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ABSTRACT 
 
Humpback whales (Megaptera Novaengliae) present one 
of the most complex displays of cultural transmission 
amongst non-humans. During breeding seasons, male 
humpback whales create long, hierarchical songs, which 
are shared amongst a population. Every male in the popu-
lation conforms to the same song in a population. During 
the breeding season these songs slowly change and the 
song at the end of the breeding season is significantly 
different from the song heard at the start of the breeding 
season. The song of a population can also be replaced, if 
a new song from a different population is introduced. 
This is known as song revolution. Our research focuses 
on building computational multi agent models, which 
seek to recreate these phenomena observed in the wild. 
Our research relies on methods inspired by computational 
multi agent models for the evolution of music. This inter-
disciplinary approach has allowed us to adapt our model 
so that it may be used not only as a scientific tool, but 
also a creative tool for algorithmic composition. This 
paper discusses the model in detail, and then demon-
strates how it may be adapted for use as an algorithmic 
composition tool.   

1. INTRODUCTION 
Multi agent modelling is a powerful tool where autono-
mous artificial intelligences (agents), interact with each 
other and their environment. As they interact, they can 
produce emergent behaviour, and create phenomena that 
are not built directly into the system. This has made it a 
powerful tool in scientific research where it has been 
used to study the emergence of grammar in linguistics 
[1], genetic diversity in humans [2], and flocking behav-
iour in birds and fish [3]. 

Due to the emergent phenomena produced by multi 
agent models, they have found use in several different 
areas of sound and music computing. From a musicology 
perspective, research shows that they may be used to ex-
plain a variety of phenomena, from songs emerging from 
sexual selection pressure [4] to  the evolution of intona-
tion systems [5]. Aside from musicological research, 
multi agent modelling is used as a tool for algorithmic 
composition [6]. In this paper, we seek to demonstrate 
that the gap between multi agent modelling for scientific 
purposes and for creative purposes is often quite narrow.  

The model presented here was originally designed to 
investigate the mechanisms underlying cultural transmis-
sion in humpback whales. We show it is possible to adapt 
this model and use it as a tool for algorithmic composi-
tion. First, an overview of the structure of humpback 
whale song is introduced, followed by a description of 
our model and its aims. Then, an in depth analysis of the 
model is presented, outside of the context of algorithmic 
composition. Finally, we describe the method used to 
adapt the model as a tool for composition and give an 
example of user interaction with the model.  

Copyright: © 2016 First author et al. This is an open-access article dis- 
tributed under the terms of the Creative Commons Attribution License 3.0 
Unported, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited. 
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2. HUMPBACK WHALE SONG 
Before investigating the model in detail, it is necessary to 
first describe the natural phenomena that the model seeks 
to recreate. Humpback whales are a species of baleen 
(Mysticeti) whale. During the summer months (feeding 
season), humpback whales are usually found in polar 
Regions where the plankton that the whales feed on is 
abundant. During the winter months (breeding season), 
they migrate to warmer, tropical waters. Here they mate 
and give birth to calves.  During migration and on the 
breeding grounds, male humpbacks produce long, hierar-
chical vocal sequences termed ‘songs’ [7]. Males produce 
individual sounds called units, which are combined to 
create phrases. Phrases are then combined to create 
themes and themes are stringed together to create songs. 
Songs are then repeated to create song sessions. During 
the mating season, all males conform to the same song. 
The song gradually changes throughout the season. This 
slow change is known as ‘song evolution’ [8]. It is also 
possible for the song of a population to be replaced by the 
song of another population. This is known as song revo-
lution [9]. This was first observed when the song of the 
western Australian population replaced the song of the 
eastern Australian population. Further research into the 
population east of Australia revealed that this revolution-
ary behaviour was not an isolated incident, as the song of 
the eastern Australian population took over the song of 
the New Caledonia population. This song continued to 
move eastward until it eventually took over the song of 
the French Polynesian population [10]. 
        Understanding these phenomena is vital, as it is 
what we seek to recreate using our model. Specifically, 
our goals are to create a spatially explicit multi agent 
models, where populations evolve shared repertoires, but 
also present the possibility for new songs to be intro-
duced and replace the existing songs of a population.  
 

