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Abstract

Computation is classically studied in terms of automata, formal
languages and algorithms; yet, the relation between neural dynamics
and symbolic representations and operations is still unclear in tra-
ditional eliminative connectionism. Therefore, we suggest a unique
perspective on this central issue, to which we would like to refer as
to transparent connectionism, by proposing accounts of how symbolic
computation can be implemented in neural substrates. In this study
we first introduce a new model of dynamics on a symbolic space, the
versatile shift, showing that it supports the real-time simulation of
a range of automata. We then show that the Gödelization of versa-
tile shifts defines nonlinear dynamical automata, dynamical systems
evolving on a vectorial space. Finally, we present a mapping be-
tween nonlinear dynamical automata and recurrent artificial neural
networks. The mapping defines an architecture characterized by its
granular modularity, where data, symbolic operations and their con-
trol are not only distinguishable in activation space, but also spatially
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localizable in the network itself, while maintaining a distributed en-
coding of symbolic representations. The resulting networks simulate
automata in real-time and are programmed directly, in absence of net-
work training. To discuss the unique characteristics of the architecture
and their consequences, we present two examples: i) the design of a
Central Pattern Generator from a finite-state locomotive controller,
and ii) the creation of a network simulating a system of interactive
automata that supports the parsing of garden-path sentences as in-
vestigated in psycholinguistics experiments.

1 Introduction

The relation between symbolic computation and neural dynamics is one of
the most pertinent problems in computational neuroscience, artificial intel-
ligence, and cognitive science. On the one hand, symbolic computation is
generically codified in terms of production systems, formal languages, al-
gorithms and automata [Hopcroft and Ullman, 1979]. On the other hand,
neural dynamics in artificial neural networks (ANN) is described by nonlin-
ear evolution laws [Hertz et al., 1991]. Approaches to connect these different
realms of research go back to the seminal paper of McCulloch and Pitts
[1943] on networks of idealized two-state neurons that behave as logic gates.
Furthermore, fundamental work by Kleene [1956] and Minsky [1967] demon-
strated the equivalence between such networks and finite-state automata,
and thus digital computers (which are essentially large-scale networks of logic
gates). Later examples for connectionist modeling of symbolic computation
are the speech perception and production models TRACE by McClelland
and Elman [1986] and NETtalk by Sejnowski and Rosenberg [1987]. A fur-
ther important step was achieved by Elman when introducing simple recur-
rent networks (SRN) as prediction devices for letters in words [Elman, 1990]
and syntactic categories in sentences [Elman, 1995]. SRN found a number
of successful applications in linguistics and cognitive science [Christiansen
and Chater, 1999, Farkas and Crocker, 2008, Lawrence et al., 2000, Tabor
et al., 1997] where formal grammars have been employed for the generation
of training sets. After training, grammatical relations emerged in the con-
nectivity and activation patterns of the network’s hidden layer which could
be examined through clustering and principal component analysis (PCA).

A key problem of this and similar approaches based on eliminative con-
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nectionism [Blutner, 2011], a theoretical stance aiming at the elimination of
symbolic representations in connectionist models, is that the emerging rep-
resentations, while comparable in a metric space through empirical methods
such as clustering or PCA, do not allow inferences about the syntactic or
structural relationships of the symbolic training data. This is even more the
case with contemporary deep-learning [Bengio et al., 2013, Li, 2014], and
reservoir computing approaches featuring large networks of randomly and
recurrently connected nonlinear units [Dominey, 1995, Jaeger, 2001, Maass
et al., 2002, Steil, 2004]. For that reason, another branch of research, which
we may call transparent connectionism, has been developed in the framework
of vector symbolic architectures (VSA) [beim Graben and Potthast, 2009,
Gayler, 2006, Gayler et al., 2010, Mizraji, 1989, Smolensky, 1990, Smolensky
and Legendre, 2006a,b]. Here, one explicitly starts with the symbolic data
structures and processes, which are first decomposed into so-called filler-role
bindings and then used to create vectorial images through tensor product
representations [beim Graben and Potthast, 2009, Smolensky, 1990]. These
serve as training patterns for subsequent connectionist modeling. In con-
trast to eliminative connectionism where representations that emerge during
training are to a great extent opaque, representations in VSAs are com-
pletely transparent as they can be resolved in each step of the encoding pro-
cedure. Depending on the structure of the chosen vector space one arrives
at different kinds of integrated connectionist/symbolic architectures (ICS)
[Smolensky, 1990, Smolensky and Legendre, 2006a,b]: Gödelizations for one-
dimensional representations in the field of real numbers, proper vectorial
representations for finite-dimensional vector spaces, and functional represen-
tations for infinite-dimensional vector spaces [beim Graben and Potthast,
2009]. Importantly, Siegelmann and Sontag [1991, 1995] used a combina-
tion of Gödelization and localist finite-dimensional representation to prove
that Recursive ANNs (R-ANN) with rational weights and ramp activation
functions can simulate any n-tape (n ≥ 2) stack machine – or, equivalently,
any Turing machine (TM) and any partial recursive function – when en-
dowed with a specific localist architecture. Moreover, Siegelmann and Son-
tag showed that a R-ANN consisting of 886 units can simulate a universal
Turing machine (UTM). Recent work by Cabessa [Cabessa and Siegelmann,
2012, Cabessa and Villa, 2012, 2013] extends these results on R-ANNs to the
realm of interactive computation [Wegner, 1998], a framework studying sys-
tems that can interact with the environment throughout their computation
(as opposed to the framework of classical computation, where the interaction
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is limited to the input-output exchange), proving that R-ANNs are equivalent
in power to interactive TMs.

Very-large-scale and reservoir-like neural network approaches can also rely
on VSA as a key ingredient, as in the neural engineering framework [Elia-
smith et al., 2012, Stewart et al., 2014], which employs semantic pointers
for addressing symbolic representations in activation space, and recent work
at the interface between reservoir computing and connectionist/symbolic ap-
proaches [Hinaut and Dominey, 2013, Hinaut et al., 2014]

In contrast, the present work focuses on parsimonious VSA implementa-
tions, building upon the seminal results from Siegelmann and Sontag [1991,
1995], and work from Moore [1990, 1991] who has shown that nonlinear dy-
namical automata (NDA), piecewise-affine linear dynamical systems on the
unit square, can simulate the dynamics of any TM in real-time1 when the
machine is represented as a generalized shift (GS) on dotted sequences. In
this work we first extend Moore’s results by showing that NDA can support
the real-time simulation of a range of models of computation, including but
not limited to Turing Machines (of course, TMs can simulate any other model
of computation of lesser or equal power, but not necessarily in real-time; see
Section 2.1.1 for a discussion). We achieve this by relaxing the definition of
GS, which leads to a novel and more expressive shift map, the versatile shift
(VS) which enables the parsimonious and real-time emulation of symbolic
computation in a range of models. We then show that VS dynamics can be
mapped to NDA dynamics on the unit square through Gödelization. Finally,
we present a mapping between VS and R-ANNs through NDA (extending
preliminary results shown in Carmantini et al., 2015).

Symbolic models of computation distinguish between data, operations on
data and the control of these operations. For example, automata implement
a set of symbolic operations and its control through a look-up table (the tran-
sition function), and the data as a string encoding the so-called configuration
of the automaton. In grammars and term rewriting systems, operations are
instead defined as a set of substitution/rewriting rules on some symbolic
string, where the application of these rules is controlled by a set of condi-
tions. NDA can perform symbolic computation on a vectorial space while
preserving, in their formulation, the division between data, operations on
data, and their control. Basing our construction on NDA, we derive an ar-

1In a real-time simulation, a single computation step in the original model is mapped
to a single computation step in the model simulating it.
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chitecture that also preserves this division, thus obtaining networks that are
transparent, modular and parsimonious. Importantly, the operations embed-
ded within the architecture we propose herein are not only distinguishable
in activation space, but are also spatially localized, while still relying on a
distributed representation of the symbolic data. The granular modularity
of the architecture brought about by its relation with NDA differentiates
our approach from previous work, and has important consequences for the
constructive mapping of interactive automata networks (IANs) to R-ANNs,
and for the possibility of correlational studies with electrophysiological data,
which we will discuss in subsequent Sections.

We illustrate our approach by means of two examples. As a first ex-
ample, we construct a central pattern generator (CPG) from a finite-state
automaton for gait patterns of quadruped animals [Collins and Richmond,
1994, Golubitsky et al., 1999, Grillner and Zangger, 1975]. The neuronal
sequential activations by CPGs are usually modeled through networks of
coupled nonlinear oscillators that undergo symmetry-breaking bifurcations
under changes in their driving input [Collins and Richmond, 1994, Golubit-
sky et al., 1998, 1999, Schöner et al., 1990]. We show that our construction,
although symbolically inspired, allows the investigation of similar bifurcation
scenarios. Additionally, the results of these example are relevant to the design
of CPGs for the control of robotic locomotion [Ijspeert, 2008]. As a second
example, we show how our approach is ideally suited to tackle the mapping
of interactive machines to neural networks, because of the separation in the
network architecture of data, transformations and their control. This makes
it straightforward to construct R-ANNs simulating networks of automata
that e.g. share states, are organized in complex hierarchies, or are bound
by interactions of conditions in the application of symbolic transformations.
We demonstrate this by constructing an interactive automata network (IAN)
that implements a diagnosis and repair parser for syntactic language process-
ing [Lewis, 1998] and by subsequently mapping it to a R-ANN performing
the same computation. We are then able to derive vectorial observables
from the network; specifically, we compute synthetic event-related brain po-
tentials (synth-ERPs, Barrès et al., 2013) and discuss their relation with
event-related potentials as measured in experiments involving garden-path
sentences [Frisch et al., 2004].
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Abbreviation Extended name

ANN Artificial neural network
BSL Branch selection layer
CFG Context-free grammar

CL Configuration layer
CPG Central pattern generator
EEG Electroencephalography
ERP Event-related brain potentials
FSM Finite-state machine

GS Generalized shift
LFP Local field potentials
LTL Linear transformation layer

MCL Machine configuration layer
NDA Nonlinear dynamical automaton
PCA Principal component analysis
PDA Push-down automaton

R-ANN Recurrent artificial neural network
SRN Simple recurrent network

synth-ERP Synthetic event-related brain potential
TDR Top-down recognizer

TM Turing machine
UTM Universal Turing machine

VS Versatile shift
VSA Vector symbolic architecture

Table 1: List of abbreviations used in this paper.
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2 Methods

The present Section outlines our general method which allows the mapping
of a range of models of computation to R-ANNs. In Figure 1 we summarize
the complete mapping procedure to accompany its exposition. Our construc-
tion is a two-step process. We first define a Versatile shift (a generalization
of the shift map introduced in Moore, 1990) that emulates some model of
computation, and we subsequently encode its dynamics on the unit square
via Gödelization, obtaining a two-dimensional piecewise affine-linear map on
the unit square, i.e. a NDA. As a second step, the NDA is mapped onto a
first-order R-ANN, which is endowed with an architecture that captures the
NDA’s three key components: i) a state, encoding the symbolic data of the
model of computation; ii) a set of affine-linear transformations, encoding its
operations on data; iii) a switching rule that selects the relevant affine-linear
transformation to apply given the state, thus implementing the control of
the symbolic operations.

Next, the theoretical methods employed are discussed in detail. In the
presentation of various objects from Formal Language Theory and Automata
Theory, we essentially follow the well-established definitions in Hopcroft and
Ullman [1979], and in Sipser [2006].

2.1 Elements of Symbolic Computation

A symbol is meant to be a distinguished element from a finite set A, which
we call an alphabet. Symbols can be concatenated, i.e. for a, b ∈ A, ab ≡
(a, b) ∈ A2. A sequence of symbols w ∈ An is called a word of length n,
denoted n = |w|. The set of words of all possible lengths w of finite length
|w| ≥ 0 is denoted A∗ (for |w| = 0, w = ε denotes the “empty word”).

