
1

A Hybrid Computer Case Study for Unconventional Virtual Computing

[Abbreviated Title: Hybrid Unconventional Virtual Computing]

Alexis J. Kirke
1
, Peter Shadbolt

2,3
, Alex Neville

2
, Eduardo R. Miranda

1

1
Interdisciplinary Centre for Computer Music Research, School of Humanities, Music and

Performing Arts, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK

2
Centre for Controlled Quantum Dynamics, Imperial College London, London SW7 2AZ,

UK

3
Centre for Quantum Photonics, H. H. Wills Physics Laboratory, University of Bristol,

Tyndall Avenue, Bristol, BS8 1TL, UK

Alexis.Kirke@Plymouth.ac.uk

Abstract. Improvements in computer efficiency are not always due to increasing

computation speed. The mouse and GUI approach to OS’s actually slowed down

computation, but sped up computing. This paper highlights the concept of

Unconventional Virtual Computation (UVC). With the increasing virtualization of

computers, and the recognition that this year’s virtual computers are as fast as

the hardware computers of 10 years ago, it becomes clear that we are only

limited in our modes of computation by our imagination. A form of UVC is

presented called Pulsed Melodic Affective Processing, which utilizes melodies to

perform affective computations. PMAP makes computation more human-friendly

by making it audible – a PMAP data stream sounds like the emotion it represents.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/74391417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A hybrid computation system is presented combining UVC PMAP with a

Photonic Quantum Computer, in which the PMAP musico-logic circuit keeps the

QC in a state of entanglement.

Keywords: Unconventional Virtual Computing, Human-Computer Interaction, Music,

Affective Computing, Quantum Computing, Entanglement

1 INTRODUCTION

The concept of the Virtual Machine has been around for many decades [1]. The best known

virtual machines are probably the Java Virtual Machine [2] (there are also virtual machines

available for PHP and Tcl), those which allow Apple users to run Microsoft Windows

(Parallels and VMware [3]) and Docker for Linux [4]. These virtual machines allow the

execution of software which was either not designed for the supporting hardware or is not

designed for any particular supporting hardware. Some of the most pervasive virtual systems

are the server virtualization used in cloud computing services; this allows one computer to

think it is multiple computers, each with their own OS [5]. Some of the implementations of

this approach use up server processing in the virtualization process [6], but this is felt to be

outweighed by the advantages it brings. One recent and successful example of a research

virtual machine is the neural network spread across multiple machines in Stanford’s Deep

Learning system [7]. The purpose of this virtual machine is to speed up operations on the

neural network training at a lower cost.

The virtual machine referred to in this paper is not aimed at reducing computation

time. It is more in the philosophy of the Mouse and Graphical User Interface – also known as

Window, Icon, Mouse and Pointer (WIMP). WIMP did not increase processing power on

computers when they were added. In fact they reduced it [8] because of the requirements for

bitmapped screens and windows and so forth. However there are many tasks now that would

be unfeasibly slow for us without WIMP. Furthermore there are some tasks which would be

unimaginable without WIMP, for example modern digital photo manipulation. Similarly high

level programming languages at first seemed much slower than machine code. However they

opened up the world of software to powerful new ways of thinking which could never have

been achieved by the machine code programming approach. Changing the mode of Human

Computer Interaction opens up opportunities for increasing the usefulness of computers, even

though it can on the lowest level slow it down.

 Given the growth in virtual computing, unconventional computing has the opportunity

to greatly expand its possible modes, limiting computation only by imagination; hence the

field of Unconventional Virtual Computation (UVC). There has been a significant amount of

work using simulation to run unconventional computation; however these have been designed

to simulate a hardware or wetware system [9, 10, 11].

In this paper we will briefly introduce a UVC approach called PMAP and report on an

implementation of a hybrid unconventional computation system: a virtual PMAP processor

linked to a Photonic Quantum system. The PMAP processor will be used to control the

photonic quantum system, driving it towards a maximally entangled output state.

