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We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser
pulses of moderate intensity and long duration. The effect becomes sizeable for particles that gain almost no
energy through the interaction with the laser pulse.
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Introduction:– In a conceptually simple experiment [1] it
was shown that electron motion in a sufficiently intense laser
becomes relativistic. In that experiment, a laser pulse was
used to ionise a target gas, liberating electrons. After the
electrons left the pulse, their energies and ejection angle were
measured. Different values for these variables are predicted
by relativistic and non-relativistic equations of motion; the
experiment supported the relativistic prediction. (The phrase
‘mass shift’ in [1] refers to the ‘relativistic mass’ mγ; the ex-
periment was not concerned with, and did not observe, the
intensity dependent mass shift, for which see [2].)

In this paper we propose a similar experiment to measure
classical radiation reaction (RR). The problem of RR on the
dynamics of charged particles in electromagnetic (EM) fields
is long standing, and has attracted a lot of attention for more
than a century. It is relevant for charged particle acceleration
in terrestrial laboratories and in ultra-high energy cosmic rays.
The interaction of charged particles with laser radiation pro-
vides special conditions for studying not only the interaction
itself, but also RR effects. Present day PW-class laser facili-
ties, such as BELLA [3], are at the threshold of the interaction
regime dominated by RR effects, which are potentially able to
completely change the nature of charged particle interactions
with EM fields [4–6].

The idea of this paper is simple: the same experiment as
in [1] is performed, and the properties of the emitted electrons
measured. These are then used to test the predictions of the
classical equations of motion with and without RR. There is
no need to measure the properties of the produced radiation.
This is good news in view of the recent finding (for a differ-
ent interaction set-up) that RR effects are almost invisible in
the radiation spectrum while they are more than obvious in
the electron distribution [7]. This difference in size is consis-
tent with the fact that RR effects are suppressed in the photon
spectrum (by a factor of the classical RR parameter, see be-
low) relative to those in the electron spectrum [8].

Review:– Let the laser propagate along the z-axis. The
polar and azimuthal electron ejection angles, relative to this
axis, are θ ∈ {0, π}, ϕ ∈ {0, 2π} respectively. They are
determined by the following electron velocity ratios at large

times, i.e. after the pulse has passed (⊥= {x, y}),

tanϕ =
uy

ux
, tan θ =

|u⊥|
uz

. (1)

In the original experiment [1], the polar angle measurement
was accompanied by a determination of the electron energy,
i.e. its gamma factor, γ = Ep/m. The laser had a pulse
duration of 1 ps and a peak intensity of approximately 1018

W/cm2. The experimental results were compared against the
theoretical analysis of [1] which assumed the laser to be a
plane wave. For propagation along the z-axis, the plane wave
depends on the invariant phase φ := k ·x where the four-
momentum kµ = ω(1, 0, 0, 1) ≡ ωnµ is lightlike and ω is a
typical frequency. In a plane wave, a charge’s velocity com-
ponent n ·u = γ − uz ≡ u− is conserved [9, 10], as is the
transverse canonical momentum; this allows the remaining u+

component to be determined by the mass-shell condition. Let
the pulse extend over 0 ≤ φ ≤ φf and let an electron ‘appear’
in the pulse at phase φi, with velocity ui, following ionisation.
The particle’s subsequent velocity takes on the compact form

uµ = uµi − a
µ + (ui ·a− a2/2)

nµ

n·u
, (2)

in which dimensionless aµ is the phase integral of the (tran-
verse) electric field Eµ ≡ (0,E⊥, 0), from the initial time and
in relativistic units,

aµ(φi;φ) =

∫ φ

φi

dϕ
eEµ(φ)

mω
. (3)

We refer to this as the potential [11]. We have deliberately
made explicit the dependence on the phase value φi at ion-
isation. For the rest of the paper we will also assume, as
in [1], that the electron is at rest immediately post-ionisation,
uµi = (1, 0, 0, 0), which is a natural approximation for ionisa-
tion by a linearly polarised EM wave [12].