2.1.1 From Generalized to Versatile Shifts

The theory of symbolic dynamics [Lind and Marcus, 1995] is a tool to study
dynamical systems based on the discretization of time and space in order
to interpret trajectories in a vectorial space as discrete sequences of infinite
strings of symbols. Importantly, its theoretical apparatus can also be used to
do the opposite, mapping sequences of strings to a vectorial space. We start
by redefining a representation for strings of symbols, the dotted sequence.
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Figure 1: An automaton is mapped to a recurrent artificial neural
network (R-ANN). The representation of machine configurations as dot-
ted sequences allows for the mapping of the machine transition function to
the action of a Ω versatile shift (VS) map upon said sequences, simulating
the computation performed by the automaton. A Gödel encoding ψ acts as
a bridge between the Symbolic and the Vectorial representation of the au-
tomaton’s dynamics, and enables the representation of Ω as an affine-linear
map Φ by a nonlinear dynamical automaton (NDA). Finally, a map ρ gen-
erates a R-ANN, with a specific network architecture and internal dynamics
ζ that operates on the same Vectorial space as Φ, where the NDA states are
identically mapped through ρ(I, ·, ·, ·) to the activation of a specialized layer
in the R-ANN. 8



According to Moore [1990, 1991], a dotted sequence s ∈ AZ on an alphabet
A is a two-sided infinite sequence of symbols “s = . . . d−2 d−1 . d0 d1 d2 . . .”
where di ∈ A, for all indices i ∈ Z. Here, the dot “.” is simply used as
a mnemonic sign, indicating that the index 0 is to its right. A shift space
MS = (AZ, σ) is then given by a shift map σ : AZ → AZ [Lind and Marcus,
1995], such that σ(s)i = (s)i+1, i.e. σ shifts all symbols in s one place to the
left (or, equivalently, shifts the dot one place to the right). Similarly, it is
possible to define an inverse to the shift map, σ−1, shifting all symbols in s
one place to the right (or, equivalently, the dot one place to the left).

Notice how shifting the dot in a dotted sequence to the left or the right
resembles the movement of the read-write head of a Turing machine on its
tape (see section 2.1.2 for more details on Turing machines). In order to fully
attain the power of Turing machines, Moore [1990, 1991] endows the shift
space MS with three additional maps

F : AZ → Z
⊕ : AZ × (A ∪ {φ})Z → AZ

G : AZ → (A ∪ {φ})Z,
(1)

such that their composition Ω(s) = σF (s)(s ⊕ G(s)) can fully simulate any
Turing machine. The augmented shift space MGS = (AZ,Ω) is called gener-
alized shift (GS) if there is an open interval of indices around the dot, called
Domain of Dependence DoD = (kl, kr) (kl ≤ 0 ≤ kr), such that F (s) and
G(s) only depend on the content of s within the DoD, F (s) determines a
number of left shifts (F (s) > 0), right shifts (F (s) < 0), or no shift at all
(F (s) = 0) and G(s) maps the symbols si within the DoD onto other symbols
gi, while all symbols outside the DoD are mapped onto an auxiliary symbol
φ. Finally, the composition operator overwrites all symbols si within the
DoD through their images gi under G while not changing s outside the DoD,
i.e. (s⊕ g)i = si if gi = φ, but (s⊕ g)i = gi if gi 6= φ.2

According to Moore’s proof [Moore, 1990, 1991], any Turing machine can
be realized as a GS MGS. Since Turing machines can be programmed to
simulate the computation carried out by any model of lower or equal compu-

2In his 1991 paper, Moore actually defines the DoD of a GS as a finite set of integers
which need not be consecutive, and introduces a second finite set of integers, the Domain
of Effect (DoE) to indicate the cells to be rewritten (as a function of the cells in the DoD).
Nevertheless, it is always possible, given any GS with arbitrary DoD and DoE, to construct
an equivalent GS as defined here; we thus decided to propose a simplified definition.
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tational power, such as finite-state automata or push-down automata, this
implies that these can also be described in terms of equivalent GSs. In prac-
tice, however, simulating other automata via Turing machines will lead to
rather complicated machine tables even for the simplest symbolic algorithms,
and thus to unnecessarily complicated shift spaces. In fact, different au-
tomata implement different atomic operations, so that a Turing machine can
require multiple computation steps to simulate a single computation step of
another automaton, even when the automaton is computationally less pow-
erful. Therefore, we introduce a novel shift space to which we shall hence-
forth refer as versatile shift (VS), which will allow us to represent automata
configuration dynamics on dotted sequences in a more straightforward and
parsimonious fashion, simulating it in real-time. Our construction essentially
relies on a redefinition of the concept of dotted sequence. Above, the dot was
only used as a mnemonic symbol without any functional implication. Now,
we introduce the dot as a meta-symbol which can be concatenated with two
words v1, v2 ∈ A∗ through v = v1.v2. Let Â∗ denote the set of these dotted
words. Moreover, let Z− = {i | i < 0, i ∈ Z} and Z+ = {i | i ≥ 0, i ∈ Z}
the sets of negative and non-negative indices. We can then reintroduce the
notion of a dotted sequence as follows. Let s ∈ AZ be a bi-infinite sequence
of symbols such that s = wαvwβ with v ∈ Â∗ as a dotted word v = v1.v2
and wαv1 ∈ AZ− and v2wβ ∈ AZ+

. Through this definition, the indices of s
are inherited from the dotted word v and are thus not explicitly prescribed.
Whereas GSs can only rewrite each symbol in their DoD with a new one,
VSs are endowed with a more general rewriting operation, substituting dot-
ted words in their DoD with other dotted words of equal or different lengths
(as already hinted, yet not implemented, by Moore, 1990). This adds expres-
siveness to VSs, allowing for the parsimonious real-time simulation of a range
of automata (see Figure 2 for a pictorial representation of the difference in
substitution operations between GSs and VSs).

More formally, we define a VS as a pair MV S = (AZ,Ω), with AZ being
the space of dotted sequences, and Ω : AZ → AZ defined by

Ω(s) = σF (s)(s⊕G(s)) (2)

with
F : AZ → Z
⊕ : AZ ×AZ → AZ

G : AZ → AZ,

(3)
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Figure 2: Difference between substitution operation in generalized
and versatile shifts. In this Figure, we show two example substitutions by
respectively a generalized shift and a versatile shift. While a generalized shift
can only rewrite each symbol of the dotted word in its Domain of Dependence
(DoD) with a new one, a versatile shift can substitute the dotted word in its
DoD with any other arbitrary dotted word.

where the operator “⊕” substitutes the dotted word v1.v2 ∈ Â∗ in s with
a new dotted word v̂1.v̂2 ∈ Â∗ specified by G, while F (s) = F |Â∗(v1.v2)
determines the number of shift steps as for the GS above. The action of
F , G and ⊕ in the VS depends on a finite dotted sub-sequence v1.v2 inside
the original dotted sequence s = wαvwβ, as determined by the DoD of the
VS, again defined as a set of consecutive integers denoting cell positions on
the original dotted sequence. The DoD of a GS can be specified by an open
interval (kl, kr) on the integers, with kl ≤ 0 and kr ≥ 0. Additionally, for a
DoD = (kl, kr), it is useful to define DoDα = (kl, 0) and DoDβ = (−1, kr)
to denote the left and right part of the complete DoD on dotted sequences
α.β, with DoD = DoDα ∪DoDβ. The set V of dotted words that can appear

in the DoD of a VS is a subset of Â∗, and can be defined as V = {v | v =
v1.v2 ∈ Â∗, |v1| = |DoDα|, |v2| = |DoDβ|}.

To illustrate how VSs act on dotted sequences, consider for example the
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dotted sequence “wo.rd”, and define a VS Ωexwith

DoD = (−2, 1) = {−1, 0},

G :

{
o.r 7→ a.n

a.n 7→ on.dere,

F :

{
o.r 7→ 0

a.n 7→ 1,

then, applying Ωex to “wo.rd” once yields

Ωex(wo.rd) = σF (wo.rd)
(
wo.rd⊕G(wo.rd)

)
= σF (wo.rd)

(
wo.rd⊕ a.n

)
= σF (wo.rd)

(
wa.nd

)
= σ0

(
wa.nd

)
= wa.nd

and applying it again to the resulting “wa.nd” dotted sequence yields

Ωex(wa.nd) = σF (wa.nd)
(
wa.nd⊕G(wa.nd)

)
= σF (wa.nd)

(
wa.nd⊕ on.dere

)
= σF (wa.nd)

(
won.dered

)
= σ1

(
won.dered

)
= wo.ndered

where the DoD of the input string has been highlighted for clarity (again,
contrast this with the pictorial representation given in Figure 2). Note that
a VS reduces to a GS in the special case when G always substitutes a dotted
sequence with one of the same (finite) length in both the left and the right
sub-sequences, as in the previous example where wo.rd⊕G(wo.rd) = wo.rd⊕
a.n = wa.nd.

A point worth noting is that endowing VS with the rewriting capability
extends the GS in the direction of semi-Thue systems (also known as string
rewriting systems), a universal model of computation introduced by Axel
Thue in 1914 (see chapter 7 of Davis et al., 1994). These rewriting systems
play an important role, for example, in algebraic specifications of abstract
data structures, equational programming, program transformation and au-
tomated theorem proving, where the conditional and successive application
of a finite set of rewrite rules transforms a given symbolic structure.
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2.1.2 Simulation of Various Automata by Versatile Shifts

We will now discuss how a range of automata can be simulated in real-time
by VSs by choosing appropriate dotted sequence representations of machine
configurations, and by constructing F and G to reproduce the machine’s
operations and their conditional application.

Finite-state machines The finite-state machine (FSM) model of compu-
tation has been introduced by McCulloch and Pitts in 1943 and is widely
used to describe systems in many application fields, ranging from computer
science to engineering and biology, to name a few. At every step of a compu-
tation a FSM is in one of a finite set of states, and it can change its state as
a result of an incoming input signal. More formally, a FSM can be defined as
a 5-tuple MFSM = (Q,T, q0, F, δ), where Q is a finite set of control states, T
is the input alphabet, q0 ∈ Q is the starting state, F ⊆ Q is a set of accept
states, and δ : Q×T→ Q is a transition function defined as follows:

δ : (qt, d0t) 7→ qt+1, (4)

where qt, qt+1 ∈ Q are states, and d0t ∈ T is an input symbol. At each
computation step, a FSM reads its current state qt, consumes (i.e. reads
and discards) its current input symbol dt, and transitions to a new state
qt+1 = δ(qt, dt) as prescribed by its transition function. It is possible to
encode FSM configurations on dotted sequences as

qt . d0t d1t . . . dnt (5)

where qt, d0t and d1t . . . dnt are respectively the state, input symbol, and the
rest of the unconsumed input of the FSM at time t. A VS simulating a FSM
in real-time can be constructed by defining the Domain of Dependence to
be DoD = (−2, 1) = {−1, 0}, F to always map to 0, and G so that for all
qt ∈ Q, dt ∈ T:

G : qt.d0t 7→ qt+1.ε (6)

where qt+1 = δ(qt, d0t).

Push-down automata and Context-Free Grammars A push-down
automaton (PDA) is a computing machine that has sequential access to its
input and can manipulate a stack memory by popping and pushing symbols
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on top of it. More formally, a PDA can be defined as a 6-tuple MPDA =
(Q,N,T, q0, F, δ), where Q is a finite set of control states, N is the stack
alphabet, T is the input alphabet, q0 ∈ Q is the starting state, F ⊆ Q is
a set of accept states, and δ is a transition function. If F = ∅, the PDA
accepts its input when both the input tape and the stack are empty, and it
is thus said to accept by empty stack.

A Deterministic PDA is a PDA in which any configuration of the ma-
chine defines at most one transition. As the mapping of non-deterministic
automata computation to Neural Networks is outside the scope of this work,
in what follows we will only discuss Deterministic PDAs. Determinism will
thus be implied from this point on. The transition function of a PDA is
defined as follows:

δ : Q×T ∪ {ε} ×N→ Q× (N ∪ {ε}). (7)

At each computation step, a PDA consumes an input symbol, pushes or pops
a symbol on the top of its stack, and changes state as prescribed by its tran-
sition function applied to the current state qt, currently read input symbol
d0t , and the current top-of-stack symbol s0t . In particular, if s0t . . . smt is the
current content of the stack, transitions of the form

δ : (qt, d0t , s0t) 7→ (qt+1, ε)

apply a pop operation, such that the new stack content becomes equal to
s1t . . . smt . Push operations are instead applied by transitions of the form

δ : (qt, d0t , s0t) 7→ (qt+1, s0t+1),

so that the updated stack contains the symbols s0t+1s0t . . . smt . Finally, for
transitions of the form

δ : (qt, ε, s0t) 7→ (qt+1, χ),

the PDA does not consume any input symbol (i.e. it does not access its
input at all), but either pops its top-of-stack, if χ = ε, or pushes symbol χ,
if χ ∈ N.

PDA configurations can be encoded on dotted sequences as follows:

smt . . . s0t︸ ︷︷ ︸
st

qt . d0t . . . dnt︸ ︷︷ ︸
dt

(8)
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where qt, dt and st are respectively the state, the unconsumed input and the
content of the stack of the automaton in reversed order at time t.