2 EXAMPLE OF UVC: PMAP

One mode of UVC that could provide benefits is Human-Computer Interaction by

Replacement (HCI By replacement, or HBR). HBR is an approach to unconventional virtual

computing that combines computation with HCI, a complementary approach in which

computational efficiency and power are more balanced with understandability to humans.

Rather than ones and zeros in a circuit, have the user-interface object itself; e.g. if you want

data to be audible, replace the computation basis by melodies. This form of HBR has been

reported on previously (Pulsed Melodic Affective Processing - PMAP) [12, 13]. Some forms

of HBR may not be implementable in hardware in the foreseeable future, but current

hardware speeds could be matched by future virtual HBR machines.

The focus here will be on forms of HBR in affective computation or in computation

that has an affective interpretation. It has been shown that affective states (emotions) play a

vital role in human cognitive processing and expression [14]. As a result, affective state

processing has been incorporated into robotics and multi-agent systems [15]. A further reason

in Human-Computer Interaction studies is that emotion may help machines to interact with

and model humans more seamlessly and accurately [16]. So representing and simulating

affective states is an active area of research.

The dimensional approach to specifying emotional state is one common approach. It

utilizes an n-dimensional space made up of emotion “factors”. Any emotion can be plotted as

some combination of these factors. For example, in many emotional music systems [17] two

dimensions are used: Valence and Arousal. In that model, emotions are plotted on a graph

with the first dimension being how positive or negative the emotion is (Valence), and the

second dimension being how intense the physical arousal of the emotion is (Arousal). For

example “Happy” is high valence, high arousal affective state, and “Stressed” is low valence

high arousal state.

A number of questionnaire studies provide qualitative evidence for the idea that music

communicates emotions [18]. Previous research [19] has suggested that a main indicator of

valence is musical key mode. A major key mode implies higher valence, minor key mode

implies lower valence. For example the overture of The Marriage of Figaro opera by Mozart

is in a major key; whereas Beethoven’s melancholic “Moonlight” Sonata movement is in a

minor key. It has also been shown that tempo is a prime indicator of arousal, with high tempo

indicating higher arousal, and low tempo - low arousal. For example: compare Mozart’s fast

overture above with Debussy’s major key but low tempo opening to “Girl with the Flaxen

Hair”. The Debussy piano-piece opening has a relaxed feel – i.e. a low arousal despite a high

valence.

In PMAP [12, 13] the data stream representing affective state is a stream of pulses. The

pulses are transmitted at a variable rate. This can be compared to the variable rate of pulses in

biological neural networks in the brain, with such pulse rates being considered as encoding

information (in fact neuroscientists have used audio probes to listen to neural spiking for

many years [20]). In PMAP this pulse rate specifically encodes a represention of the arousal

of an affective state. A higher pulse rate is essentially a series of events at a high tempo

(hence high arousal); whereas a lower pulse rate is a series of events at a low tempo (hence

low arousal).

Additionally, the PMAP pulses can have variable heights with 10 possible levels. For

example 10 different voltage levels for a low level stream, or 10 different integer values for a

stream embedded in some sort of data structure. The purpose of pulse height is to represent

the valence of an affective state, as follows. Each level represents one of the musical notes

C,D,Eb,E,F,G,Ab,A,Bb,B. For example 1mV could be C, 2mV be D, 3mV be Eb, etc. We

will simply use integers here to represent the notes (i.e. 1 for C, 2 for D, 3 for Eb, etc). These

note values are designed to represent a valence (positivity or negativity of emotion). This is

because, in the key of C, pulse streams made up of only the notes C,D,E,F,G,A,B are the

notes of the key C major, and so will be heard as having a major key mode – i.e. positive

valence. Whereas streams made up of C,D,Eb,F,G,Ab,Bb are the notes of the key C minor,

and so will be heard as having a minor key mode – i.e. negative valence.

For example a PMAP stream of say [C,C,Eb,F,D,Eb,F,G,Ab,C] (i.e. [1,1,3,5,3,4,5,6,7])

would be principally negative valence because it is mainly minor key mode. Whereas

[C,C,E,F,D,E,F,G,A,C] (i.e. [1,1,4,5,2,4,5,6,8]) would be seen as principally positive valence.