 
 

3. THE MODEL 
The model is cyclic in nature, and is segmented into three 
sequential sections; movement rules, song production 
rules, and song learning rules. These rules describe the 
behavior of a single agent and are carried out for every 
agent. Our model is created in Python using the SciPy 
package [11]. This model was inspired by [12] and ex-
tends on research done in [13].   

 
3.1 Movement Rules 
 
When our model is initialized, agents are assigned ran-
dom Cartesian co-ordinates within a certain area. This 
area is known as the feeding grounds. While on the feed-
ing grounds they carry out random walks to navigate the 
plane. After a certain number of iterations specified by 
the user, the agents will migrate to the ‘breeding 
grounds’, the location of which are also specified by the 
user. The movement behaviour to and on the feeding 
grounds is controlled by a variety of rules inspired by 
flocking algorithms. To explain these rules, we examine 
them from the perspective of a single agent. Our focal 
agent has two areas around it, a Zone of Repulsion (ZOR) 
and a Zone of Attraction (ZOA), as shown in Figure 2.  

 
Figure 2: The two different zones around an agent. 
When other agents enter these zones, certain move-
ment rules are carried out.  

 
 

 

! 14!

Introduction(to(Humpback(Whale(Song(
(
In!the!paper!Songs(of(the(Humpback(Whale((1971),!Roger!Payne!and!Scott!McVay!
presented!their!analysis!of!Humpback!whale!song.!In!this!paper,!Payne!and!
McVay!analysed!recordings!of!Humpback!whale!song!using!spectrographs.!!
!

!
Figure(5:(This(figure(shows(part(of(the(original(analysis(carried(out(by(Payne(and(Mcvay((1971).(It(
shows(a(spectrogram(showing(the(frequency(content(of(each(individual(sound(on(the(YUaxis,(and(
time(on(the(XUaxis.(The(enlarged(circled(area(shows(the(content(of(units(not(easily(distinguished(by(a(
human(listener.(This(figure(also(shows(the(hierarchy(of(the(song.(

!
By!annotating!these!spectrographs,!they!were!able!to!show!that!Humpback!
whale!song!has!a!hierarchal!structure,!as!seen!in!Fig.!1.!In!short,!the!structure!of!
Humpback!whale!song!is!as!follows;!Individual!sounds!are!classified!as!units,!
units!are!combined!to!create!phrases,!phrases!are!combined!to!create!themes,!
themes!are!combined!to!create!songs!and!songs!are!repeated!to!create!song!
sessions.!It!should!be!noted!that!individual!units!can!also!be!made!of!other!
components!that!are!not!readily!identified!by!human!listeners,!as!seen!in!the!
enlarged!circle!in!Fig.!1.!They!also!established!that!songs!would!last!for!several!
hours.!!
!
Payne!and!McVay!knew!they!had!stumbled!onto!something!truly!amazing.!They!
did!however!acknowledge!that!the!function!of!the!song!was!unknown.!Also,!they!
were!unable!to!determine!the!sexes.!The!latter!question!has!been!addressed!and!
only!male!Humpbacks!have!been!observed!singing!songs.!The!former!is!still!a!
matter!of!ongoing!debate.!However,!most!researchers!believe!that!the!song!
serves!a!sexual!function,!used!either!to!attract!mates!or!intimidate!rivals!(this!is!
also!a!matter!of!debate!amongst!researchers).!This!argument!is!supported!by!the!
fact!that!only!male!humpbacks!have!been!observed!singing!and!that!the!song!is!
mainly!heard!during!the!migration!and!mating!season!of!the!whales.!!(Reference!
here)!
!
After!the!publication!of!Payne!and!McVays!1971!paper!in!Science,!whale!
vocalisation!and!communication!research!enjoyed!one!of!its!most!prosperous!
periods.!Much!of!this!research!was!collected!and!published!in!a!1983!collection!
of!writings!entitled!The(Communication(and(Behaviour(of(Whales.!The!work!of!
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Fig. 1. Diagrammatic sample of whale spectrograms (also called sonagrams) indicating terminology used in describing songs. Fre-
quency is given on the vertical axis, time on the horizontal axis. The circled areas are spectrograms that have been enlarged to show
the substructure of sounds which, unless slowed down, are not readily detected by the human ear.