A VS simulating a PDA in real-time can be constructed from the PDA’s
transition function by defining the Domain of Dependence to be DoD =
(−3, 1) = {−2,−1, 0}, F to always map to 0, and G so that, given δ :
(qt, κ, s0t) 7→ (qt+1, χ),

G :

{
s0t qt . κ 7→ ε qt+1 . ε if χ = ε
s0t qt . κ 7→ s0t χ qt+1 . ε otherwise.

(9)

PDA recognize the class of languages generated by context-free grammars
(CFG). PDA and CGFs are thus equivalent in power. A CFG specifies a
language, i.e. a set of strings on some alphabet, by defining how its words can
be constructed, moving from a distinguished starting symbol and applying
substitution rules until a string of unsubstitutable symbols (terminals) is
reached.

A CFG can be formally defined as a 4-tuple GCF = (N,T, R, S), where
N is a set of non-terminal symbols, T is a set of terminal symbols, R ⊂
N× (N∪T)∗ a set of substitution rules and S a distinguished start symbol.
In particular, each rule in R can be written as X → w, with X ∈ N and
w ∈ (N ∪T)∗.

For example, let us define a CFG Gex with N = {S}, T = {(, [, ), ]},
and R containing the rules

S→(S)

S→[S]

S→ ε.

Then Gex generates the language Lex of balanced round and square brackets.
By applying the substitution rules we can in fact derive any string in that
language. For illustration purposes, an example derivation would be: S →
[S] → [(S)] → [()] ∈ Lex. It is always possible to construct, given any
CFG, a PDA recognizing its language, and viceversa.

Top-down recognizers In one of the examples presented later in the text,
we will make use of top-down recognizers (TDRs, see Aho and Ullman, 1972)
that can process locally unambiguous non-left-recursive CFGs3. TDRs are

3A recursive CFG is a CFG including rules A → uAv that expand a non-terminal
symbol A into a string containing the same non-terminal. A CFG is called left-recursive
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a subclass of PDA that can simulate rule expansion to accept languages
generated by non-left-recursive CFGs. Given any CFG GCF that is not left-
recursive, it is possible to construct a TDR that can parse strings belonging to
the context-free language generated by that grammar. If the input string of
a TDR constructed from GCF is in the language generated by that grammar
(and thus it can be derived by the grammar), then the TDR will end its
computation with an empty stack and input, and is said to accept the string
by empty stack. We are specifically interested in TDRs that process locally
unambiguous CFGs, which have the additional property of needing only one
state to perform their computation. To construct such a TDR from a locally
unambiguous non-left-recursive CFG GCF = (N,T, R, S) it is sufficient to
define its δ function in the following way:

δ :

{
(q0, a, a) 7→ (q0, ε) for all a ∈ T
(q0, ε, X) 7→ (q0, w) for all (X → w) ∈ R (10)

where X ∈ N is a non-terminal, w ∈ (N ∪ T)∗ is a string of terminals and
non-terminals, and q0 is the TDR’s only state. Note that in the definition
above we endow TDRs with the additional capability of pushing strings w
on the stack rather than single symbols.

As our TDRs only have one state q0, we can describe their machine con-
figuration without referring to the current state. It is thus possible to encode
TDR configurations on dotted sequences as follows:

smt . . . s0t︸ ︷︷ ︸
st

. d0t . . . dnt︸ ︷︷ ︸
dt

(11)

where dt and st are respectively the unconsumed input and the content of
the stack of the automaton in reverse order at time t. Similarly, simpler
VSs than those needed to simulate PDAs can be constructed from a TDR’s
transition function, by defining the Domain of Dependence to be DoD =
(−2, 1) = {−1, 0}, F to always map to 0 and G to mirror Equation 10 so
that

G :

{
a .a 7→ ε .ε
X.a 7→ w.ε

(12)

for all a ∈ T, (X → w) ∈ R.

if such rules appear in the form A → Aw. A CFG is locally unambiguous if there are no
two rules expanding the same nonterminal.
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Turing machines A Turing machine (TM) is an automaton with read-
write random access to a two-sided infinite tape [Sipser, 2006, Turing, 1937].
TMs are central to the Theory of Computation, and they are thought to
be powerful enough to model any physically realizable computation (with
assumptions of unbounded resources). A TM has an in-built tape (doubly-
infinite one dimensional memory with one symbol capacity at each memory
location) and a finite-state controller endowed with a read-write head that
follows the instructions encoded by the transition function. At each step of
the computation, given the current state and the current symbol read by
the read-write head, the controller determines via a δ transition function the
writing of a symbol on the current memory location, a shift of the read-
write head to the memory location to the left (L) or to the right (R) of
the current one, and the transition to a new state for the next computation
step. Formally, a TM [Turing, 1937] can be defined as a 7-tuple MTM =
(Q,N,T, q0,t, F, δ), where Q is a finite set of control states, N is a finite
set of tape symbols also containing the blank symbol t, T ⊂ N \ {t} is the
input alphabet, q0 ∈ Q is the starting state, F ⊂ Q is a set of ‘halting’ states
reached at the end of the computation and δ : Q×T→ Q×T×{L,R} is a
partial transition function, the so-called machine table, that determines the
dynamics of the machine. In particular, δ is defined as follows:

δ : (qt, d0t) 7→ (qt+1, d0t+1 ,m) (13)

where qt, qt+1 ∈ Q are the state of the machine before and after the transition,
d0t , d0t+1 ∈ N are respectively the read and rewritten symbol, and m ∈
{L,R} denotes the shift of the read-write head to the left or to the right.

At a given computation step, the content of the tape together with the
position of the read-write head and the current controller state define a ma-
chine configuration. It is possible to encode TM configurations on dotted
sequences as follows:

s = . . . d−2t d−1t︸ ︷︷ ︸
lt

qt . d0t d1t d2t . . .︸ ︷︷ ︸
rt

, (14)

where lt describes the part of the tape to the left of the read-write head, rt
describes the part to its right, qt describes the current state of the machine
controller, and the central dot denotes the current position of the read-write
head, i.e. d0t , the symbol to its right.
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A VS simulating a TM in real-time can be constructed from the TM’s
transition function by defining the Domain of Dependence to be DoD =
(−3, 1) = {−2,−1, 0}, andG and F so that, given δ : (qt, d0t) 7→ (qt+1, d̂0t ,m),

G :

{
d−1t qt . d0t 7→ d−1t d̂0t . qt+1 if m = R
d−1t qt . d0t 7→ qt+1 d−1t . d̂0t if m = L

F :

{
d−1t qt . d0t 7→ −1 if m = R
d−1t qt . d0t 7→ +1 if m = L

(15)

for all d−1t ∈ N.
The following example will clarify how the VS defined as above (Equa-

tion 15) can simulate a TM. Consider, for instance, the dotted sequence
“wq0.ord”, and define a TM such that δ : (q0, o) 7→ (q1, a,R) and δ : (q1, r) 7→
(q1, n,L). Then a computation step of the TM starting from the “wq0.ord”
configuration would yield a new configuration “waq1.rd”; by running the
TM again, this time starting from “waq1.rd”, a computation step would
yield “wq1.and”, as prescribed by the transition function we defined. Con-
structing a VS Ωex as specified by Equation 15 and applying it to “wq0.ord”:

Ωex(wq0.ord) = σF (wq0.ord)
(
wq0.ord⊕G(wq0.ord)

)
= σ−1

(
wq0.ord⊕ wa.q1

)
= σ−1

(
wa.q1rd

)
= waq1.rd

(16)

and by applying it again to the resulting “waq1.rd” dotted sequence we
obtain

Ωex(waq1.rd) = σF (waq1.rd)
(
waq1.rd⊕G

(
waq1.rd

)
= σ+1

(
waq1.rd⊕ q0a.n

)
= σ+1

(
wq0a.nd

)
= wq0.and

(17)

where the DoD of the input string to the VS has been highlighted for clarity.
Note that the dotted representation of the machine configuration requires
index −1 to always contain the machine state. For this reason, it is not
enough to only rewrite the symbols in {−1, 0} (i.e. the machine state and
the current symbol under the read-write head) to simulate a TM, as intuition
would instead suggest. In fact, a VS first applies a rewriting of its DoD, and
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then shifts the resulting dotted sequence to the left (when F (s) = −1) or the
right (when F (s) = +1). In particular, the shift is needed to simulate the
movement of the read-write head on the machine tape. In order to make sure
that at the end of the substitution and shift the machine state is correctly
placed at its reserved index −1, the substitution must leave it displaced one
place to the right if a left shift is to be applied (as in Equation 16), or one to
the left in case of a right shift (as in Equation 17). This last case requires the
additional dependence of the VS on index −2. Furthermore, note that our
construction is equivalent to that from Moore [1990, 1991]: the VS defined
in Equation 15 is nothing more than the GS introduced by Moore to prove
the equivalence between GSs and TMs.

2.2 Introducing Nonlinear Dynamical Automata

We will now discuss how VSs, and thus the models of symbolic computation
they can simulate, can be mapped to piecewise affine-linear systems on a
vectorial space, obtaining nonlinear dynamical automata.

2.2.1 Gödel Encodings and the Symbol Plane

A Gödel encoding (or Gödelization, see Gödel, 1931) allows one to uniquely
assign a real number to a sequence such that the space of one-sided infi-
nite sequences can be mapped to the real interval [0, 1].4 For completeness,
Gödelization is subsequently discussed alongside its graphical representation,
provided in Figure 3.

Let AN be the space of one-sided infinite sequences over an alphabet A
containing |A| = g symbols, and s = d1d2 . . . a sequence in this space, with
dk being the k-th symbol in s. Additionally, let γ : A → N be a one-to-one
function associating each symbol in the alphabet A with a natural number.
Then a Gödelization is a mapping from AN to [0, 1] ⊂ R defined as follows:

ψ(s) :=
∞∑
k=1

γ(dk)g
−k. (18)

4A Gödel encoding maps sequences on some alphabet A to real numbers through the
use of a base-b expansion, with b = |A|. It can be proven that any base-b expansion
represents a real number, and that any real number has a unique base-b representation
under a weak condition. The uniqueness of the Gödel encoding (and decoding) of any
sequence follows from the same proof.
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Figure 3: Three representations of the Gödel Encoding of a se-
quence. The first one is just the definition of the Gödel encoding, with
details on the specific choice of the enumerating γ function and the induc-
tion of the g constant, given the alphabet A from which the sequence takes
its symbols. The second one is an expansion of the series in the definition.
The third one visually conveys the fractal and convergent nature of the se-
ries, highlighting the relation between numbers and symbols by the use of the
color orange. At each level of this representation, from top to bottom, the
encoding of the sequence “abba t t t . . .” is sequentially constructed, high-
lighting the contribution of each encoded symbol to the real number resulting
from the complete Gödelization.
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Conveniently, Gödelization can also be employed on a dotted sequence α.β ∈
AZ — herein representing a machine configuration — by splitting it into its
two one-sided constituents α′ (the reversed α) and β. Defining two Gödel
encodings ψx and ψy for α′ and β respectively, induces a two-dimensional
representation for α.β, i.e.

(
ψx(α

′), ψy(β)
)
, known as symbol plane or sym-

bologram, which is contained in the unit square [0, 1]2 ⊂ R2. In encoding
dotted sequences α.β representing configurations of the machines we con-
sider in this paper, α often only ever contains states as first symbols, and
tape symbols in the rest of the sequence. In this case we can define a more
refined Gödelization that covers all of the representational space [0, 1] ∈ R:

ψx(s) := γq(d1)n
−1
q +

∞∑
k=1

γs(dk+1)n
−k
s n−1q , (19)

where γq and γs respectively enumerate the set of states Q and the tape
alphabet A, and where nq = |Q|, ns = |A|.

2.2.2 Versatile Shifts as Affine-Linear Transformations

Push and pop operators can be defined on one-sided infinite sequences AN

on some alphabet A. The push operator � is defined so that s � b adds
the contents of a word b ∈ A∗ to the beginning of s ∈ AN, whereas the
pop operator 	 is defined so that 	ps removes the first p symbols in s. We
will now show that Gödelizing a sequence resulting from the application of
pop and push operations is equivalent to applying an affine-linear transfor-
mation on the original Gödelized sequence. We will then show that VSs
on a dotted sequence α.β can be mapped to push and pop operations on
its one-sided constituents α′ and β. Let s = d1d2d3 . . . be a one-sided infi-
nite sequence on an alphabet A. Applying a pop operation 	p to s yields
	ps = dp+1dp+2dp+3 . . ., while pushing a word b = b1 . . . br to the beginning
of s yields s� b = b1 . . . brd1d2 . . . . In this case

ψ (s) = γ(d1)g
−1 + γ(d2)g

−2 + γ(d3)g
−3 + . . . ,

so that

ψ(	ps) = γ(dp+1)g
−1 + γ(dp+2)g

−2 + γ(dp+3)g
−3 + . . .