And the arousal of the pulse stream would be encoded in the rate at which the pulses were

transmitted. So if [1,1,3,5,3,4,5,6,7] was transmitted at a high rate, it would be high arousal

and high valence – i.e. a stream representing ‘happy’. Whereas if [1,1,4,5,2,4,5,6,8] was

transmitted at a low pulse rate then it will be low arousal and low valence – i.e. a stream

representing ‘sad’.

Note that [1,1,3,5,3,4,5,6,7] and [3,1,3,5,1,7,6,4,5] both represent high valence (i.e. are

both major key melodies in C). This ambiguity has a potential extra use. If there are two

modules or elements both with the same affective state, the different note groups which make

up that state representation can be unique to the object generating them. This allows other

objects, and human listeners, to identify where the affective data is coming from.

In terms of functionality PMAP provides a method for the processing of artificial

emotions, which is useful in affective computing – for example combining emotional

readings for input or output, making decisions based on that data or providing an artificial

agent with simulated emotions to improve their computation abilities. It also provides a

method for “affectively coloring” non-emotional computation. It is this second functionality

which is more directly utilized in this paper. In terms of novelty, PMAP is novel in that it is

a data stream which can be listened to, as well as computed with. The affective state is

represented by numbers which are analogues of musical features, rather than by a binary

stream of 1s and 0s. Previous work on affective computation has been done with normal data

carrying techniques – e.g. emotion category index, a real number representing positivity of

emotion, etc.

This element of PMAP provides an extra utility – PMAP data can be generated

directly from rhythmic data and turn directly into rhythmic data or sound. Thus rhythms such

as heart rates, key-press speeds, or time-sliced photon-arrival counts can be directly turned

into PMAP data; and PMAP data can be directly turned into music with minimal

transformation. This is because PMAP data is rhythmic and computations done with PMAP

data are computations done with rhythm and pitch. Why is this important? Because PMAP is

constructed so that the emotion which a PMAP data stream represents in the computation

engine, will be similar to the emotion that a person “listening” to PMAP-equivalent melody

would be. So PMAP can be used to calculate “feelings” and the resulting data will “sound

like” the feelings calculated. Though as has been mentioned, in this paper the PMAP

functionality is more to emotionally color the non-emotional computations being performed.

PMAP has been applied and tested in a number of simulations. As there is no room here

to go into detail, these systems and their results will be briefly described. They are [12, 13,

21]:

a. A security team multi-robot system

b. A musical neural network to detect textual emotion

c. A stock market algorithmic trading and analysis approach

The security robot team simulation involved robots with two levels of intelligence: a higher

level more advanced cognitive function and a lower level basic affective functionality. The

lower level functionality could take over if the higher level ceased to work. A new type of

logic gate was designed to use to build the lower level: musical logic gates. PMAP

equivalents of AND, OR and NOT were defined, inspired by Fuzzy Logic.

The PMAP versions of these are respectively: MAND, MOR and MNOT (pronounced

“emm-not”), MAND, and MOR. So for a given stream, a PMAP segment of data can be

summarized as mi = [ki, ti] with key-value ki and tempo-value ti. The definitions of the

musical gates are (for two streams m1 and m2):

MNOT(m) = [-k,1-t] (1)

m1 MAND m2 = [min(k1,k2), min (t1,t2)] (2)

m1 MOR m2 = [max (k1,k2), max (t1,t2)] (3)

It was shown that using a circuit of such gates, PMAP could provide basic fuzzy search and

destroy functionality for an affective robot team. It was also found that the state of a three

robot team was human audible by tapping in to parts of the PMAP processing stream.