Harbour. Watlington's hydrophone-
preamplifier combination was flat in re-
sponse (±-3 decibels) from 500 hertz
to 10 kilohertz, with an amplitude loss
of 6 decibels per octave below 500
hertz. A -cable from this hydrophone
extended to Watlington's office, where
the sounds were taped by a Magne-
corder, type PT 6-AH,' operating at
19.1 centimeters per second. Thus,
when whales uttered sounds within
range of the hydrophone, Watlington
was able to make recordings free of
the usual shipboard and cable noises,
with the assurance that the whales were
not being disturbed by the presence of
an observer.

Evidence that Sounds Are
Correctly Ascribed to Humpbacks

Schevill and Watkins (9), apparent-
ly referring to some of the same sounds
from the same Watlington tapes that
we have described here, have already
pointed out that the sounds come from
humpback whales. Additional evidence
that this is true comes from observa-
tions by Watlington. By using binoc-
ulars, he was able,, on several occa-
s-ions, to observe whales blowing in the
vicinity of the hydrophones dur'ing a
recording of "whale sounds." On rare
occasions, Watlington was able to veri-
fy that these whales were humpbacks
by noting the prominent white flippers
when the whales breached. However,
such observations did not accompany

586

all of the recordings analyzed in detail
here.

In addition to the tapes provided by
Watlington, we have 'taken into con-
sideration several hundred hours of
recordings made by Payne, who has
studied humpback sounds and behavior
off Bermuda during the past five
springs (1967 to 1971). Payne and
Payne (10) have reviewed many of
these tapes by noting the form of the
sounds -in a simple shorthand and, in
some cases, by spectrographic analysis.
All of our general conclusions about
songs are based on considerations of
both the Watlington and Payne record-
ings, but all spectrographic analyses
shown here are from the Watlington
recordings.
The evidence that Payne's recordings

come 'from humpbacks is as follows:
(i) when the sounds (such as those
to be analyzed here) that were heard

were loud and whales were visible in
the area, the whales proved in each in-
stance to be humpbacks; (ii) interposi-
tion of a motorboat's wake between
identifiable, nearby humpbacks and a
hydrophone reduced the intensity of the
sounds being recorded (the bubbles in
the wake presumably acted as a partial
screen); (iii) unfavorable orientation
of a hydrophone array in relation to a
visible group of humpbacks reduced
the intensity of the sounds recorded
(one occasion); (iv) pauses in an ex-
ceptionally loud series of sounds were-
correlated with blowing of a nearby
humpback at the surface (several oc-
casions) and with a breaching hump-
back (one occasion); and (v) while
drifting in a boat on a very calm sea,
Payne went near a pair of clearly
identifiable humpbacks and heard one
whale emit a complete sequence of
sounds, of the sort described here,

Fig. 2. Here, as well as in Figs. 3 to 5, the right side shows a machine spectrographic
analysis of two complete songs (labeled 1 and 2). Frequency and time scales are indi-
cated. The left side is a tracing of the spectrograms on the right, emphasizing loud
notes of the song and leaving out noise, echoes, distant whales, and all harmonics (ex-
cept in the case of pulsive sounds, which depend on their harmonic structure for the
effect they have on the human ear). The gap between spectrographs of songs 1 and 2
is designed to make the individual songs clear and is not indicative of any gap in time.
This figure shows two songs of whale I, recorded 28 April 1964 by F. Watlington of
the Palisades Sofar Station, St. David's, Bermuda. Note dynamite blasts occurring in
pairs every 10 minutes. These two songs are part of a series of seven from this whale,
and by comparison with earlier songs, lacking the dynamite blasts, we find that the
blasts do not have any detectable effect on the whale's rendition of its song. We
have other examples of whales singing, without change in the form of the song, right
through loud underwater sounds generated by other research activities in the area. The
dashed line at about 500 hertz represents propeller noise from a passing freighter.
Echoes are prominent, making louder sounds appear three times on the original spec-
trograms.