With the above assumptions, one finds that the polar emis-
sion angle θ(φi;φf), evaluated at the final phase φ = φf mark-
ing the end of the pulse, obeys

tan θ (φi;φf) =
2

|a⊥(φi;φf)|
, (4)
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FIG. 1. Sketch of the field of a laser pulse. The horizontal dashed
line represents the ionisation threshold. Only the shaded region con-
tributes to the pulse integrals (3) determining the electron ejection
angle.

and that this is correlated with the final gamma factor by

tan2 θ (φi;φf) =
2

γ(φi;φf)− 1
. (5)

This parametric relation was tested and confirmed in [1], for a
variety of targets giving different ionisation times φi.

From (5), the ejection angle measures the energy transfer
to the electron in a plane wave. That this is non-zero does
not contradict the Lawson-Woodward theorem [13–15]. The
loophole is that the electrons do not see the whole pulse; they
are bound in atoms until the pulse’s amplitude exceeds the
ionisation threshold, at which point, φi, they are injected into
the pulse, see Fig. 1. The energy transfer predicted in (5) and
confirmed in [1] is therefore an example of ionisation induced
sub-cycle acceleration [16, 17]. Had the electron seen the
whole pulse, its net energy-momentum gain would have been
zero because a(0;φf) = 0, assuming the background has no
DC-component [18].

Radiation Reaction:– RR terms in the Lorentz-Abraham-
Dirac equation [19–21] appear multiplied by the purely clas-
sical time parameter (temporarily reinstating c)

τ0 :=
2

3

re
c

=
e2

6πmc3
=

2

3
α
λe
c
' 3 fm/c , (6)

re denoting the classical electron radius, α = e2/4π~c '
1/137 the fine structure constant and λe the Compton wave-
length of the electron. A dimensionless parameter εrad char-
acterising RR may be obtained by taking the ratio of τ0 to the
typical time scale of the laser, 1/ω:

εrad := ωτ0 =
2

3

re
λ

=
2

3
α

~ω
mc2

, (7)

with λ the (reduced) laser wavelength. A precursor of this pa-
rameter was already introduced by Lorentz [19], see the useful
overview article [22] and Koga et al. emphasised its impor-
tance in a discussion of RR corrections to nonlinear Thomson
scattering [23]. When εrad approaches unity one reaches a
regime where the RR force is of the same magnitude as the

Lorentz force, but as ~ω ' 200mc2 in this case, one has si-
multaneously entered the quantum regime [24].

In this paper we will treat RR as a correction to the Lorentz
force effects, i.e. we will work to first order in εrad. To this
(and only this) order the Lorentz-Abraham-Dirac and Landau-
Lifshitz equations [25] are identical. (See [26] for a recent
comparison.) We can therefore appeal to the known analytic
solution of the Landau-Lifshitz equation in a plane wave [27],
and then truncate to order εrad. The O(εrad) expressions are
not illuminating, so for simplicity we recall here the exact so-
lution, which may be written akin to the Lorentz solution (2).
Following [27], we introduce

h(φi;φ) = 1− εrad

φ∫
φi

dϕa′2 , (8)

which parameterises the main dynamical effect of RR on a
particle in a plane wave, that being that u− ceases to be con-
served [9, 10]. One has instead u−(φi;φ) = u−i /h(φi;φ),
which is monotonically decreasing. For a particle initially
at rest, and abbreviating a′ ≡ eE/mω, the solution of the
Landau-Lifshitz equation assumes the compact form

huµ = uµi −A
µ +

[
− 1

2A
2 + 1

2 (h
2 − 1)

] nµ
n·u

, (9)

with the modified potential

Aµ :=

φ∫
φi

dϕ (ha′µ + εrada
′′µ) . (10)

A → a in the absence of RR, i.e. when εrad → 0. The essen-
tial point is simply that the predictions of (8)-(10) are quanti-
tatively different from those of (2), so that an experiment like
that in [1] can in principle be used to detect RR effects.

It is here convenient to factorise the electric field into am-
plitude, shape and polarisation. We therefore define a0 =
eEpeak/mω, shape functions fi(φ) and transverse polarisa-
tion vectors εµi obeying εi · εj = −δij , so that a′µ =
a0 fi(φ)ε

µ
i . With this, h can be written in the form h =

1 + εrada
2
0I2, cf. (8), where I2 is a dimensionless integral of

order at most the pulse duration in φ, i.e. 0 ≤ I2 ≤ 2πN .
Here, N denotes the number of cycles in the pulse, so we
can approximate I2 ∼ O(N). The important parameter is
therefore R := εrada

2
0N [28]. One may hence compensate

for the smallness of α and ω/m in (7) by using high inten-
sity and/or long pulses [29]. The regime dominated by purely
classical RR without quantum ‘contamination’ is defined by
the inequality εrad � R ' 1.