 As well as designing musical logic gates, a form of musical artificial neuron was

defined. A simple two layer PMAP neural network was implemented using the MATLAB

MIDI toolbox. The network was trained by gradient descent to recognise when a piece of text

was happy and when it was sad. The tune output by the network exhibited a tendency towards

“sad” music features for sad text, and “happy” music features for happy text. The stock

market algorithmic trading and analysis system involved defining a generative affective

melody for a stock market based on its trading imbalance and trading rate. This affective

melody was then used as input for a PMAP algorithmic trading system. The system was

shown to make better profits than random in a simulated stock market.

3 PHOTONIC QUANTUM COMPUTING

The quantum computer set up utilized here exactly simulates a quantum CNOT gate. The

CNOT gate acts on two quantum bits (qubits). A qubit is the quantum-mechanical analog

of a classical bit. A CNOT gate flips () the state of the target qubit if and only if the

state of the control qubit is . Various physical platforms for quantum computing have been

proposed, including ion traps [22] and superconducting qubits [23]. Here we consider a

photonic quantum computer [24] - a scheme for efficient quantum computation with linear

optics.in which information is represented in the quantum state of optical-frequency photons.

 In the hardware photons are obtained by focusing a 404nm laser on to a piece of nonlinear

crystal (Bisumuth Borate). This causes the crystal to probabilistically spit out 808nm photon

pairs, in a process known as Type I spontaneous parametric down conversion. The chip,

which performs several experiments that would each ordinarily be carried out on an optical

bench the size of a large dining table, is 70 mm by 3 mm. It consists of a network of tiny

channels which guide, manipulate and interact single photons. Waveguides are made with a

higher refractive index than their surroundings, so that photons can propagate along them by

total internal reflection. The waveguides in the integrated optical device are made from silica

and sit in a wafer of silicon, which allows things to be kept on a relatively small scale – the

chip is 70mm x 3mm.

 Using eight reconfigurable electrodes embedded in the circuit, photon pairs can be

manipulated. A schematic is shown in Figure 1. The circles with numbers in them are known

as phase shifters – and will be discussed later. They are able to change the phase of the

photons. The points where the lines meet are called beam splitters, which will be explained

later and also enable further quantum effects to be added to the calculation.

Figure 1: Schematic of the Photon Quantum Computer showing photons being input on (1)

and (3) and various phase shifter settings in the pathways.

Control Target Inputs to send photon in to

0 0 1, 3

0 1 1, 4

1 0 2, 3

1 1 2, 4

Table 1: Setting up inputs on the quantum C-NOT

The key elements are the inputs marked 1 to 4 in Fig. 1. In this C-NOT the inputs are each

represented by two photons. These allow the inputs of the quantum C-NOT to be specified, as

shown in Table 1.

The hardware and simulation systems are located at the University of Bristol and can

be accessed with only a few seconds lag over the internet. A JSON web API is provided

which gives full access to the CNOT. It can use any modern programming language

(Mathematica, Python, Javascript, MATLAB ...) to talk to the Bristol servers through this API

and get data. Below is an example API call, getting counts from the chip with all phases set to

zero (i.e. the circles with floating point numbers in Figure 1 all set to 0). This is the Python

code to make the call:

counts = urllib2.urlopen(“http://cnotmz.appspot.com/experiment?

phases=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0&accessToken=XXXXXXXXXXXXXXX”).read()

The above calls will return data in the form:

{"counts": {"2,3": 0, "1,3": 80, "1,4": 0, "2,4": 28}, "max": 80, "sum": 108}

which gives the number of photons detected across the output groups at the far right of Figure

1. It can be seen how these relate to qubit values using Table 1. In this example outputs 1 and

3 had a count of 80 simultaneous photons in the time segment. Changing the phase of the

photons causes them to interfere destructively or constructively with each other.

We will now give a brief introduction to how photonic quantum computers function, as

they are different to some of the traditional forms of quantum computing. Consider a subset

of the sort of paths contained in the chip, as shown in Figure 2. The far left shows the inputs

for the qubit – putting in a photon into (0) gives a qubit of value 0, an input in (1) gives a

qubit of value 1. In the centre is a beam splitter which splits the photon, and at the far right

are the photon detectors which count the number of photons arriving in each path.

