly influenced by tidal modulation237

(40%) of wave action rather than by o↵shore wave height (30%), certainly due238

to tidal modulation of surf zone saturation; surf zone is as expected largely239

dominated by wave action (65%) and wind dominates (20%) at the inner shelf.240

The decrease of the total reconstructed signal with the distance to the shore241

(from 90 % in the surf to 25 % on the shelf) denotes the di�culties in retrieving242

the surface current with decreasing pixel resolution and less drifting features,243

but also suggests a complex transitional zone behavior, influenced by both inner244

shelf and nearshore processes. This di↵erence of forcing for the three zones has245

considerable implications in terms of longshore sediment drift. The possibility246

of using the RT to estimate longshore current clearly provides new perspectives247

in quantifying the longshore sediment drift and its variability.248

[Figure 8 about here.]249

[Figure 9 about here.]250

[Figure 10 about here.]251

[Figure 11 about here.]252

5. Conclusions253

Our understanding of the nearshore longshore current has been hampered254

for long by the lack of adapted tool. This article presents a new approach to255

estimate longshore currents from video spatio-temporal fields using the Radon256

transform, recently applied to waves (Almar et al., 2014a). It is an alternative257

10
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to other approaches in one (Chickadel et al., 2003) and two dimensions (Holland258

et al., 2001). The Radon transform is tested and validated on synthetic and field259

data collected during the Grand Popo 2014 (Benin, West Africa) experiment.260

A sensitivity analyze using synthetic data shows that method’s skills improve261

with streaks anisotropy and for oblique orientation close to 45 � but stays fairly262

insensitive to the level of streaks signature. Comparison with field data shows263

a good agreement (O(30%)) in the swash, surf and inner shelf zones with RMS264

errors of 0.06 m/s (17%), 0.09 m/s (44%) and 0.07 m/s (29%), respectively.265

Error worsen when resolution decreases and Radon transform polar density peak266

enlarges. A first application of this method shows that during the experiment,267

swash, surf and inner shelf longshore currents were controlled preferentially268

by tide, waves and wind, respectively. This clearly illustrates the potential of269

such remote method in quantifying the longshore current, in particular when270

considering its spatio-temporal variability and the need to cover longer scales.271
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Figure 1: Radon transform (RT) practical use. RT of a disk and inclined lines in upper
and lower panels respectively, and from left to right: original fields, RT in polar space, and
resulting integrated angular density.
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Figure 2: Illustration on the separation of waves from drifting features in longshore spatio-
temporal images using the RT. a) mixed wave-current intensity timestack, b) wave-filtered
current timestack and c) Polar space visualization of timestack in b). Grand Popo spatio-
temporal longshore image from video, dx = 0.25m/pix, dt = 0.5s. Dashed line at ✓ = 106�

shows the variance maximum, or dominant velocity (V = 0.14m/s).

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 3: Grand Popo beach (6.2�N, 1.7�E), in the Bight of Benin, Gulf of Guinea West
Africa (a-b). c) Permanent video camera, on a 15-m high semaphore and d) rectified 15-min
averaged image from video system.
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Figure 4: Instant video image with superimposed black iso-contours of pixel footprint (m/pix)
in the longshore direction and in white location of 100-m long longshore spatio-temporal
transects, b) in the swash, c) surf and d) inner shelf zones. Drifting features at these 3 zones
are clearly visible.
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Figure 5: Cross-shore timestack derived from time-averaged images. Time-varying swash and
surfzone locations used in the RT method are superimposed. Inner shelf location is taken
constant.
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Figure 6: Examples of synthetic test cases, a-c): from left to right, anisotropic random Gaus-
sian currents and wave fields and a combination of both. Random Gaussian current field with
in d-f) from left to right, correlation ratio of 0.05, 0.15 and 0.25, and in g-i) from left to right,
thresholds on kept pixels of 30%, 50% and 70%.
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Figure 7: Sensitivity analyze on RT skills in retrieving current velocity from synthetic Gaussian
random current fields. RMSE error as a function of a) Correlation length ratio (isotropy),
b) threshold on kept information (in percent of pixels not changed) and c) orientation (or
velocity).
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Figure 8: Forcing and longshore current during Grand Popo 2014 experiment. a) Waves (Hs,
T , Dir) and b) tide measured by ADCP, c) observed wind at Cotonou airport d) Comparison
of co-localized video (continuous line) and in-situ current measurements in the surf zone (red),
swash (black) and inner shelf (blue), from drifters, ADV and ADCP, respectively.
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Figure 9: Video-derived versus in-situ current, in the surf zone (red), swash (black) and inner
shelf (blue), from drifters, ADCP and ADV, respectively.
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Figure 10: RT-method error as a function of a) RT-transform peakness (width of the peak in
polar space) and b) resolution (0.1 m/pixel (triangles), 0.2 m/pixel (circles) and 0.4 m/pixel
(squares)) and spatial dimension (pixels). In a) are shown estimates for the inner shelf (blue),
surf- (red) and swash-zones (black).
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Figure 11: a) Cross-shore profile of longshore current derived from the RT (continuous line),
ADV in the swash (square), drifters in the surf (circle) and ADCP (diamond), averaged when
both video and in-situ measurements were available. b) Percentage of variance of RT-derived
current timeseries at each location retrieved from waves and tide (ADCP) and wind (80-km
distant Cotonou airport - 500 m from coastline).
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