
A User-Centric Algorithmic Composition System

Aurélien Antoine and Eduardo Miranda

Interdisciplinary Centre for Computer Music Research
University of Plymouth,

Plymouth,
PL4 8AA, UK

aurelien.antoine@postgrad.plymouth.ac.uk

Abstract. Inspiration and compositional processes are eclectic and different for
each composer. For example, some draw inspiration from literature or nature to
inform their musical creativity while others use algorithms and computer pro-
grams. This paper introduces a computer-aided algorithmic composition system
implemented in OpenMusic. We start the paper with brief background infor-
mation about algorithmic composition and automatic composition systems, fol-
lowed by the description of our system. Then, we present some examples to il-
lustrate the abilities of the system. The paper concludes with final remarks.

Keywords. Algorithmic Composition, Computer-Aided Composition, Comput-
er Music, Generative Composition, Markov chain.

1 Introduction

Finding inspiration to compose a piece of music is different for each composer. Some
observe nature, use literature or even interpret scientific phenomena to expend their
musical creativity. Others prefer to use rules in their compositional processes. This
practice resulted in the creation of the algorithmic composition field.
The term algorithm originally referred to performing arithmetic [15]. Nowadays, an
algorithm can be defined as “a sequence of instructions carried out to perform a task
or to solve a problem” [12].
To the non-expert reader, it would be easy to assume that the field of algorithmic
composition is relatively new and resulted from the development of technological
devices during the last 60 years. However, generating music using algorithmic com-
position is a long-standing compositional method. This technique can be dated as far
as the ancient Greeks, where the Pythagoreans believed that numbers and mathemati-
cal properties could be used in the process of composing music, hence they believed
that the field of mathematics and music were linked [18]. It is also worth noting that
Pythagoreans identified an arithmetical relationship between harmonic intervals,
which was an important addition to music theory [3], [10]. Guido d’Arezzo, widely
considered the father of western music theory, applied rules for some of his composi-
tions [16]. A famous composer who also used algorithmic composition techniques is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/74392826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Mozart. In his famous piece Musikalisches Würfelspiel, he used a dice to sequence
musical fragments he composed beforehand [13].
Technological advances, and more specifically computers, have expanded the scope
of algorithmic composition. Research and techniques in algorithmic composition have
increased largely during the last 60 years. Composers are able to implement algo-
rithms in real-time and in live performance [12] whereas before the computer, com-
posers had to process everything by hand, which was time consuming. One of the first
musical pieces composed with computer-based algorithms was Hiller and Isaacson’s
Illiac Suite, written in 1956 [7]. One of the first computer systems for automatic com-
position was MUSICOMP (short for MUsic Simulator Interpreter for COmpositional
Procedures) developed by Baker and Hiller in the early 1960s [6]. Since, numerous
systems and approaches have been implemented for algorithmic composition [14],
such as Cope’s EMI [4] or CAMUS [12] by the second author, to name but two.
In this paper we introduce a computer-aided composition system using a Markov
chain algorithm. Sections onward describe and explain the different steps of the gen-
erative system and present some examples. Then, we discuss some further develop-
ments and the paper concludes with final remarks.

2 Description of the Computer-Aided Composition System

To implement our computer-aided composition system, we decided to use the object-
oriented visual programming software named OpenMusic1 [1]. This environment,
based on the programing language Common Lisp, is developed by the IRCAM2 Mu-
sical Representations research group. We also use various OpenMusic objects from
two external libraries, Morphologie [2] and SOAL [5].
We decided to work with MIDI files as data for our system due to it being a standard
communication and control protocol, which also contains musical information that are
easily retrievable. Furthermore, several OpenMusic objects are designed to work with
MIDI files, which make it simple to manipulate musical data and export the resulted
compositions. The system processes the information in three steps as detailed below.

Step 1: Information Retrieval
The first step is the extraction of musical characteristics from the monophonic MIDI
file input by the user. Such a step is necessary due to the algorithm not being random:
results are based on the original musical piece. The first feature the system identifies
is the MIDI note, which is then multiplied by 100 to obtain its respective midicent.
Next, the system retrieves the duration of each note and stores its millisecond value.
The other characteristics are extracted in each bar of the musical input. The melody
direction represents the motionless, descending or ascending movement of the melody

Fig. 1. First 4 bars of Bach’s Gavotte en rondeau, Partita for Violin No.3.