Figure 2: A simplified photon path and the result

If a single photon is put in through (0) or (1) 2000 times, then we would expect to detect

the photon half the time at the top detector and half the time at the bottom detector. Between

the beam splitter and the detectors, the photon is in what is known as a superposition state, it

is “blurred” across paths 0 and 1. Adding another beam splitter gives Figure 3. If a photon is

sent into (0) then as a result of the extra beam splitter is will always be detected at the lower

detector for the following reason. At the first beam splitter it blurs across both paths, and at

the second beam splitter these blurred paths interfere with each other behaving like light

waves. This interference causes the probability of the particle being detected at the top

detector to become zero. Thus the particle is always detected at the bottom detector.

Technically this interference is happening to the spatial wave function.

Figure 3: Photon system with an additional beam splitter.

This interference effect can thus be manipulated using the phase shifters in the wave

guides. Figures 4 and 5 show what happens when a phase shifter is added. Figure 4 applies a

phase shift of 0.5π radians to the “part” of the blurred photon in that wave guide (hence the

number 0.5 in the circle). This causes interference effects at the second wave guide leading to

photon detection happening at top and bottom detectors with equal probability.

Figure 4: Photon system with an additional beam splitter.

The phase shifter in Figure 5 is set to 1π radians (hence the value 1 in the circle). This

creates an interference effect in the second beam splitter that leads to the waves cancelling

out for the bottom detector. So the photon will always be detected at 0. Applying different

phase shifts causes different probabilities of detecting the photon at different detectors. The

demonstration of these interferences is a mathematical task which – although not highly

advanced – would require lengthy mathematical expansions – thus they will not be shown in

this paper.

Figure 5: Photon system with an additional beam splitter.

However looking at Figure 1, and the brief description of the JSON Web API earlier, it can

be seen that the phases can be set in various paths dynamically and photon counts returned,

over the internet.

4 BELL’S INEQUALITY AND ENTANGLEMENT

The phenomenon of entanglement is at the heart of quantum computing, and relates to

instantaneous statistical correlations between measurements, even when they are physically

separated and have no causal connection. One methodology used to quantify incidences of

entanglement is by Bells Inequality [26]. What will be partially explained here is the CHSH

inequality [27], a more practical form of Bell’s ground-breaking work. The CHSH

methodology defines four methods of simultaneously measuring photon events across the

detectors 1 to 4 in Figure 1: A, A’, B and B’. CHSH says that if reality is local then for the

two measurements with settings A, A’ and B, B’:

CHSH = E(A, B) + E(A, B’) + E(A’, B) −E(A’, B’) <= 2 (4)

where E is the quantum correlation, defined for the qubits in Table 1 as:

E = (N00-N01-N10+N11)/ NTotal (5)

where N is the count at the detectors of the detected qubits. To investigate this with the

photonic quantum chip, the four measurement configurations in Equation 4 are activated by

setting the last four phase shifters on the right hand side of the schematic in Figure 1. A and

A’ are the two settings for the top two, B and B’ the settings for the bottom two. The

quantum correlation in equation 5 is then given by:

E = 9[P(1, 3)+P(2, 4)−P(1, 4)−P(2, 3)] (6)

where:

P(x, y) =N(x, y) / [N(1, 3)+N(2, 4)+N(1, 4)+N(2, 3)] (7)

Where N(x,y) is the number of coincident photons counted at x and y detectors in Figure 1, in

the same time segment. The reason for multiplying by 9 is “post-selection”. The chip has 9

more output states that the qubit states, so we throw these away and multiply up the output

states of interest.

Most phase values for A, B, A’ and B’ will lead to the CHSH value in equation 4

being less than or equal to 2, thus satisfying local realism. However the following settings

violate classical local reality (in other words lead to instantaneous correlations between

physically separated and non-communicating qubits). First set the left hand side phases as

shown in figure 6: i.e. to 1.5, 1.0, 1.5 and 0.0 (i.e. 1.5π, π, 1.5π and 0 radians).