SCIENCE, VOL. 173

Figure 1: The structure of humpback whale song. Taken from [7]. Time on the X-axis and frequency on Y-axis. 
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The ZOR rule is enacted whenever an agent has other 
agents within its ZOR. When this happens, an agent cal-
culates a new trajectory based on the position of the other 
agents within its ZOR. This is demonstrated in Figure 3. 
This rule is carried out each iteration of the model.  
 

 
Figure 3: The ZOR rule. Agent x has other agents within 
its Zone of Repulsion. It calculates a new trajectory in 
order to avoid these agents.  

 
The ZOA rule is enacted only when an agent is 

within a certain distance of the breeding grounds. This 
rule causes an agent to approach whatever agent within 
its ZOA that has the song most similar to its own. This is 
achieved using Levenshtein Distance. This algorithm 
calculates the number of insertions, substitutions and 
deletions required to transform one string of symbols into 
another string of symbols. Using these values, we calcu-
late a ratio of similarity between two sequences of sym-
bols produced by our agents. This rule is inspired by in-
teractions between male humpback whales on the breed-
ing ground [14]. 

 

 
Figure 4: The attraction rule. The listening agent 
moves towards the singer with most similar song to 
its own.  

 
3.2 Song Production Rules 
 
Agents in the model are equipped with a first order transi-
tion matrix that is used to generate new songs. In our 
model, songs are represented using integers. Each integer 
corresponds with a unit that is associated with humpback 
whale song. Songs are generated from this transition ma-
trix using equation 1. 

 
𝑥 =    𝑐 ≤ 𝑈                                                               (1) 

  
Where x is the output unit, c is the cumulative summation 
of the probability vector (the row of our transition matrix 
we are currently sampling from), and U is a uniformly 
distributed random number between 0 and 1. We use this 
algorithm in a recursive function to generate songs of 
varying length.  
 
3.3 Song Learning Rules 
 
In our initial model, song learning is affected only by the 
distance between agents. At every model run, an agent 
will calculate its distance from every other agent in popu-
lation using the Cartesian distance formula, in equation 2. 
 

𝑑 =    (𝑥! − 𝑥!)! + (𝑦! − 𝑦!)!              (2)     
  
Where 𝑥! and 𝑦! are our focal agents Cartesian coordi-
nates and 𝑥! and 𝑦! are the co-ordinates of the agent we 
wish to calculate the distance for, and d is distance. We 
use d to calculate what we call the intensity factor, which 
represents the energy decay in the water. It is calculated 
in equation 3.  
 

𝐼 =    !
!!

                                   (3) 
  
Where I represents the intensity factor, and d is the dis-
tance between the two agents we are calculating I for. We 
can now go about the song learning stage. First, an agent 
estimates a transition matrix for an input sequence. This 
input sequence is simply the song produced by another 
agent in our population. To update the listening agents 
new transition matrix, we carry out the following matrix 
weighted averaging function in equation 4.  
 

𝑇! = 𝐴 ∗ 1 − 𝐼 + 𝐵 ∗ 𝐼               (4)           
 
Where 𝑇! is the updated transition matrix for the listening 
agent, A is the original transition matrix for the listening 
agent, B is the estimated transition matrix for the se-
quence produced by a singing agent, and I is the intensity 
factor.  

4. MODEL RESULTS 
For a quick qualitative analysis, we plot our agent’s Car-
tesian tracks and the distance between the songs of each 
agent using a Levenshtein distance dendrogram. This is 
shown in Figure 5 and Figure 6. This shows two possible 
scenarios that may emerge after running the model. In 
figure 5, we can see that the agents have clustered and 
have begun moving together throughout the breeding 
grounds. Due to the distance bias, every agent has con-
verged on the same song. Figure 6 presents a similar situ-
ation, except the agents have formed into three distinct 
clusters, with three different songs emerging. This echoes 
results observed in the wild, where distinct populations 
converge on distinct songs.  
 