The size of RR effects increases quadratically with field,
and linearly with pulse length. Given that high intensity pulses
are formed by tight focussing, it is perhaps best to avoid higher
intensities when discussing plane waves with their infinite
transverse extent. We will therefore consider, for the most



3

0 2 Π 4 Π 6 Π 8 Π 10 Π 12 Π 14 Π
-

Π

2

-
Π

4

0

Π

4

Π

2

0

3
105

Φi

Θ
xz

Γ
L

or
en

tz
-

1

FIG. 2. Left scale: planar angle θxz for N = 1600, a0 = 10,
sin2 envelope, as a function of ionisation time φi, for Lorentz
(blue/dotted) and RR (red/solid). Right: final Lorentz force gamma
for the emitted particles (black/dashed).

part, long pulses with, by modern standards, moderate inten-
sities. We now present some examples. We chose linear polar-
isation and a sinusoidal envelope of compact support [30, 31],

eEx(φ)

mω
= a0 sin

K(φ/2N) sin(φ) , 0 ≤ φ ≤ 2πN .

(11)
We take the parameters of [32]: a0 = 10, N = 1600 and
K = 2, respectively corresponding to an intensity of ∼ 1020

W/cm2, a total pulse duration of ∼ 4 ps at optical frequency
ω ∼ 1 eV, and a sin2 envelope. The results are shown in
Fig. 2; for linear polarisation, the problem is planar and there-
fore we plot the angle θxz = arctan (ux/uz) from the positive
(θxz = π/2) to negative (−π/2) x-axis. In the Lorentz case,
for small φi, the emission direction is almost transverse to the
laser, with a small uz component, so θxz ∼ ± π/2, with the
jumps corresponding to the transverse velocity ux changing
sign while uz stays small and positive. (This is the reason for
plotting θxz instead of θ; it allows us to keep track of these
sign changes.) For ionisation times within the first few cy-
cles of the pulse, RR can give a change in angle as large as
90◦. The difference between the Lorentz and RR prediction
increases with decreasing ionisation time, so that RR effects
are most significant for electrons released in the earliest part
of the pulse. Experimentally, one would therefore like a tar-
get with a low ionisation threshold. The difference in angle is
most significant for those particles which exit the pulse with
the least energy; for the φi in Fig. 2, the final gamma factor
with RR differs from unity by one part in O(105), and differs
from the Lorentz force gamma by one part in O(107). (We
have only plotted the Lorentz result in Fig. 2; we return to this
shortly.) One would therefore like a clean environment in or-
der that these electrons not be deflected before being detected.

This leads us to a further, striking signature of RR. Note
that in Fig. 2, the transverse Lorentz and RR velocities change
sign at the same phases. For sufficiently small ionisation time,
though, RR effects can be such that the emission angle θxz '
π/2 of the Lorentz case changes to θxz ' −π/2 in the RR
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FIG. 3. Left: planar angle θxz , forN = 8 cycles of an a0 = 50 pulse
with sin4 envelope. Right: final transverse velocity, as a function of
φi. The sign flip in the transverse component, for φi . π/4,

is responsible for the large change in emission angle.

case; in other words, a particle which would emerge travelling
slowly in the positive x-direction according to Lorentz, should
emerge traveling slowly in the negative x-direction according
to RR, a 180◦ change in direction.

To provide a concrete example, we take a short pulse of
N = 8 cycles, K = 4 and a0 = 50. Given the discussion
above, this example should not be expected to match a real-
istic short, focussed pulse, but it is nevertheless interesting to
look at the physics involved. The angle θxz is plotted in the
first panel of Fig. 3. For electrons released early in the first cy-
cle, we see the almost 180◦ change in direction in the emission
direction due to RR. This is because, for φi . π/4, RR causes
a sign flip in the transverse velocity ux, see the second panel
of Fig. 3. Note in particular that the RR contribution to the
velocity components is dominant, with the Lorentz force con-
tribution almost vanishing. The uz components (not shown)
remain positive, with the RR result also dominating. This is
an example of the most dramatic deviations from the Lorentz
force, which occur for electrons created at special values of
the ionisation phase φi > 0 such that aµ(φi;φf) = 0, or al-
most so. In the absence of RR these electrons gain no net en-
ergy and therefore come to rest after leaving the pulse, never
reaching the detector to be observed. On the other hand, when
RR is taken into account, it will provide the leading contri-
bution to the electron final velocity and energy [33]. Let us
illustrate what happens using the polar angle of (1). Write
the four-velocity uµ as a Lorentz term uµL and a deviation
δuµ proportional to R (plus, in principle, higher orders), so
that u = uL + Rδu. The explicit expressions for uL and
δu are easily found from (2) and (9), but are not revealing.
We can distinguish two cases, the first being ‘typical’, where
aµ(φi, φf) 6= 0 and then