1 http://forumnet.ircam.fr/product/openmusic-en
2 Institut de Recherche et Coordination Acoustique/Musique

TABLE I: MUSICAL FEATURES OF BAR 1 AND BAR 2 OF EXAMPLE IN FIG. 1.
 1 2 3 4 5 6 7

Midicent 7100 8000 8000 7800 7600 7800 8100
Duration

(ms) 400 400 400 200 200 400 400

Melody
direction 0 +1 0 -1 -1 +1 +1

Melody
interval 0 9 0 2 2 2 3

stored as 0, -1 or +1, respectively. Note that the melody direction’s value for the first
note of each bar is 0, due to the absence of a previous note. The last musical features
analysed is the melody interval. Here, for each bar, the current MIDI note value is
compared with the previous one and it returns the distance between the two notes.
Again, the value of the first note of each bar will be 0, due to there being no previous
note. We also store the number of notes contained in each bar of the musical piece.
Table I shows an example of the musical features extracted by the system, using the
musical example in Fig. 1.

Step 2: Generative Process
The second step of the system is to generate musical sequences using the information
retrieved from the original file. We decided to implement an algorithm based on a
Markov chain [8]. Our rationale is the relative ease of implementation and its proven
ability to generate interesting results for music [19], [11], [14]. We chose to use a
second-order Markov chain for our approach. A first-order generates results close to
randomness while a second-order adds more constraints and gives results more simi-
lar to the original data. An increase of the order requires more data to train the algo-
rithm and it tends to limit the possibilities and results with sequences very similar to
the original. However, we still want a part of pseudo-randomness and chance in the
generative process of our system. Randomness is a compositional element often in-
corporated by practitioners in the field of algorithmic composition [13], [14]. We use
the lists of midicents (notes), durations and number of notes per bar as the data for our
second-order Markov chain algorithm. We apply the algorithm on the midicents and
then on the durations. We use the number of notes to define the length of the dataset
to generate. We also use an OpenMusic object to quantify the durations to get a
rhythm structure for the musical sequence.

Step 3: Transformative Phase
We decided to not only use the sequences generated by the Markov chain, but also to
give the user the ability to transform these musical sequences. The first transformation
available is a pitch inversion. The maximum midicent value being 12700, to make a
pitch inversion we need to subtract the current midicent value to 12700. The next
transformation reverses the pitches in each bar. For instance, a list of pitches (A B C
A) is transformed to (A C B A).
The third transformation combines data from the melody interval and melody direc-
tion and is calculated as follows:

MI ×MD×100()+Midicent (1)

where MI is the melody interval value and MD is the melody direction value. For
example, if the list of melody interval values is (0 2 4 1), the list of melody direction
values is (0 -1 1 -1) and the list of midicents is (7000 7300 7100 7900) the result of
the transformation is (7000 7100 7500 7800). It is worth noting that the aforemen-
tioned transformations are bare resemblance to serial music techniques [17].
The last transformation integrates a random walk algorithm [9]. We constrained the
algorithm to generate values comprised between the lowest and the highest midicent
values contained in the musical sequence and not completely random values. We also
use melody interval values to define the maximum step of the random walk.
All these transformations can be applied to the results generated by the second-order
Markov chain algorithm.

User Control
We decided to give the user the ability to select which transformation they want to
apply on the musical sequences generated. At the current stage of development, the
user can input their selection using a slider object. The range of the slider indicates
how different from the original the user wants the results to be. We simply use a ten-
point scale with 0 representing small amount of difference, which is the result of the
Markov chain generation, and 9 representing a large amount of difference. For the
highest index, we apply all the transformations available to the result of the generative
algorithm.
Furthermore, the user has the ability to edit the musical sequence directly in the pro-
gram, before they export the result. This is feasible using the OpenMusic voice object
to display the generated sequence. The user can also listen to the musical sequence,
using a MIDI player integrated in OpenMusic.

Export Results
Once the user found an interesting result, it is possible to export it in order to use it in
notation software or to play it using an appropriate device or instrument. We use two
built-in OpenMusic objects to enable the exportation in two different file types. The
first option is to export the musical sequence as a MusicXML file. This format encap-
sulates musical information that can then be imported in music notation software to
arrange the musical score. The second option available is the exportation as a MIDI
file. This is a practical format that gives the user the ability to play the sequence using
MIDI instruments, to import the file in DAWs (Digital Audio Workstation) or also in
music notation software for further edits.

Fig. 2. First 6 bars of musical sequence generated using Fig. 1 and user index 0.

Fig. 3. First 3 bars of musical sequence generated using Fig. 1 and user index 4.

Fig. 4. First 4 bars of musical sequence generated using Fig. 1 and user index 9.