= ψ(s) · gp −
p∑
i=1

γ(di)g
p−i,
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and

ψ(s� b) = γ(b1)g
−1 + . . .+ γ(br)g

−r+

γ(d1)g
−(r+1) + γ(d2)g

−(r+2) + . . .

= ψ(s) · g−r +
r∑
i=1

γ(bi)g
−i,

proving that the resulting Gödelized sequences can be obtained by apply-
ing affine-linear transformations to the original Gödelized sequences. For
both pop and push operations, the parameters of the affine-linear transfor-
mations only depend on the number and identities on the symbols that are
respectively removed from or added to the beginning of the original sequence.
This is of particular importance in the framework of interactive computation
[Wegner, 1998], where the newly added symbol stems from the network’s
interaction with its environment. Accordingly, the symbol b becomes repre-
sented by a linear operator acting on the system’s state space, analogous to
quantum operators acting on Hilbert spaces [beim Graben et al., 2008].

As previously discussed, a VS defines two operations on dotted sequences,
a substitution operation s⊕G(s) which replaces the dotted sub-sequence in
the DoD of the shift with a new dotted sequence G(s), and a shift oper-
ation σF (s) shifting the symbols in s to the left or to the right by F (s)
positions. Let s ⊕ G(s) = wαu.vwβ ⊕ û.v̂ be a substitution replacing the
dotted sub-sequence u.v in s with the dotted word û.v̂, then s ⊕ G(s) can
be straightforwardly mapped to pop and push operations on u′wα

′ and vwβ,
the one-sided constituents of the original dotted sequence s, as follows:

wαu.vwβ ⊕ û.v̂ =
(
(	|u′|u′wα′)� û′

)′
.
(
(	|v|vwβ)� v̂

)
= (wα

′ � û′)′ . (wβ � v̂)

= wαû.v̂wβ

showing that substitutions on dotted sequences can be mapped to pop and
push operations on its one-sided constituents. A left shift σ−1 and a right
shift σ1 on a dotted sequence α.β = . . . d−2 d−1 . d0 d1 . . . can be mapped
to push and pop operations on its one-sided constituents as follows:

σ−1(. . . d−2 d−1 . d0 d1 . . .) = (α′ � d0)′.(	1β)

= . . . d−1 d0 . d1 d2 . . . ,
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and

σ1(. . . d−2 d−1 . d0 d1 . . .) = (	1α′)′.(β � d−1)
= . . . d−3 d−2 . d−1 d0 . . . ,

showing that shifts on dotted sequences can be mapped to pop and push oper-
ations on its one-sided constituents. Any arbitrary shift σk with k ∈ Z can be
obtained by composition of left and right shifts; as the composition of affine-
linear transformations is an affine-linear transformation, the Gödelization of
a sequence resulting from the composition of shift operations is equivalent
to an affine-linear transformation on the original Gödelized sequence. We
have thus shown that VSs on dotted sequences can be mapped to pop and
push operations on one-sided infinite sequences, and that the Gödelization
of these operations can be mapped to affine-linear transformations on the
original sequences. On the symbologram, each substitution and shift opera-
tion on a Gödelized dotted sequence α.β by a VS involves two affine-linear
transformations, one acting on the Gödelized α′ (the reversed α) and one on
the Gödelized β. The parameters of the affine-linear transformations only
depend on the symbols of the dotted sequence in the DoD of the VS. All dot-
ted sequences which share the same DoD symbols are thus associated to the
same pair of affine-linear transformations. For this reason, the symbologram
representation of VSs leads to piecewise affine-linear maps on rectangular
partitions of the unit square, referred to as a nonlinear dynamical automata
[beim Graben et al., 2008, 2004, Tabor, 2000, Tabor et al., 2013].

2.2.3 Nonlinear Dynamical Automata

A nonlinear dynamical automaton (NDA) is a triple MNDA = (X,P,Φ),
where P is a rectangular partition of the unit square X = [0, 1]2 ⊂ R2, that
is

P = {Di,j ⊂ X| 1 ≤ i ≤ m, 1 ≤ j ≤ n, m, n ∈ N}, (20)

so that each cell is defined as Di,j = Ii × Jj, with Ii, Jj ⊂ [0, 1] being real
intervals for each bi-index (i, j), with Di,j ∩ Dk,l = ∅ if (i, j) 6= (k, l), and⋃
i,j D

i,j = X. The couple (X,Φ) is a time-discrete dynamical system with
phase space X and the flow Φ : X → X is a piecewise affine-linear map such
that Φ|Di,j := Φi,j, with Φi,j having the following form:
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Φi,j(x) =

(
ai,jx
ai,jy

)
+

(
λi,jx 0
0 λi,jy

)(
x
y

)
. (21)

Note that the NDA, as any piecewise affine-linear system, also requires a
switching rule Θ(x, y) ∈ {(i, j)| 1 ≤ i ≤ m, 1 ≤ j ≤ n}, which selects
the appropriate branch, and thus dynamics (i.e. Φ(x, y) = Φi,j(x, y) ⇐⇒
Θ(x, y) = (i, j)). A mapping between a VS and a NDA can be defined
following the methods outlined in Section 2.2.1 and Section 2.2.2, therefore
enabling the derivation of the parameters of the NDA. That is, first each cell
Di,j = Ii × Jj can be seen as containing all the Gödelized dotted sequences
α.β which agree (i.e. have the same symbols) in the Domain of Dependence.
In particular, the Ii interval contains all the DoD-agreeing Gödelized α′ (the
reversed α) sub-sequences, whereas the Jj interval contains all the DoD-
agreeing Gödelized β sub-sequences. This leads to a partition of the unit
square with a number i of I intervals equal to the number of possible one-
sided sub-sequences that can appear in the left DoD of the VS, and a number
j of J intervals equal to the number of possible one-sided sub-sequences that
can appear in the right DoD. For example, for a VS simulating a FSM, the left
Domain of Dependence DoDα = {−1} of the dotted sequences representing
machine configurations only ever contains states, and the right Domain of
Dependence DoDβ = {0} only ever contains input symbols. In this case the
number of Ii intervals becomes equal to the number of states nq = |Q| in the
FSM, and the number of Jj intervals equal to the number of input symbols
ns = |T|, where Q and T are respectively the set of states and that of input
symbols in the FSM. For a VS simulating a TM, instead, the left Domain of
Dependence DoDα = {−2,−1} only ever contains states at index −1, and
tape symbols at index −2, and the right Domain of Dependence DoDβ = {0}
always contains tape symbols. This leads to a partition of the unit square
with a number of Ii intervals equal to m = nqns, and one of Jj intervals equal
to n = ns, leading to a total of nqn

2
s cells, where ns is the number of symbols

in the tape alphabet N and nq is the number of states in Q.
Following Section 2.2.2, substitutions and shifts on a sequence can be

mapped to affine-linear transformations on its Gödelization. For this reason,
each cell in the partition P of the unit square is associated with a different
affine-linear transformation with parameters (ai,jx , a

i,j
y ) and (λi,jx , λ

i,j
y ), which

can be derived using the methods outlined in Section 2.2.2. Therefore a model
of computation can be represented as a NDA by means of its Gödelized VS
representation.
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2.3 Solution Map between NDA and R-ANNs

The design of the map between the NDA and a first order R-ANN follows a
conceptually natural and simple solution, which attempts to mimic the affine-
linear dynamics (given by Equation 21) of the NDA on the partitioned unit
square (see Carmantini et al., 2015 for preliminary work in this direction).

Let ρ(·) denote the proposed map. The objective is to map the orbits of
the NDA (i.e. Φi,j(x, y)) to orbits of the R-ANN, denoted as ζ i,j(x, y). The
role of ρ is to encode both the affine-linear dynamics within each partition cell
(Di,j) and to emulate the transitions from cell to cell by suitably activating
certain neural units within the R-ANN. To achieve this, we propose a network
architecture with three layers, namely a machine configuration layer (MCL),
a branch selection layer (BSL) and a linear transformation layer (LTL), as
depicted in Figure 4. Therefore, we generically define the proposed map as
follows:

ζ = ρ(I,A,Φ,Θ), (22)

where I2×2 is the identity matrix that maps (identically) the initial condi-
tions of the NDA to the R-ANN and A is the synaptic weight matrix that
defines the network architecture, which will be discussed in subsequent Sec-
tions. In addition, ρ generates different neural dynamics for each type of
the neural units, i.e. ζ = (ζ1, ζ2, ζ3), corresponding to MCL, BSL and LTL,
respectively. The details of the R-ANN architecture and its dynamics will
now be presented.

2.3.1 Network Architecture and Neural Dynamics

The simulation of a NDA orbit within the R-ANNs is distributed among
MCL, BSL and LTL. Since Φi,j(x) is a two-dimensional de-coupled discrete
map it suggests only two neural units in a read-out layer, which is a role
taken by the MCL. We refer to the two MCL units as cx and cy. At each
computation step the MCL stores the encoding of the current machine con-
figuration, which is then passed on to the BSL and LTL units. Subsequently,
two sets of BSL units (bx and by) functionally act as a switching system
that determines to which cell Di,j the current machine configuration be-
longs, triggering the appropriate units within two sets of LTL units (tx and
ty), effectively emulating the application of an affine-linear transformation
Φi,j on an encoded machine configuration. This action corresponds to the
application of a symbolic operation by the original machine, leading to a
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Figure 4: Connectivity between neural layers within the network.
The machine configuration layer (MCL) receives external input (in this case
the encoded initial machine configuration), and synaptically couples to the
branch selection layer (BSL) and linear transformation layer (LTL). The BSL
feed-forwards to the LTL and finally the LTL recurrently feedbacks to the
MCL, where the output is read-out.

configuration update. The result of the transformation is then fed back to
the MCL, representing the configuration (i.e. the machine’s symbolic data)
for the next computation step. These successive transformations effectively
emulate the action of a NDA, where for every computational step an affine-
linear transformation is applied to the values encoding the representation of
the machine configuration. The neural units in the various layers make use
of either the Heaviside (H) or the Ramp (R) activation functions defined as
follows (see also Figure 5):

H(x) =

{
0 if x < 0

1 if x ≥ 0
R(x) =

{
0 if x < 0

x if x ≥ 0.
(23)

2.3.2 Machine Configuration Layer

The MCL encodes the state of the simulated NDA, and thus the data of the
simulated automaton, while acting as a read-out neural layer. At the same
time it mediates at each computation step the transmission of the current
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Figure 5: Activation functions employed in the network. In particular,
the Heaviside function H(x) is employed by units in the branch selection layer
and the Ramp function R(x) is used in both machine configuration layer and
linear transformation layer.

Gödel encoding of the emulated machine’s configuration to the BSL and
LTL units. Since the Gödel encoding of a dotted sequence representing a
machine configuration consists of two values (see Section 2.2.1), this implies
that the MCL solely requires two neural units (cx and cy) to code for the
current configuration. As a consequence, the initialization of the R-ANNs
is performed in this layer, where the initial conditions (ψx(α

′), ψx(β)) are
identically transformed (via I) by the map ρ(·) as follows:

(cx, cy) = (ψx(α
′), ψx(β)) ≡ ζ1 = ρ(I, ·, ·, ·)|(ψx(α′),ψx(β)) (24)

Following every computation step, these neural units receive inputs from the
LTL units and are subsequently activated via the ramp activation function
(Equation 23); in other words ζ1 ≡ (cx, cy) = (R(

∑
i t
i
x), R(

∑
j t
j
y)). Finally,

these synaptically project onto the BSL and LTL neural units (refer to Fig-
ure 6 for details of the connectivity).