Then for A set the top two phase shifters on the right hand side to 0.5 and 1.75, for A’

set them to 0.5 and 1.25. For B set the lower two on the left hand side to 0.5 and 1.5, and for

B’ to 1.0 and 1.0. The settings for [A,B], [A,B’], [A’,B] and [A’,B’] are shown in Figures 7

to 10 respectively. Having set these up, if you actually run sufficient experiments on the

photonic computer and take the average value of the CHSH, it will be closer to 2.6 than to 2.

The theoretical limit can be shown to be 2*sqrt(2).

In fact these detector settings give the maximally entangled states for the photons i.e.

qubits. Figure 11 shows how adjust the phases on the right hand side of the schematic can

move the CHSH values between the classical limit and outside the classical limit.

Figure 6: Fixed settings of first four phase shifter.

Figure 7 / 8 : Phase shifter settings for E(A,B) and E(A,B’) in equation 4.

Figure 9 / 10: Phase shifter settings for E(A’,B) and E(A’,B’) in equation 4.

 There are a number of simulated quantum computers available on the internet [28].

However the uniqueness of the Bristol Computer is that it is a photonic quantum computer

(which fits well with PMAP, as explained in the next section), that the simulator is actually

designed - by hardware experiment and theory - to accurately reflect the hardware system,

and it uses the same internet calling structure as the Bristol hardware computer:

counts = urllib2.urlopen("http://cnotmz.appspot.com/simulate?

chipName=cnot_mz&quantumClassical=quantum&noiseMode=false&sortMode=false&inp

uts=0,1&phases=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0 ").read()

returning in the form:

{"counts": {"2,3": 0, "1,3": 80, "1,4": 0, "2,4": 28}, "max": 80, "sum": 108}

Thus by designing the hybrid system using their online simulator, then once the hardware

system has been re-commissioned in mid-2015, the hybrid code can simply have its call

structure replaced and it will become a PMAP / Hardware QC Hybrid. The hybrid set-up will

now be described.

Figure 11: How phase changes effect the Bell CHSH number calculated

5 HYBRID UVC AND QC

5.1 Design

It has been shown previously that the Quantum Computer in the Cloud can achieve

entanglement in the CNOT gate [25] and also that PMAP can be used to control non-musical

adaptive processes [12, 13, 21]. The interest here is to examine how the two can be combined

to create a form of Hyrbid Computer which is part Unconventional Virtual Computation and

part Unconventional/Quantum Computation. It is particularly of interest utilizing PMAP and

a photonic QC. Being essentially spike-based, PMAP is particularly suited to dealing with

data which is rhythmic and has a tempo. Simultaneous photon arrival counts have some of

these properties. To examine this link in the first place, the simplest possible process will be

created. A PMAP circuit will be designed which attempts to move the QC towards

entanglement and keep it there. Although this in itself has no explicit computational usage, it

would be a demonstration of the ability of UVC (PMAP) to interface with work with a

quantum computer. The circuit in Figure 12 is the basis for this. The design process behind

this circuit will be explained.

The input of the QC is held at simultaneous photons on 1,3. The output counts of

photon simultaneous arrivals are sampled every second and these become the counts S13, S23,

S14, and S24 seen in Figure 12. These arrival rates are converted by a simple linear transform

into tempos for a PMAP stream. So the higher the output count, the higher the music tempo.

The pitches of the PMAP streams do not vary in this calculation, and so are simply just a

repeating figure consisting of middle C and middle E. So S13, S23, S14, and S24 will be

PMAP streams of tempos proportional to C13, C23, C14, and C24 respectively, each with a

pitch form [C,E,C,E,C,E, …] or [1, 4, 1, 4, 1, 4, …].