tan2 θRR = tan2 θL

(
1 + 2R

[
uxLδu

x

uxLu
x
L

− δuz

uzL

])
, (12)

so that RR gives a small, O(R), correction to the Lorentz re-
sult as expected. However, in the case that the Lorentz contri-
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bution vanishes, aµ(φi;φf) = 0, we have instead

tan2 θRR =
δuxδux

δuzδuz
, (13)

which, it is important to stress, is independent of R and εrad.
We have thus found observables where the total effects due
to the Lorentz force cancel and only RR effects remain. This
is not in contradiction to the assumption that RR effects are
small: for the parameters in this paper on has R . 10−3, and
it is easily verified that RR contributions to the velocity com-
ponents are subleading at each instant in time (‘local’ effects).
However, the accumulative (‘nonlocal’) effect due to RR can
still dominate over Lorentz force effects, due to cancellations
in the latter.

Discussion:– Inspired by the successful experiment [1],
and using the same plane wave model, we have identified a
parameter regime in which RR effects are leading rather than
subleading. We are aware, though, that numerical methods
will be essential for extending the above to more refined mod-
els [34–38]. As a preparation for this, we have performed nu-
merical simulations using the code PATRA [39]. For a given
charged particle, the code solves the Landau-Lifshitz equation
using a fourth order Runge-Kutta method. To mimic ionisa-
tion, each particle is assigned a certain unique value of the
electric field amplitude, below which the particle is immo-
bile. When the field exceeds this amplitude, the particle is
‘injected’ into the simulations (with zero velocity) and begins
to move under the influence of the EM field. The code repro-
duces the first panel plot of Fig. 3 extremely well; the respec-
tive curves are on top of each other. In Fig. 4 we plot, using
the code, the parametric relations between final gamma and
emission angle. The blue (top) curve is the Lorentz result, as
in (5) and [1]. The red curve shows the RR result, with the dif-
ference being greatest for smallest final gamma. As for exper-
imental realisation of the proposed scheme, external guiding
structures and high-order modes for laser pulses [3, 37] can be
used to counter diffraction of laser radiation and prevent pon-
deromotive scattering, ensuring the interaction of electrons
with only the high intensity part of the laser pulse. Moreover,
the utilisation of a gas with ionisation threshold of the order of
the peak pulse intensity, and the employment of a pulse pro-
file such that the ionisation probability is maximal at the phase
φi for which aµ(φi;φf) = 0, should enhance the observable
effects of RR.

Conclusions:– We have described a simple experiment
which can be used to observe the effects of classical radia-
tion reaction, without going to ultra-high intensities. As in
the earlier experiment [1], a target is ionised by a laser pulse,
and the final electron momenta are measured. It is not neces-
sary to measure the emitted radiation. The data can be used
to distinguish between radiating and non-radiating equations
of motion, which predict different values for the final elec-
tron momenta. The essential signal is the appearance of low
energy electrons scattered at angles forbidden by the Lorentz
force equation.

The sign-flip signal discussed above would of course be a
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FIG. 4. Numerical result for the correlation between final emission
angle and gamma, for a0 = 200, sin4 envelope. Blue/top curve:
Lorentz force, see [1]. Red: RR result. The black/dashed line corre-
sponds to (5).

particularly clear signal of RR, but arranging for this to to
be visible in a realistic experiment will require fine tuning.
The ‘generic’ signal, that the electron emission angle changes,
however, is robust. For long pulses at moderate intensity, for
which the transverse focussing is not too tight, the plane wave
model should give a reasonably accurate first approximation.
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