 

Figure 2: An example of the repulsion rule. Agent X calculates a new trajectory in order to avoid agents within its ZOR  

2.2 Song Production 
Each agent is equipped with a list of symbols (simple integers) that represents the 

hypothetical individual units of their songs. This list of units is generated from a first order 

Markov model, which is represented as a transition matrix ( 

Equation 6)  

Equation 6 

! =
0 0.5 0.5
0 1 0
0 0 1

 

A song is produced sampling from each row of the transition matrix G using Equation 7. 

Equation 7 

! = ! ! ≤ ! 

Where x is the output unit, c is the cumulative summation of the probability vector, and U 

is a uniformly distributed random number between 0 and 1. 

2.3 Song Learning 
In the current model design, distance is the main factor that influences song learning in 

the agents. During each model iteration an agent will calculate its distance from all other 

agents using Equation 8.  

Equation 8 

!"#$%&'( = ! (!! − !!)! + (!! − !!)! 

Where !! and !! are agent X coordinates and !! and !! are the co-ordinates of another 

agent. Based on the range, the intensity factor is calculated (Equation 9). This parameter 

represents the intensity at which agent X will ‘hear’ the song from another agent (assuming 

spherical spreading), and therefore the influence that the latter will have on the former’s 

grammar G. The intensity factor represents the sound energy decay in the water (Figure 3). 

Equation 9 
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Figure 5: An example of all agents moving to-
gether and converging on the same song. The dia-
gram on the left are the Cartesian co-ordinates of 
the agents over the run of the model. The diagram 
on the left is a dendrogram showing the level of 
dissimilarity between the songs of every agent.  

 
 

 
Figure 6: An example of the agents forming sepa-
rate groups, each with their own song, as can be 
seen by the dendrogram.  

 
While this result is interesting, it is necessary to 

understand how varying the parameters in the model will 
affect the songs produced by the population. To achieve 
this, we created a series of 500 experiments, in which we 
used linear descent to vary the size of the ZOR, ZOA, 
breeding grounds, and feeding grounds. We then carry 
out a pairwise subtraction of every agent’s transition ma-
trix from each other. This allows us to see whether the 
agents have converged on the same transition matrix or if 
there is a large amount of variety in them. These results 
were then stored in a 100x5 matrix. Each column corre-
sponded with the size of the ZOA, and every 25 rows 
corresponded with an increase in the ZOR. Within those 
25 rows and column is every combination of feeding and 
breeding ground size. We then took the mode of every 
group of these cells. This resulted in the matrix seen in 
Figure 7. 

 
 

 

 
Figure 7: This graph shows how varying the pa-
rameters of the ZOR and the ZOA affects the be-
haviour of the model. The darker colours corre-
spond to model runs that converged on similar 
songs. The bright colours represent experiments 
where the population had dis-similar songs.  

 
 

5. ADAPTING THE MODEL 
 
As it stands, the model does not capture the full complex-
ity observed in humpback whale song. While agents in 
our model do converge on a shared song in certain situa-
tions, it does not present any change once every agent in 
the population has learned the song. Furthermore, first 
order transition matrices are not capable of capturing the 
hierarchical structure of humpback whale song. Despite 
this, our model is at a stage where it can be adapted for 
algorithmic composition. In this section, we describe the 
technical aspects of adapting our model. Following this, 
we move on to discuss adding a novelty method inspired 
by computational musicology.  
 
5.1 Technical Considerations 
 
Open Sound Control (OSC) [15] is a protocol used to 
transmit data between different audio software programs. 
This allows for the quick adaptation of our model to be 
used as a tool for composition. Using OSC, we can send 
data to and from our model in order to generate new mu-
sical sequences in real time. This is achieved using the 
Max4Live API in Ableton Live[16,17], so that the com-
poser may introduce new songs sequences to the popula-
tion, and play them back in order to generate new musical 
variations, based on this input and other parameter set-
tings. This is illustrated in Figure 8.   
  