2.3.3 Branch Selection Layer

The BSL acts as a control unit that enables the sequential mapping of the
orbits of the NDA, Φi,j(x, y), to orbits of the R-ANNs, ζ i,j(x, y). Specifically,
the BSL functionally embodies the switching rule Θ(x, y) and coordinates
the dynamic switching between LTL units. Sequentially, under the action of
BSL units, only a single pair of LTL units (ti,jx , t

i,j
y ) dedicated to emulate Φi,j

become active, which then operate on an encoded Machine configuration.
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Figure 6: Detailed feedforward connectivity and weights for neural
network simulating a nonlinear dynamical automaton with only 6
branches. (A) The machine configuration layer (MCL) units (cx, cy) feed-
forward connect to all the branch selection layer (BSL) units with weight of 1.
Every BSL unit excites with weights h

2
(in red) and also inhibits with weights

h
2

(in blue) the relevant linear transformation layer (LTL) units contained
within each cell (as indicated by the red and blue arrows respectively). Each
cell Dij indicates the overall summed input value received by each LTL unit
(for visualization purpose/convenience not shown) from the BSL. In this case
only the LTL units in cell D1,2 are activated with overall BSL input value of
h (red). (B) A zoom-in of panel (A), shows in detail how each pair of LTL
units contained within each cell (in this case D1,2) receives inputs from the
MCL and BSL units as shown. In addition, the LTL units may have internal
dynamics described by parameter a (equivalently, this can be seen as input
from an always-active unit). To actually produce output, the overall input
to an LTL unit must overcome its internal h inhibition. Upon activation, the
LTL unit’s output is fed back to the paired MCL unit with weight of 1.
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In particular, the BSL units make sure that (ti,jx , t
i,j
y ) become active only if

(cx, cy) ∈ Di,j = Ii × Jj, with Ii = [ξi, ξi+1) being the i-th interval on the
x-axis and Jj = [ηj, ηj+1) being the j-th interval on the y-axis. The switching
rule is mapped by ρ(·) as follows:

ζ2(x, y) = ρ(·, ·, ·,Θ(x, y) = {i, j}) (25)

The implementation of ζ2(x, y) is mediated by two sets of neural units, i) the
bx set with m units (the number of I intervals on the x-axis) and ii) the by set
with n units (the number of J intervals on the y axis), which are activated
via a Heaviside activation function (Equation 23) after receiving excitatory
inputs with synaptic weight 1 from the MCL layer (i.e. cx and cy units) in
the following way:

bix = H(cx − ξi) with ξi = min(Ii),

bjy = H(cy − ηj) with ηj = min(Jj).
(26)

That is, the activation of the BSL units depends on a threshold, implemented
here as a synaptic projection from an always-active bias unit, that is defined
as the minimum of the intervals Ii and Jj respectively for the bix and biy units.
This has the effect of centering the threshold towards the left boundary of
each interval (i.e. a bias of −ξi for bix unit and −ηj for bjy). Therefore, if
the read-out (i.e. encoded machine configuration) of the cx and cy units
in the MCL corresponded to a point on the unit square belonging to cell
Di,j, then the bix unit would be triggered active as well as all units bkx with
k < i. The same would occur for neurons bjy and all neural units bky with
k < j.5 Upon excitation, these BSL units then synaptically project to the
relevant LTL units, (ti,jx , t

i,j
y ) that are naturally inactive due to a strong in-

hibitory bias with magnitude h (the role and value of h will be clarified in
the subsequent Section). Specifically, each neural unit bix establishes synap-
tic excitatory connections (with weight h

2
) to all LTL units within the cells

Dk,i (i.e. (tk,ix , t
k,i
y )) and also project with synaptic inhibitory connections

(with weight −h
2

) to all LTL units within the cells Dk,i−1 (i.e. (tk,i−1x , tk,i−1y )),
where k = 1, . . .m; for a graphical depiction see Figure 6. Similarly, each
neural unit bjy projects with synaptic excitatory connections (with weight h

2
)

to all LTL units within the cells Dj,k (i.e. (tj,kx , t
j,k
y )) and also projects with

5Note that the action of the BSL could be equivalently implemented by interval indi-
cator functions represented as linear combinations of Heaviside functions.
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synaptic inhibitory connections (with weight −h
2

) to all LTL units within
the cells Dj−1,k (i.e. (tj−1,kx , tj−1,ky )), where k = 1, . . . n; see Figure 6. The
combined effect of the bix units and bjy is therefore to counterbalance through
their synaptic weights the natural inhibition (of bias h) of the LTL units in
cell Di,j. In other words each couple of LTL units (ti,jx , t

i,j
y ) receives an input

Bi
x +Bj

y, defined as follows:

Bi
x = bix

h

2
+ bi+1

x

−h
2

Bj
y = bjy

h

2
+ bj+1

y

−h
2
,

(27)

where the input sum

Bi
x +Bj

y =


h if (cx, cy) ∈ Di,j

h
2

if cx ∈ Ii, cy 6∈ Jj or cx 6∈ Ii, cy ∈ Jj
0 if (cx, cy) 6∈ Di,j

(28)

only triggers the relevant LTL unit if it reaches the value h. That is, if the
pair (ti,ix , t

i,j
y ), is selected by the BSL units (and thus (cx, cy) ∈ Di,j), then

Bi
x + Bj

y = h. Otherwise Bi
x + Bj

y is either equal to h
2

or 0. An example of
this mechanism is shown in Figure 6, where the LTL units in cell D1,2 are
activated via mediation of bx = {b1x, b2x, b3x} and by = {b1y, b2y}. Here, both b3x
and b2y are not excited since respectively cx and cy are not activated enough to

drive them towards their threshold. However, b2x excites (with weights h
2
) the

LTL units in cell D2,2 and D1,2 and inhibits (with weights −h
2

) the LTL units
in cell D2,1 and D1,1. Equally, b2y excites (with weights h

2
) the LTL units in

cell D2,1, D2,2 and D2,3 and inhibits (with weights −h
2

) the LTL units in cells
D1,1, D1,2 and D1,3. The b1x and b1y units excite respectively cells {D2,1, D1,1}
and {D1,1, D1,2, D1,3}, but these do not inhibit any cells (due to boundary
conditions).

2.3.4 Linear Transformation Layer

The LTL embodies the set of affine-linear transformations of the NDA from
which the network is constructed, and thus the set of symbolic operations
defined by the transition table of the simulated automaton. This endows the
LTL with the functional ability of generating an updated encoded machine
configuration from the current one. That is, the affine-linear transformation
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of a NDA, Φi,j(x, y) = (λi,jx x+ ai,jx , λ
i,j
y y+ ai,jy ) within a cell Di,j is simulated

by the LTL unit (ti,jx , t
i,j
y ). This induces the following mapping:

(ti,jx , t
i,j
y ) = ζ i,j3 (x, y) = ρ(·, ·,Φi,j(x, y), ·). (29)

This affine-linear transformation is implemented in the form of synaptic com-
putation, which is only triggered when the BSL units provide enough exci-
tation enabling the two neural units (ti,jx , t

i,j
y ) to cross their threshold value

and execute the operation. The read-out of this process is as follows:

ti,jx = R(λi,jx cx + ai,jx − h+Bi
x +Bj

y)
ti,jy = R(λi,jy cy + ai,jy − h+Bi

x +Bj
y),

(30)

that is, initially the LTL units are rendered inactive with a strong inhibition
bias h implemented as a synaptic projection from a bias unit, which is defined
as follows:

− h

2
≤ −max

i,j,k
(ai,jk + λi,jk ) with k = {x, y}. (31)

This results from the fact that each BSL inputs Bi
x and Bi

y contribute respec-

tively to half of the necessary excitation (h
2
), that sum up and counterbalance

the LTL’s natural inhibition (refer to Equation 27 and Equation 28). The
LTL units also receive inputs from the MCL units (cx, cy), which are re-
spectively modulated by the synaptic weights (λi,jx , λ

i,j
y ) and once the LTL

units cross their threshold (mediated by the ramp activation function) then
the intrinsic constant LTL neural dynamics (ai,jx , a

i,j
y ) completes the desired

affine-linear transformation. The read-out is an updated encoded machine
configuration, which is then synaptically projected back to the MCL units
(cx, cy), initiating the next computation step (related to the original ma-
chine).

2.4 Neuronal Observation Models

In order to compare connectionist simulation results with experimental ev-
idence from neurophysiology or psychology, one needs a mapping from the
high-dimensional neural activation space Γ ⊂ Rn into a much lower-dimensional
observation space that is spanned by p ∈ N observables ϕk : Γ → R
(1 ≤ k ≤ p). A standard method for such a projection is PCA [Elman,
1991]. If PCA is restricted to the first principal axis, the resulting scalar
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variable could be conceived as a measure of the overall activity in the neural
network (as in beim Graben et al., 2008). Other important scalar observ-
ables that have been discussed in the literature are Smolensky’s harmony
[Smolensky, 1986]

H =
∑
ij

uiwijuj

with u = (ui) as the network’s activation vector and W = (wij) its synaptic
weight matrix, or Amari’s mean network activity [Amari, 1974]

A =
1

n

∑
i

ui . (32)

The development of biophysically inspired observation models is an impor-
tant research field in computational neuroscience [beim Graben and Ro-
drigues, 2013] as it could eventually lead to “synthetic” local field poten-
tials (LFPs), electroencephalogram (EEG), or event-related brain potentials
(ERPs) [Barrès et al., 2013]. We shall use Amari’s measure (32) to derive
such synthetic ERPs in what follows.

3 Results

The implementation of the R-ANN discussed in the previous Sections simu-
lates a NDA in real-time and thus simulates its associated machine in real-
time. More formally, it can be shown that under the map ρ(·) the commu-
tativity property, ζ ◦ ρ = ρ ◦ Φ (see commutative diagram of Figure 1) is
satisfied. The NDA simulation (and thus the machine simulation) by the
R-ANN is achieved by a combination of synaptic and neural computation
among three neural types (MCL, BSL, and LTL) and with a total of neural
units equal to

nunits = 2 + nα + nβ + 2nαnβ + 1 (33)

where nα and nβ are the number of sub-sequences that can appear respec-
tively in the left and right Domain of Dependence of the VS from which
the NDA and the R-ANN are constructed. That is, a total of 2 MCL units,
(nα+nβ) BSL units, 2nαnβ LTL units and a bias unit, that establish synaptic
connections according to a synaptic weight matrix A of size (nunits × nunits)
following the connectivity pattern described in Figure 4. Specifically, the
synaptic weights in A are entries from the set {0, 1, h

2
, −h

2
} ∪ {ai,jk − h | i =
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1, . . . , nαnβ , j = 1, . . . , nβ , k = x, y}, with the second set being the set
of biases. A point worth mentioning is that the original formulation of the
NDA relied on a simple Gödel encoding of the machine configurations, but
subsequent work highlighted the advantages of using a more flexible represen-
tation by employing Cylinder sets, in order to preserve important structural
relationships of the symbolic descriptions and to facilitate modeling [beim
Graben et al., 2008, 2004, beim Graben and Potthast, 2009]. Our R-ANN
can be extended to incorporate a Cylinder set encoding of machine configu-
rations by simply doubling the MCL and LTL layer.

An important modeling issue to consider is that of the halting conditions
for the ANN, i.e. when to consider the computation as terminated. VSs,
on which NDA and consequently our ANN model depend, do not define ex-
plicit halting conditions. However, two equally reasonable choices of halting
conditions could be employed as follows. The first one is that of using a
homunculus [beim Graben et al., 2004], an external observer which decides
to intervene on the computation once some condition is met (for example,
halting the computation when the input is in a certain region of the unit
square). The second one is that of using a fixed point condition: implement-
ing a machine halting state as an Identity branch on the NDA. This way a
halting configuration will result in a fixed point on the NDA, and thus on
the R-ANN. In other words, the network’s computation halts if and only if

ζ1(x
′, y′) = (x′, y′). (34)

A halting by homunculus could be more appropriate in the context of in-
teractive computation [beim Graben et al., 2008, Wegner, 1998] where con-
stant and non-terminating interaction with the environment is assumed, or
in cognitive modeling, where different kinds of fixed points, either desired or
unwanted ones, are required in order to describe sequential decision prob-
lems [Rabinovich et al., 2008], such as linguistic garden paths [beim Graben
et al., 2008, 2004].