3 System Testing and Results

In this section, we present some examples to illustrate the operation of our computer-
aided composition system. We used the MIDI file of Bach’s musical piece Gavotte en
rondeau, Partita for Violin No. 3 as musical input for the system. Fig. 1 shows its first
four bars. We generated musical sequences for all user index possibilities. Due to
space constraints, we only present three examples. We decided to take results for user
index 0, 4 and 9. We did not edit the results and we imported them in music notation
software to generate the musical scores we include in this paper.
Fig. 2 shows the first six bars of a musical sequence generated with an index 0, which
represents a desire of a little amount of difference from the original source. Hence, the
system applies the Markov chain algorithm only on the midicents and keeps the origi-
nal rhythm structure. No further transformation is applied. Fig. 3 represents a genera-
tion using index 4. The system generates pitches and rhythm using the Markov chain
algorithm. Then, the program transforms the musical sequence using the combination
of the melody direction and melody interval values. Finally, Fig. 4 shows the first four
bars of a musical sequence generated using index 9. Here, the system generates pitch-
es and rhythm using Markov chain. Then, it applies all the transformations, namely
pitch inversion, reverse pitch, random walk on pitch and the combination of melody
direction and melody interval data.

4 Final Remarks

In this paper, we presented a computer-aided composition system developed at the
Interdisciplinary Centre for Computer Music Research (ICCMR). This system, de-
signed to expand composers’ musical creativity, uses an original MIDI file input by
the user. After retrieving various musical information, as described in section 2, the
system generates musical sequences using a second-order Markov chain algorithm.
To go further than only generating compositions from a Markov chain, we developed
a number of methods to transform the musical sequences. We decided to give the user
the ability to choose the transformations, instead of applying them arbitrarily. This
system has been used to aid composing symphonic pieces, notably Symphony of
Minds Listening and Shockwaves composed by the second author.
At the current stage of development, we use a slider to determine the user index. This

could be an area to explore for further developments. A possibility could be to use an
EEG (electroencephalogram) device or other types of sensors to determine the user
index. Another area of development could be the implementation of more transfor-
mations, maybe involving sensors in their process, to expand the musical abilities of
this computer-aided algorithmic composition system.

References

[1] G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue. "Computer-
assisted composition at IRCAM: From PatchWork to OpenMusic." Computer
Music Journal, Vol 23, no. 3, pp. 59-72, 1999.

[2] J. Baboni-Schilingi, and F. Voisin. Morphologie: Fonctions d’Analyse, de
Reconaissance, de Classification et de Reconsituition de Séquences Symboliques
et Numeriques. Software documentation. IRCAM, Paris, 1999.

[3] D. Cope. Computers and Musical Styles. AR Editions, 1991.
[4] D. Cope. Experiments in musical intelligence. AR editions, 1996.
[5] D. Guigue. SOAL–Sonic Object Analysis Library–OpenMusic Tools for analyzing

musical objects structure. Software documentation. IRCAM, Paris, 2010.
[6] L. Hiller, and R. Baker. "Computer cantata: A study in compositional method."

Perspectives of New Music, pp. 62-90,1964.
[7] L. Hiller, and L. Isaacson. Experimental Music: Composition with an Electronic

Computer. McGraw-Hill, 1959.
[8] R. A. Howard. Dynamic Probabilistic Systems (Volume 1: Markov Models). John

Wiley And Sons, 1971.
[9] B. D. Hughes. Random Walks and Random Environments. Oxford University

Press, 1996.
[10] J. James. The Music of the Spheres: Music, Science and the Natural Order of the

Universe. Springer Science & Business Media, 1995
[11] K. McAlpine, E. R. Miranda, and S. Hoggar, "Making music with algorithms: A

case-study system." Computer Music Journal, Vol 23, no. 2, pp. 19-30, 1999.
[12] E. R. Miranda. Composing Music with Computers. Focal Press, 2001.
[13] W. A. Mozart, and H. Norden. Musikalisches Würfelspiel. B. Schott’s Soehne,

1957.
[14] C. Roads. The Computer Music Tutorial. MIT Press, 1996.
[15] K. H. Rosen. Elementary Number Theory and its Applications. Reading Mass,

1988.
[16] O. Strunk. Source Readings in Music History. Vail-Ballou Press, 1950.
[17] A. Whittall. Serialism. Cambridge University Press, 2008.
[18] S. Wollenberg. "Music and mathematics: An overview." In Music and

Mathematics. From Pythagoras to Fractals, by R. F. John Fauvel and R. Wilson,
Oxford University Press, 2003.

[19] I. Xenakis. Formalized Music. Indiana University Press, 1971.