! 39!

!
Figure(17:(This(figure(shows(two(different(examples(of(the(scenario(1(group(sorting.(The(first(two(
figures(on(the(top(row(show(the(movement(of(the(whales.(From(the(Levenshtein(distance(tree((third(
figure(on(the(top(row),(we(can(see(that(the(agents(developed(an(identical(song.(In(the(bottom(three(
figures(however,(we(can(see(that(the(agents(have(sorted(themselves(into(three(distinct(groups(with(
three(different(songs.((

As!we!can!see!from!figure!17,!the!spatial!sorting!can!have!a!dramatic!effect!not!
only!on!the!different!groups!of!agents,!but!also!on!the!songs!that!they!have.!Fig.!
18!shows!these!agents!grammars!in!more!detail,!and!it’s!easy!to!see!that!they!
have!converged!on!a!very!simplistic,!unrealistic!grammar.!!
!

!
Figure(18:(The(grammar(of(our(twenty(agents(from(the(top(scenario.(This(gives(us(a(very(short(
simple(song(of(the(form(of(([1,8,10,10](
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Figure 8: Signal flow from Ableton to the model. 

 
In order to interact with the model, the user uses the 
ComposerIn device with a MIDI keyboard to create a 
sequence of notes and rhythms to be learned by a selected 
agent in the model. These notes are appended to a list in 
Max/MSP, where they are then formatted so that they can 
be used as an input to the model. The sequence is then 
sent via OSC to the selected agent, who estimates a first 
order transition matrix so that it may create variations on 
this theme.  This interaction flow is demonstrated in fig-
ure 9.  
 

 
Figure 9: This shows how a composer interacts with 
the model.  

 
At each iteration of our model, the song produced by 
each agent is sent back to Ableton Live using the 
modelOut device, where they are transposed in order for 
them to be formatted into MIDI notes. These are then 
stored in a message box and sequenced using a metro 
object. This allows the MIDI notes to be sent to any Live 
or Max4Live device that the composer wishes to use.  
 

5.2 The Need for Novelty 
 
Since the model relies on the distance between agents to 
influence the transmission of the song, it is possible for 
the song input by the composer to be overpowered by the 
other songs in the population of agents. This leads us to 
add a new dimension to the model, which will allow the 
user to interact with the model and actually observe the 
impact of their input. To achieve this, the model is ex-
tended to have a new bias added; novelty. Chosen due to 
theories that is a factor in humpback song evolution. [9] 

Originally, we took inspiration from the work of 
Todd, [18] where novelty is determined by the built in 
expectations of the agents. This was used to develop in 
equation 5.  
 

α =    !"#  (! ! ! )!!(!(!),!(!!!))
!

!
!                (5)  

 
Given a sequence, S, which is indexed using the value n, 
an agent calculates novelty, α, based on its transition 
matrix, T. N, the number of elements in the sequence S, is 
used as a weighting. This is defined by equation 5.  The 
square brackets indicate that an absolute value should be 
taken for the top term of the equation. This novelty value, 
α, is used to update our learning algorithm, as shown in 
equation 6.  
 

𝑇! = 𝐴 ∗ (1 − 𝐼 ∗ α) + (𝐵 ∗ 𝐼 ∗ α )           (6) 
 

 The novelty bias has a significant impact on what songs 
our agents choose to learn from. Low novelty will result 
in a song having no impact on the transition matrix of a 
listening agent, while a high novelty value will lead to 
that songs estimated transition matrix almost completely 
taking over the listening agent’s transition matrix (Figure 
10).  
 