We will now present two examples to demonstrate the strength of our
developed methodology in mapping automata computation to R-ANN com-
putation in real-time (an additional example on Turing Machines is available
in the supplementary materials). The source code for all the examples is
freely accessible via Carmantini [2015].
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3.1 Example 1: Finite-State Locomotive Pattern Gen-
erator

FSMs are at the basis of many state-of-the-art approaches to the construction
of locomotion controllers for articulated robots (see for example Alvarez-
Alvarez et al., 2012, Collins and Ruina, 2005). They are easy to design,
implement, and debug, and their relation with animal gait is well character-
ized [McGhee, 1968]. On the other hand, recent research in robot locomotion
control shows an increasing interest towards alternative approaches based on
CPGs, neural networks capable of producing rhythmic patterns of activation
in absence of rhythmic input sources. In his 2008 paper, Ijspeert presented
the benefits and drawbacks of CPGs with respect to other approaches for
robot locomotion control. We briefly summarize the benefits identified by
the author: i) the rhythmic behavior supported by CPGs is robust to the
transient perturbation of state variables; ii) CPGs are well-suited for dis-
tributed implementations (such as in modular robots); iii) CPGs reduce the
dimensionality of the control problem by introducing few high-level control
parameters allowing for the modulation of the locomotion; iv) CPGs are ide-
ally suited for the integration of sensory feedback through coupling terms
in the differential equations of the controller; v) CPGs often work well with
learning and optimization algorithms. On the other hand, as specified by the
author, CPG-based approaches are still lacking of a sound design method-
ology and theoretical grounding for their description. In the example pre-
sented in this Section, we will show how our mapping could aid the design of
CPGs producing arbitrary patterns for locomotion in robots, starting from
a FSM description of the desired rhythmic pattern. By combining the two
approaches, the design of these controllers benefits from the solid theoretical
grounding of FSM-based locomotion and from its ease of design and imple-
mentation. To contextualize our derived CPG in terms of familiar animal
locomotion, we qualitatively model the results of a well-known experiment
on cat gait.

In their seminal work, Shik et al. [1966] applied different levels of electri-
cal stimulation to the midbrain of a decerebrated cat. The authors observed
transitions in the gait of the animal as an increasing level of stimulation
was applied, eliciting first a walk, then a trot and finally a gallop gait. Our
theoretical framework can qualitatively reproduce these experimental obser-
vations, by deriving a R-ANN which generates the relevant gait patterns,
and reproduces the transition between them as a function of the applied
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Symbols States

q1 q2 q3 q4

<lo> q3 q4 q2 q1

<hi> q2 q3 q4 q1

Table 2: State transition table for the simulated Central Pattern
Generator finite-state automaton. It is possible to observe how differ-
ent input leads to different produced patterns, implemented as sequences of
states.

stimulus strength. To keep the exposition simple, we will only consider the
walk and gallop gaits, and the transition between the two. In the study of
the mammalian quadruped gait, the four legs are numbered so that each
gait can be associated with a certain sequence, given by the order in which
the legs touch the ground over one gait cycle. The left and right hind legs
are associated respectively with the numbers 1 and 2, and the left and right
fore legs are associated respectively with the numbers 3 and 4. The gait
cycle is assumed to start when the left hind leg touches the ground. A walk
gait is thus defined by the sequence (1, 3, 2, 4), and a gallop gait is defined
by the sequence (1, 2, 3, 4). At a very high level, the computation carried
out by the CPG in charge of producing the gait patterns in the quadruped
mammalian can be informally stated as: if stimulation from midbrain is low,
sequentially activate legs following pattern (1, 3, 2, 4). If it is high, sequen-
tially activate legs from pattern (1, 2, 3, 4). We can implement the low level
and high level of stimulation as the two input symbols of a FSM, and con-
struct the δ transition function to sequentially reproduce the two patterns
by switching between states. The FSM can thus be defined as in Table 2.
This FSM can now be mapped (via our proposed approach) into a R-ANN,

consisting in this case of 22 neural units (according to Equation 33). The
chosen gamma functions for the Gödel encoding of this FSM are defined as
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follows:

γs(σ) :=

{
0 if σ = <lo>

1 if σ = <hi>
γq(q) :=


0 if q = q1

1 if q = q2

2 if q = q3

3 if q = q4

The step-by-step dynamics of the derived R-ANN can be observed in Fig-
ure 7. Here we use the machine’s input as the substrate for the external
stimulus, which is ultimately encoded by the neural unit cy within our R-
ANN as shown in the bottom plot of Figure 7. Note how we manipulate the
activation of cy to gradually increase from a low to a high level of stimula-
tion. That is, we introduce a continuous control parameter into an originally
pure symbolic model, enabling us to carry out a bifurcation study in analogy
with traditional coupled oscillator models [Collins and Richmond, 1994, Gol-
ubitsky et al., 1998, 1999, Schöner et al., 1990]. Under this stimulation, the
R-ANN defined by the mapping qualitatively reproduces the key features of
the CPG involved in the locomotion and transitions described in Shik et al.
[1966]. In particular, it is possible to observe how low levels of stimulation
elicit the production of the walk gait cycle, whereas an increase in the level
of stimulation induces a sudden transition to the gallop gait cycle.

This key relation between the stimulation level (i.e a real control param-
eter) and the computation carried out by the network, which can be related
to the underlying symbolic space thanks to the mapping, depends upon an
informed decision in the gamma numbering of the states for the Gödel en-
coding. In fact, the chosen gamma numbering ensures that the unit square
encoding of machine configurations where <lo> is the current input symbol
corresponds to all points (x, y) such that x < ψy(<hi>) where ψy is defined
as in Equation 18, and specifically ψy(<hi>) = γs(<hi>)g−1s = 1

2
. In terms

of the underlying NDA representation, increasing the activation of cy until
its value reaches and exceeds 1

2
corresponds to forcing the encoded machine

state to cross the boundary between cells associated to a <lo> input symbol
to those associated to a <hi> input symbol, thus causing a transition between
a walk and a gallop gait. Note that in this example, we do not model halting
conditions for the derived network, as it is not clear what halting means in
the context of the computation performed by CPGs.

To summarize, we derived a CPG from a FSM description of a locomotion
controller, inspired by results on the generation of gait patterns in the cat
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Walk Gallop

1 3 2 4 1 2 3 4

Figure 7: Recurrent artificial neural network functioning as a Cen-
tral Pattern Generator. The network reproduces the qualitative behavior
of the locomotive Central Pattern Generator described in Shik et al. [1966].
In the bottom plot, the level of stimulation applied to the network through
neuron cy is shown. In the top three plots, the levels of activation of each
neural unit in the three layers is shown for each time step. Note how two
different patterns, walk and gallop, are generated depending on the level of
stimulation. This results from the way the original finite-state machine was
programmed.
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midbrain. By doing so, we outlined a new design methodology for CPG-
based locomotion control in robots which does not suffer from some of the
drawbacks of other CPG approaches, by grounding the description and design
of the CPG on the theoretical grounding of FSM-based approaches. Some
problematic aspects of the methodology we outlined are due to the discrete-
time nature of our mapping. In fact, fully realizing the benefits of CPG-based
approaches summarized at the beginning of this Section requires continuous
time models. This notwithstanding, we believe that the proof of concept we
provide here already shows encouraging results for future developments.

As an additional remark, the methods we describe in this paper are ide-
ally suited for the deriving of neural networks implementing paradigms of
interactive computation, as we will demonstrate shortly. This is especially
relevant for the design of CPGs. In fact, recent research has unveiled a sur-
prising degree of hierarchical organization in mammalian respiratory CPGs,
which allows for a highly robust and flexible pattern production that can
adapt to a variety of conditions (see for example work by Smith et al., 2007,
2013). Our methodology easily accommodates the mapping of hierarchies of
automata to hierarchically organized neural networks, as we demonstrate in
the next example through the modeling of garden-path parsing, a concept
employed in language processing [beim Graben et al., 2004]. Importantly,
networks of automata could be used to design complex pattern generation in
modular robots (see Spröwitz et al., 2014 for a recent example of modular
robots using a distributed CPG for locomotion).

3.2 Example 2: Interactive Automata Networks

Interactive computation [Wegner, 1998] is a recent theoretical development
that seeks to formalize the complexity of interactions that we observe in real-
world computing. In classical Automata Theory, the interaction between an
automaton and the external world is restricted to an input-output relation.
That is, the external world provides an input, the automaton performs its
computation on that input, and then returns an output to the external world.
Within the framework of interactive computation, instead, automata can in-
teract with the external world (and with other automata) at every step of
their computation. External forces can act on the configuration of the au-
tomaton, and the configuration can itself affect the external world. Clearly,
this framework provides a much richer language to describe models of com-
putation, and is especially useful to express notions of compositionality and
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concurrency. These constructs are essential not only in the study of modern
computing systems, but also in the context of cognitive modeling. In this
example, we will build a model of the human processing of locally ambiguous
sentences by constructing a network of interactive automata. Through this
proof-of-concept, we want to demonstrate the flexibility of our approach by
showing how it can be seamlessly used to construct neural networks imple-
menting interactive systems. In order to do so, we choose a system that i)
is simple enough to allow for clear exposition, but complex enough to carry
out a meaningful computation; ii) is composed by a range of different au-
tomata; iii) incorporates different forms of interaction between its automata
components.

Garden-path sentences are locally ambiguous sentences that induce the
temporary production of an erroneous parse by the reader, which is then
forced to reconsider their interpretation of the previously presented material
in order to finally reach a correct parse. Consider for example the sentence
“I convinced her children are noisy”. In reading the sentence, the reader
first constructs an intermediate parse where “her children” is the object of
the phrase “I convinced”. After reading the rest of the sentence, the reader
realizes that the intermediate parse was incorrect: “her” is the object of “I
convinced”, and “children are noisy” is a subordinate clause. The reader
thus reanalyzes the sentence to produce a correct parse. Osterhout et al.
[1994] have shown that the reanalysis of a sentence due to a garden-path is
associated in the brain of the reader with a positive deflection 600 millisec-
onds (P600) after the onset of a garden-path – the word “are” in the example
above – in sequentially presented sentences, as measured by a trial averaged
electroencephalogram (thus obtaining event-related brain potentials).

Many proposals have been advanced to account for the mechanisms un-
derlying the reanalysis of incorrectly parsed sentences due to garden-path
effects. In our model, we implement the reanalysis through a diagnosis and
repair mechanism, described in Lewis [1998]. By this account, the parser
tries to incrementally build a parse as the sentence material is presented.
If a dead-end is reached (i.e. the parser becomes stuck in a garden-path),
the parser diagnoses the need for reanalysis, and the search space of possible
continuations of the parse is modified by some repair operator that “bridges”
the dead-end to another point in the search space, allowing the parser to cor-
rectly complete the processing of the sentence. The parser model we create
implements this mechanism to process garden-path sentences where the lo-
cal ambiguity is given by the incorrect assignment of the subject and object
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grammatical constituents.
In many languages, native speakers have been shown to prefer to inter-

pret an ambiguous nominal constituent as a subject rather than an object.
Consider for example the following two sentences, extracted from the ERP
study on ambiguous pronouns by Frisch et al. [2004] on German speakers.
Both sentences start with

Nachdem die Kommissarin den Detektiv getroffen hatte . . .
After the cop the detective had met . . .

“After the cop had met the detective, . . . ”

One of the sentences then continues with a clause in subject-object order (s-o
sentence), i.e. the preferred order in the parsing of ambiguous constituents:

[(1)]

(s-o sentence)

. . . sah sies den Schmugglero

. . . saw she the smuggler

. . . “she saw the smuggler”

In this case, the reader correctly interprets “sie” to be the subject of the
second clause, and “den Schmuggler” as the object (as “den Schmuggler” is
in the accusative case, thus specifying a direct object to the verb “sah”).
The second sentence is instead in the dispreferred object-subject order (o-s
sentence):

[(1)]

(o-s sentence)

. . . sah sieo der Schmuggler s

. . . saw she the smuggler

. . . “the smuggler saw her”

The psycholinguistic study by Frisch et al. [2004] has shown that the reader
first tries to apply the preferred subject-object parsing strategy to this clause
(and sentences with similar subject/object pronoun ambiguity). The reader
thus initially interprets “sie” as the subject of the clause in nominative case,
expecting it to be followed by the object in accusative. Upon further reading,
however, they realize that “der Schmuggler” is in the nominative case instead,
and thus has to be the subject. This leads the reader to reconsider the
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previous material to correctly parse “sie” as a pronoun in accusative case,
the direct object of the verb “sah”. This reanalysis was observed as a P600
effect in the ERP.
At a high level of abstraction [beim Graben et al., 2004], we can capture the
structure of these sentences through a CFG G with production rules:

S→ s o (s-o)