 
 
 

 Figure 10: How the novelty algorithm affects a listener agent's transition matrix. Singer 1 and 2 are 
both equidistant from the listener agent. The listener learns more of singers 2 song since it is more novel 
in comparison to its own transition matrix.  
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The results returned from this method are interesting, but 
we found that the transition matrices in a population 
would converge to uniform distribution. Rather than our 
novelty value being weighted by the number of elements 
in a sequence, we have our novelty value weighted by the 
agent that has the highest novelty value.  
 
nov[m] =    max  (𝑇 𝑆(𝑛 ) − 𝑇(𝑆(𝑛), 𝑆(𝑛 + 1))!

!   (7)  
    

α = !"# !
!"# !!"                                                                   (8) 

 
We also introduce a learning rate with this algorithm, 
which is scaled between 0 and 1. This updates our agents 
learning algorithm to the following, seen in equation 13.  
 
𝑇! = 𝐴 ∗ (1 − 𝐼 ∗ (α ∗ LR) + (𝐵 ∗ (𝐼 ∗ (α ∗ LR))     (9)  

 
 
The dynamic weighting algorithm produces an oscillating 
effect on the probability of transitioning from one unit to 
another, as demonstrated in Figure 11. This shows the 
probability of an agent moving from unit A to unit B (the 
red line), and the probability of moving from unit A to 
unit C (the blue line). At the start of the model, the prob-
ability of going from unit A to B is 100%. Another agent 
in the population is trained with a probability of transfer-
ring from unit A to C 100% of the time. As our agents 
meet on the breeding grounds they hear the song, they 
hear this new song and deem it to be more novel than 
their own, thus applying more emphasis to learning it.  
 

 
Figure 11: The figure demonstrates how the dynamic 
novelty algorithm creates an oscillation in the proba-
bility of transitioning from one unit to the other. 
(Transitioning from unit 1 to 2 in blue, transitioning 
from unit 1 to 3 in red). 

 
6. MUSICAL DEMO 

 
In order to test the model, we approached it from a com-
positional point of view. First, four different musical 
themes were chosen to form the structure of the composi-
tion. These themes were chosen specifically because they 
have a high novelty value when compared to each other. 

They are also easily recognisable rudimentary musical 
features. They consist of an ascending C major arpeggio 
(Theme A), a descending chromatic scale (Theme B), an 
ascending D minor arpeggio (Theme C), and a repeating 
G# (Theme D). These themes can be seen in figure 12. At 
the start of our composition, every agent’s transition ma-
trix is trained by theme A. We then presented all subse-
quent themes to only a single agent (agent 2). We then 
recorded the songs being produced by agent 1 via MIDI.  

 
Figure 12: The four themes used in the composition. 

The resulting composition is interesting, as the oscillatory 
nature described in section 5.2 of this document emerged 
not only for simple transitions as was originally observed, 
but also for the structured themes presented to our popu-
lation. Whenever a new theme was introduced, the agent 
would move between the two themes, before the entire 
population would settle on some form of hybrid theme. 
We called this theme oscillation (figure 14). The corre-
sponding hybrid theme is shown in figure 13.  This is 
demonstrated at the point where each transition is intro-
duced.  
 

 
Figure 13: An example of a hybrid theme. 

 
 

 
Figure 14: An example of theme oscillation.  

 
7. CONCLUSION AND FUTURE WORK 

From this paper, we have seen that scientific methods for 
the analysis of animal vocalisations may easily be 
adapted for algorithmic composition. Here, we demon-
strated the model as a stand alone scientific tool, ex-
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plained the technical considerations necessary for user 
interaction, and developed a novelty method that allows a 
user to have a direct impact on the songs in the popula-
tion. Emergent properties, such as theme oscillation and 
hybrid themes were also demonstrated through a compo-
sitional demo. Future work will involve exploring the 
parameter space described in section 4, to investigate 
how it may be used as a tool to influence the emergence 
of hybrid themes seen in this model. It is also necessary 
to carry out a full investigation of the impact that the 
novelty metric has on the evolution of songs in the popu-
lation. Finally, a method of song innovation must be pro-
duced. Although our agents develop interesting hybrid 
songs, they do not have any in built mechanism for song 
evolution. The use of the model to develop rhythmic 
themes is also an area that would warrant further investi-
gation.  
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