S→ o s, (o-s)

where S is a distinguished starting non-terminal, and where the s and o

terminals stand respectively for “subject” and “object” phrase.
In our model we thus split the G grammar into two grammars Gs-o

and Go-s, comprising respectively of the s-o and o-s production rules [beim
Graben et al., 2004], and reflecting the existence of two strategies in the
parsing of sentences with subject/object pronoun ambiguity. To recognize
the two different sentence structures, our model is endowed with two spe-
cialized TDRs, constructed from the Gs-o and Go-s grammars as shown in
section 2.1.2. Initially, the s-o TDR is tried on the input, to model the
subject-object interpretation preference. In case it fails because of a garden
path, the model acts as prescribed by a diagnosis and repair account. That
is, it first diagnoses that a problem has arisen in parsing, repairs the parse,
and finally switches strategy to correctly parse the input. In order to imple-
ment the diagnosis step, our model needs a way to monitor the state of the
parse and extract the relevant diagnostic information. We implement this
through a Diagnosis PDA (see Table 3), which compares the current parse
with that from the previous time step; if the parse didn’t change, that means
that the parser is stuck and can’t process the input further. In that case the
Diagnosis PDA changes its state to an “error” state, thus implementing the
diagnosis step. The repair step is realized by introducing a Repair VS , that
can be described by the following rewriting rule:

s o . w → o s . w, (35)

corresponding to a reanalysis of the ambiguous sentence in terms of the dis-
preferred object-subject sentence structure. Once the sentence has been rean-
alyzed and thus the parse repaired, the second parser can proceed to process
the input until it has been completely consumed and the stack is emptied. In
order to switch strategies, our model needs a higher-level controller that has
access to diagnostic information about the current parse, and decides which
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Symbols States

pdaqidle
pdaqparsing

pdaqerror

(t,t) (pdaqidle , t) (pdaqidle , t) (pdaqidle , t)

(x, y) (pdaqparsing , y) (pdaqparsing , y) (pdaqparsing , y)

(x, x); x 6= t (pdaqerror , x) (pdaqerror , x) (pdaqerror , x)

Table 3: State transition table for the Diagnosis push-down au-
tomaton (PDA). The input to this machine is the parse produced by the
top-down recognizers (TDRs). For any state, input symbol and stack symbol,
the machine pushes its input to the stack, in order to be able to compare its
current input with the one from the previous time step. In particular, if the
input symbol and top-of-stack are blank symbols, the machine transitions to
an “idle” state, signaling that nothing is happening; if the current input and
the one from the previous time step are different, the machine transitions
to a “parsing” state, signaling that the TDRs are successfully parsing their
input; if the current input and the one from the previous time step are the
same (but not both blanks), then the TDR parsing the input is stuck, and
the machine transitions to an “error” state.
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Symbols States

fsmqs-o
fsmqo-s

fsmqrepair

pdaqidle
fsmqs-o

fsmqs-o
fsmqs-o

pdaqparsing
fsmqs-o

fsmqo-s
fsmqo-s

pdaqerror
fsmqrepair

fsmqo-s
fsmqo-s

Table 4: State transition table for the Strategy finite-state machine
(FSM). The input to this machine is the diagnostic information produced by
the Diagnosis push-down automaton (PDA), i.e. its state. The FSM starts
in state fsmqs-o. In fact, the preferred parsing strategy is that implemented by
the s-o top-down recognizer (TDR), corresponding to the parsing of subject-
object sentences, so that it is tried first. If the s-o TDR fails, the Diagnosis
PDA signals an error; the input sentence is not in subject-object order, and
a switch of parsing strategy is needed. The Strategy FSM first changes state
to fsmqrepair, activating the Repair versatile shift (VS) so that the switch can
take place. Repairing the parse leads the Diagnosis PDA to signal that the
parsing started again, so that the new input for the Strategy FSM becomes
again pdaqparsing. Given pdaqparsing in input and fsmqrepair as a current state, the
FSM moves to the fsmqo-s state, leading to the activation of the o-s TDR,
until the input has been parsed.

parsing strategy to apply. In particular, this controller should first activate
the preferred s-o TDR. If the parser failed (as signaled by the Diagnosis
PDA) then the higher-level controller should first activate the Repair VS to
allow for the reanalysis of the ambiguous sentence, and subsequently acti-
vate the o-s TDR. We implement the high level controller through a Strategy
FSM (see Table 4), endowed with the capability of selectively activating the
s-o and o-s TDRs, as well as the Repair VS, by switching its internal state.
This machine receives the diagnostic information provided by the Diagnosis
PDA as input. The FSM has three states, namely an “s-o” state, a “repair”
state, and an “o-s” state. By switching between these states, the FSM can
activate the respective automata. Note that this form of interaction is not
defined for the VS introduced in Section 2.1.1. That is, we do not define a
way for a VS to “call” other shifts. Extending VSs to incorporate notions
of compositionality and concurrency will allow the refining of the mapping
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presented in this paper to reflect these new capabilities. For the moment,
we just want to demonstrate the possibilities opened by the present work;
for this reason, we will implement the “subroutine” capability in our neural
network through a familiar mechanism already encountered in the previous
Sections, ignoring momentarily the missing theoretical details and leaving
their definition for future work.

To avoid race conditions, at most one automaton in the interactive net-
work can re-write symbols in a sub-sequence at any given computation step .
The “parse” sub-sequence can only be read, but not re-written, by the Diag-
nosis PDA. Similarly, the “diagnosis” sub-sequence can only be read, but not
re-written, by the Strategy FSM. Furthermore, the selective activation of the
s-o TDR, the o-s TDR, and the Repair VS operated by the Strategy FSM
ensures that at any given computation step only one between these automata
can perform symbolic re-writing on the “input” and “parse” sub-sequences.

To map the system of interactive automata to a R-ANN, we first con-
vert each of its component in the familiar way, as described in the previous
Sections. That is, the s-o and o-s TDRs, the Repair VS, the Diagnosis
PDA, and the Strategy FSM are first converted to VSs acting on dotted se-
quences, then mapped to their NDA representation and finally to R-ANNs.
The Gödelizations of the “input”, “parse” and “strategy” sub-sequences are
defined as in Equation 18, with each of the gamma enumerating functions
defined as follows:

γinput := {(t, 0), (S, 1), (o, 2), (s, 3)}
γparse := {(t, 0), (o, 1), (s, 2)}

γdiagnosis := {(pdaqidle, 0), (pdaqparsing, 1), (pdaqerror, 2)}
(36)

where each function is represented as a set of (σ, k) pairs, with σ being a
symbol and k ∈ N its enumeration. The Gödelization of the “diagnosis”
sub-sequence is instead defined as in Equation 19, with

γstrategy := {(fsmqs-o, 0), (fsmqo-s, 1), (fsmqrepair, 2)}

enumerating the states of the Diagnosis PDA, and γparse (already defined
in Equation 36) enumerating its stack symbols. Having mapped each of the
machines to a R-ANN, we can use the derived networks as components of the
overall system architecture (see Figure 9 for the full architecture). In order
to simplify the exposition, we construct the overall network to feature only
one set of recurrent connections. To do so, we endow our architecture with 4
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PDA

Figure 8: Interactive automata network for parsing of garden path
sentences. The figure shows the complete system described in Section 3.2.
For simplicity, we show the various automata components as acting on their
configurations represented as dotted sequences. Dotted sub-sequences of the
same color are coupled, i.e. they are for all intents and purposes the same sub-
sequence. For example, the “parse” dotted sub-sequence that contains the
current stack of the top-down recognizers (TDRs) and of the Repair versatile
shift (VS), is at the same time the input tape of the Diagnosis push-down
automaton (PDA). Similarly, the “diagnosis” sub-sequence that stores the
current state and stack of the Diagnosis PDA, is at the same time the input
tape of the Strategy finite-state machine (FSM). Note that a second form of
interaction, other than that allowed through the sharing of dotted sequences,
is present in the automaton. In particular, the s-o and o-s TDRs and the
Repair VS are activated based on the state of the Strategy FSM.
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Configuration Layers (CLs), containing the “strategy”, “diagnosis”, “parse”,
and “input” sub-sequences. Between each CL and the next, the network
components derived from the automata are connected to perform their part
of the processing on the relevant subsequences. In particular, if the VS
representation of an automaton acts on some α.β dotted sequence, the input
of its associated network component is connected to the units encoding the α
and β subsequences in the i-th CL, whereas its output (which is a recurrent
connection to the MCL layer in the original mapping) is connected to the
units encoding α and β in the (i+ 1)-th CL. The final CL is connected with
a I4×4 synaptic weight matrix to the first CL layer (i.e. each unit encoding
a subsequence of the last CL is connected with a weight of 1 to the same
unit in the first CL). Finally, to implement the subroutine call capabilities
of the strategy FSM, we add a Meta branch selection layer that takes the
“strategy” subsequence as input, and is connected with the lateral inhibition
connection pattern specified in Section 2.3.3 to the s-o and o-s TDRs, and
to the Repair VS. Note how this creates a nested structure, with the s-o
TDR, the o-s TDR, and the Repair VS functioning as higher-level symbolic
operations of a Parser machine. This is reflected in the nested structure of
the Parser R-ANN sub-network, where the lower-level machines function as
cells in a LTL, controlled by the Meta BSL (see Figure 9).

In Figure 10 we show the network activation when two different sentence
structures are presented in input. In particular, note the serial activation of
the s-o TDR, Repair VS and o-s TDR sub-networks when a object-subject
sentence is presented. By mapping the parser from a machine evolving in
a symbolic space to a neural network evolving in a vectorial space, we are
now able to compute synthetic event-related potentials, or “synth-ERPs”,
[Barrès et al., 2013, beim Graben et al., 2008] as trial-averages of the mean
network activation, as discussed in Figure 11. This is achieved by calculating
the mean global network activation according to Amari [1974] (Equation 32)
for a simulation over 100 trials for each input stimulus, where random initial
conditions compatible with the symbologram representation of the input are
prepared according to beim Graben et al. [2008]. In brief, symbologram-
compatible random initial conditions are generated through the Gödelization
of sequences of the form wαu.vwβ, where u.v is the dotted sequence describing
the input to the system, and wα, wβ ∈ A∗ are random sequences of symbols
in A.

As Figure 11 reveals, the network shows a P600-like effect in the pro-
cessing of garden-path sentences, with a peak of increased and sustained
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Figure 9: Garden-path parsing network architecture. In order to sim-
plify the exposition, we construct our network such that the only recurrent
connection is that from the last to the first layer of the network (i.e. CL 4
to CL 1, where CL stands for Configuration Layer). Note that the Parser
sub-network is itself composed of the s-o top-down recognizer (TDR), the o-s
TDR, and the Repair versatile shift (VS) sub-networks. These are arranged
as cells of a linear transformation layer (LTL), and selectively activated by a
Meta branch selection layer (BSL) controlled by a “strategy” neural unit.
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Figure 10: Network activation for subject-object and object-subject
sentence presentation. Notice the serial activation of the s-o, Repair and
o-s sub-networks in case of an object-subject sentence presentation, and the
longer “tail” of activation, reflecting the additional computation needed to
process the dispreferred input.
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activation with respect to the control condition. The simplified model of
garden-path processing we presented here does not yet allow for a direct
quantitative comparison with experiments such as in Frisch et al. [2004] (in
fact, a carefully crafted model would require a level of detail and attention
which goes beyond the scope of this paper). Yet, these simulations could
be the starting point for more detailed statistical correlation analyses [beim
Graben and Drenhaus, 2012, Frank et al., 2015] in future work, relating these
computations to electrophysiological measurements.

4 Discussion and Outlook

In this study we have developed a constructive, transparent, modular and
parsimonious mapping from symbolic algorithms to neural networks. We first
introduced a novel shift map, the versatile shift, that extends the generalized
shift and allows for the real-time simulation of a range of symbolic models
of computation. We then showed how VSs can be represented on a vec-
torial space through Gödelization, obtaining piecewise affine-linear systems
on the unit square known as nonlinear dynamical automata [beim Graben
et al., 2008, 2004, Tabor, 2000, Tabor et al., 2013]. Finally, we presented
a modular R-ANN architecture that simulates the dynamics of NDA. The
proposed architecture consists of three layers: a machine configuration layer
representing the NDA state, and thus the symbolic data in the simulated
automaton; a branch selection layer implementing the NDA switching rule,
thus characterizing the automaton’s decision space, or control; and the linear
transformation layer implementing the set of piecewise affine-linear functions
in the NDA, i.e. the vectorial representation of the symbolic operations de-
fined in the transition table of the simulated automaton. Additionally, the
linear transformation layer is itself modular, in that each operation speci-
fied by the δ transition function of the simulated automaton is applied by a
specific pair of units in the layer.

The mapping can be used to simulate any Turing machine through R-
ANNs, thus making the architecture universal (an example of the mapping on
Turing Machines is reported in the supplementary materials). In particular,
it is possible to simulate the 7-states 4-symbols UTM by Minsky [1962] in
real-time with a R-ANN consisting of 259 units 6 (see Equation 33), and the

6This implies a reduction factor of 1/3 when compared to the solution by Siegelmann
and Sontag [1991, 1995], which simulates Minsky’s UTM with a network of 886 units.
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Figure 11: Synthetic P600 event-related brain potential as mean
Network activation for random cloud of initial conditions. In this
figure we show the mean global network activation calculated through Equa-
tion 32 for each time step of two simulations, averaged over 100 trials. For
each of the two simulations, we run the network presenting at time t = 2 one
of 100 random inputs generated compatibly to the symbologram representa-
tion of one of two sequences. In other words, noise is added to each input such
that, if the input was generated by Gödelizing a sequence of length n, decod-
ing the input would yield the original sequence in the first n symbols, with
the rest being a random symbolic continuation. If stronger noise was added
instead, that would have prevented the network to correctly perform its com-
putation, as we would have destroyed essential input information. In blue,
we show the averaged mean activation (light blue) and its standard deviation
(dark blue) for a presented input encoding the sequence S.so, representing
an input sequence in subject-object order, i.e. the network’s preferred order
as explained in Section 3.2. Note that the parsing is completed at t = 5.
In red, the averaged mean activation (light red) and its standard deviation
(dark red) for an input encoding the sequence S.os, representing an input
sequence in object-subject order, leading to a garden path in the parsing of
the input. The time at which the diagnosis (t = 4) and repair (t = 5) steps
are carried out in the symbolic interactive system (and thus in its recurrent
artificial neural network mapping) is indicated by arrows. We also report, at
the top and bottom of the plot, the configuration of the parser networks as a
dotted sequence for each time step, for respectively the garden path and the
control condition. Note how the garden-path processing is associated with a
strong divergence in activation starting from time t = 5, and followed by a
longer tail than that of the network in the control (preferred) condition. This
reflects the additional computation needed by the network to successfully re-
solve the garden path in parsing, and qualitatively corresponds to the P600
event-related brain potential measured in psycholinguistics experiments (see
Section 3.2). Furthermore, note that in both conditions the network starts
and returns to a “resting state”, waiting for input to process from the ex-
ternal world, implementing a notion of continuous computation which is the
hallmark of interactive systems.
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6-states 4-symbols UTM by Neary and Woods [2009] with one consisting of
223 units.

It is important to analyze some of the modeling choices that have been
made in the R-ANN architecture we described. A choice worth discussing
is that of implementing biases as synaptic projections from an always-active
unit as opposed to implementing them as parameters intrinsic to the indi-
vidual units. We decided for simplicity to add a bias unit. Nonetheless, a
parameterized bias would have been equally reasonable. While it does not
have strong bearings on the model here discussed, it is interesting to note
that the specific choice of implementation does more or less put the empha-
sis on a predominantly synaptic computation versus a computation which is
more distributed between the synaptic and the neuron level, reflecting simi-
lar issues to be considered in the biological domain. A second consideration
concerns the cell’s boundaries in the NDA. In fact, the distance between
the right bound of a cell and the left bound of the next one is zero. This
poses some challenges, as even extremely small noise on the state vector at a
boundary can lead to an erroneous application of the switching rule on the
real state, and thus to a disruption of the computation. This is of course
reflected in the dynamics of the associated R-ANN as well. Siegelmann and
Sontag [1995] solve this issue by using a Cantor encoding as opposed to a
simple Gödelization, ensuring a greater than zero distance between two en-
coded configurations with different leading symbols. The same methods can
be applied here. Interestingly, by switching to a Cantor encoding, the Heav-
iside units in the BSL layer can be substituted with functionally equivalent
Ramp units, so that the R-ANN would only make use of linear units à la
Siegelmann and Sontag.

We will now first discuss the advantages of our approach over those based
on eliminative connectionism, and then the advances that the present work
brings to transparent connectionism.

Compared to eliminative approaches, our work allows the direct inter-
pretation of the representations and the dynamics in the derived network
in terms of symbolic computation. This has many important consequences.
First, while conventional neural networks have to be trained on large data sets
(usually using backpropagation or related algorithms, see Werbos, 1990) our
method does not require any training, as the synaptic weight matrix is explic-
itly designed from the machine table of the encoded automaton. Emergent
representations and operations are not opaquely encoded in several hidden
layers but transparently realized through Gödelization of symbolic configura-
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tions. Second, even when considering learning applications – which we plan
to explore in future developments – the derived approach could bring about
the exciting possibility of a symbolic read-out of a learned algorithm from
the network weights; Note that in this architecture all weights are necessarily
fixed, with the exception of the connections encoding the symbolic operations
in the simulated automaton, i.e. those between the MCL and the LTL layer.
Third, anchoring the computation of the network to well-understood com-
putation models is worthwhile when tackling problems that can benefit from
the integration of the two perspectives. In the first example, we constructed
a R-ANN (24 units) performing a FSM machine computation abstracting a
CPG for animal locomotion. FSMs are widely used in locomotion controllers
in robotics, because of their simplicity and strong theoretical grounding in
relation to animal locomotion. On the other hand, neural implementations
of CPG have many desirable characteristics (as discussed in Ijspeert, 2008)
that are not present in FSM-based implementations, but they are difficult to
engineer. We showed that by integrating the two approaches we can tackle
the problem of pattern generation in robotic locomotion more effectively. Of
course, a satisfactory solution would entail the use of continuous-time models
in the mapping; nevertheless, our preliminary results already present distinct
benefits in the integration of the two approaches as compared with their use
in isolation. Fourth, having a complete understanding of the network’s inner
workings allows for the intelligent manipulation of its parameters. In the
discussed CPG example, understanding the computation carried out by the
derived network allowed us to introduce a continuous control parameter elic-
iting a bifurcation in the dynamics of the network, as present in systems of
coupled nonlinear oscillator models [Collins and Richmond, 1994, Golubitsky
et al., 1998, 1999, Schöner et al., 1990], widely studied in the CPG literature.

In regards to previous work on transparent connectionism, our work ad-
vances the field in several ways. As a first advancement, by introducing VSs
we are now able to use NDA to simulate a broad range of symbolic com-
putation models in real-time, extending the original work by Moore [1990,
1991]. Interestingly, it would be straightforward to define n-sided infinite
dotted sequences (where the dot splits a sequence in its n one-sided infi-
nite components), and extended VSs on these. By Gödelization, we would
obtain NDA on the n-dimensional hypercube, which could be simulated by
R-ANNs through a straightforward extension of the architecture presented
in this work. This would further extend the range of real-time simulable
computational models to automata with multiple tapes or stacks [Aho, 1969,
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Weir, 1994]. Secondly, by basing our construction on NDA, we obtain an
architecture characterized by a fully distributed representation coupled with
a granular modularity, differentiating our approach from previous work and
granting a series of advantages. The mapping is transparent not only with re-
gards to the representations (the data), but also with regards to the symbolic
operations defined in the simulated computational model and their control,
all clearly localizable in the architecture. We regard this as an advance in
itself (in line with the goals of transparent connectionism), but it also allows,
for example, for the straightforward mapping of interactive automata net-
works to R-ANNs. This is of fundamental importance, as the framework of
interactive computation provides a rich language for the description of many
complex systems, for example in cognitive modeling. In the second example
we constructed a network of interacting automata as a diagnosis and repair
model [beim Graben et al., 2008, 2004, Lewis, 1998] for the reanalysis of
linguistic garden path sentences. The network consisted of three PDA (two
of them as TDRs), a VS, and one FSM as a master control program, with
each component carrying out a specific and intelligible task in the overall
computation. We then mapped this network to a R-ANN (266 units), thus
obtaining a symbolic/connectionist implementation of a cognitive model. In-
terestingly, due to the multiple levels of hierarchical organization that can be
present in the automata network (which comprises nesting, as in the diag-
nosis and repair network) and, thus, in the derived R-ANN, one could even
speculate about thermodynamic limit networks when the number of modules
approaches infinity, presenting emergent scale-free or small world proper-
ties [Albert and Barabási, 2002]. The granular modularity of our approach
is also a key advancement when considering the possibility of correlational
studies with neurophysiological measurements. In previous work we showed
how to devise large-scale biophysical observation models in order to correlate
top-down modeling approaches with neurophysiological data obtained from
bottom-up measurements [Amari, 1974, beim Graben and Rodrigues, 2013].
The process involves associating neural units of our model with neuronal
masses [Jansen and Rit, 1995, Lopes da Silva et al., 1974] or Hebbian cell as-
semblies [Hebb, 1949, Huyck, 2009, Wennekers and Palm, 2009] in large-scale
brain models, as investigated, e.g., in neural field theory. With this setup we
then show that our observational models lead to improved interpretation, e.g
of “synthetic event-related brain potentials” (as discussed in Section 2.4, see
Barrès et al., 2013, beim Graben et al., 2008) as used in computational neu-
rolinguistics studies [Barrès et al., 2013, beim Graben and Drenhaus, 2012,
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Gigley, 1985], where mental/cognitive states can be associated to metastable
states of a dynamical system. In the second example presented here, we com-
puted Amari’s mean activation [Amari, 1974] as an observation model for the
diagnose and repair R-ANN, in order to obtain synthetic ERPs [Barrès et al.,
2013, beim Graben et al., 2008]. Qualitatively, the computed signal exhib-
ited a similar divergence between conditions as measured in the experiment
presented in Frisch et al. [2004]. While preliminary, these are already encour-
aging results for the development of our approach in this direction. In future
work, we envisage that it will be possible to selectively correlate electrophys-
iological measurements with specific components in a derived R-ANN, as
informed by a suitable symbolic model for the computation underlying the
measured quantities. As a third point of interest, the architecture presents
a clear 2D spatial organization in its layout, particularly at the level of LTL
(as highlighted in Figure 6). In a NDA, different transformations are applied
based on the position of the Gödelized automaton data on the unit square.
In the R-ANN architecture, this is implemented through the BSL, which per-
forms a form of spatial pattern matching, activating a specific pair of units
in the LTL through a lateral inhibition mechanism. When considering ex-
tensions to models of higher complexity, the functionality of BSL and LTL
could be implemented through the use of a grid of units with receptive fields,
as defined for example in self-organizing maps (SOMs, see Kohonen, 1982,
Kohonen and Somervuo, 1998).

In future work, we plan to overcome fundamental issues with the current
model which have bearing both in relation to learning applications and to
the extension of the model to continuous dynamics. For what concerns the
learning of algorithms from data, the current model suffers from a missing
end-to-end differentiability, due to the use of Gödel encodings. This is a
serious limitation, as it prevents the use of gradient descent methods for
the training of the network’s weights. Future work will have to address this
limitation, possibly relying on methods of data access and manipulation akin
to modern R-ANN approaches such as in Graves et al. [2014], Grefenstette
et al. [2015], Joulin and Mikolov [2015], Sukhbaatar et al. [2015], Weston
et al. [2014]. Encouraging work on the learning of exponential state growth
languages by Fractal Learning Neural Networks [Tabor, 2003, 2011] could
also inform a revised trainable architecture.

With regards to the extension of the model to continuous dynamics, there
are many ways in which this could be achieved in future work. Importantly,
we are mostly interested in extensions to continuous-time models that are
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excitable. In such systems, trajectories can be perturbed away from a stable
equilibrium (or rest state) and come back to it only after a large excursion
(or spike) in the phase space, upon sufficiently strong input; biophysical ex-
amples of excitable models were initiated in Hodgkin and Huxley, 1952. One
possibility would be to first extend the mapping to discrete-time excitable
models (as in map-based neuronal models, see Girardi-Schappo et al., 2013,
Ibarz et al., 2011), and then move to continuous time via so-called suspension
procedures. There are some potential issues in this endeavor. First of all it
would be crucial to first explore and understand the possible relationships
between excitable regimes in neural models and symbolic dynamics in a com-
putation. That is, to answer the question: how does the excitability property
translate in the realm of symbolic computation? We think there could be
meaningful answers to this question when tackled through the framework
of interactive computation. Another potential issue is that the suspension
process is non-unique and non-trivial in the general case; moreover, it does
not guarantee that the excitability property will be preserved.

Excitability is a crucial matter when dealing with neural tissue of lower
brain structures, such as the Brain stem, where it is possible to neurophys-
iologically identify clear and small neuronal networks. However, neural net-
works models are not the most appropriate level of description for higher
cortical structures, due to the presence of large and highly interconnected
neuronal masses. Models of these structures express slow but large scale pro-
cesses as measured by LFP/EEG. In this context, an alternative approach to
achieve continuous-time dynamics, which we have already explored to some
extent in previous work, is by the framework of heteroclinic dynamics, where
Turing machine configurations can be interpreted as metastable states with
attracting and repelling directions [beim Graben and Potthast, 2009, Krupa,
1997, Rabinovich et al., 2008, Tsuda, 2001], or by the framework of multiple-
time scale dynamical systems [Desroches et al., 2013, Fernández-Garćıa et al.,
2015].
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