Figure 12: Circuit which is the basis for an example PMAP / QC hybrid process

Looking at equation 6, the combination of counts is replaced by musical ANDs

(MANDs) done on the four PMAP streams. The negative signs in the combination are

replaced by a musical NOT (MNOT) on the negative input of the MAND gate. Thus equation

6 becomes:

E = MAND(S13,S24, MNOT(S14), MNOT(S23)] (8)

which is what is implemented in the top part of Figure 12. However then the calculation of

the entanglement measure requires four such calculations like equation (8) to be performed

with the different phase shifter settings in Figures 7-10.

 The MSHIFT object is simply a musical shift register. So at each of the four

calculation step it stores an output from the MAND gate being input to it. This is

synchronized with the phase change process. So for the each of the four phase value sets

required to calculate the Bell CHSH number (Figures 7 to 10) the melody from equation 8 is

stored in the MSHIFT register. Equation 4 (for calculating Bell CHSH) is approximated

using the MAND for combination, and the MNOT for negative values, giving equation 9.

CHSH-PMAP = MAND(MNOT(MSHIFT1), MSHIFT2, MSHIFT3, MSHIFT3) (9)

This produces a PMAP output whose tempo is then used in the “Tempo Δα” object to

calculate a phase shifter setting for each of the four sub-experiments. The phase shifter which

is adjusted by the PMAP circuit is that seen in the top left of Figures 7-10. This corresponds

to α in Figure 11. It can be seen the optimal value is 0.5 (i.e. 0.5π) to maximize entanglement.

So each time CHSH-PMAP is calculated, it will result in a melody whose tempo is converted

into a change delta as follows. If the tempo of the current CHSH-PMAP stream is greater

than the tempo of the previous CHSH-PMAP stream, then the delta is left unchanged. If the

tempo is less than the previous tempo, then the delta is adjusted as in equation 10.

delta -0.5delta (10)

Then at each iteration we have:

 α α + delta (11)

 If the PMAP circuit based on equation 9 is somehow representing the CHSH

calculation in equation 4, then increases in tempo should be correlated to increases in

entanglement and vice-versa. Thus the effect of equations 10 and 11 should be to cause α to

converge to the point of maximum entanglement, i.e 0.5π.

To explain this more clearly. Suppose that α is set to 0.6π and delta is set to 0.1, and

the first calculation (where α = 0.6π) gives a tempo of T1 from equation 9. Then the delta is

applied to give α = 0.7π, i.e. (0.6+delta)π. Suppose that gives a tempo of T2 from equation 9.

If T1 < T2, i.e. if the tempo is increasing, then the next value of α will be α = 0.8π. But if T2

< T1, i.e. if the tempo decreases, then delta = -0.5*delta, i.e. delta = -0.5*0.1 = -0.05. So the

next value of the phase shifter will be α = (0.7-0.05)π = 0.65. Then if the next tempo T3 is

such that T3 > T2, delta will remain unchanged, so the next value will be α = (0.65-0.05)π =

0.6. This is the algorithm that is being implemented by the “Tempo Δα” object in Figure

12. It is claimed that the combination of this object, and the PMAP and the QC system are

sufficient to move the qubits to close to maximum entanglement, and to keep them there.

5.2 Results

If the PMAP circuitry consistently approximates the Bell CHSH calculation, then the system

will clearly always converge – as it is using a form of gradient descent with decreasing

gradient; and Figure 11 shows there are no local maxima. The maximum that the simulation

can reach is a Bell Value of approximately 2.54. It was indeed found that the QC / PMAP

system always converges to near a Bell CHSH value of 2.54, with the α values close to 0.5 +

2.N for N = 0,1,2,…, because the maxima in Figure 11 actually occur at α = (0.5 + 2.N) π.

Thirty examples were run, each starting at a random α between 0 and 2π, and with a random

initial delta between 0 and 1. Examples of 4 such runs are shown in Figure 13.

Figure 13: Four examples of Bell CHSH convergence using PMAP

It can be seen in Figure 13 that the examples are clearly converging to a value just

over 2.5 (the maximum possible being approximately 2.54). This convergence is driven by

the changing tempo on the output of the PMAP circuit (the output of the second MAND in

Figure 12). The tempos for these four examples can be seen in Figure 14. The second MAND

output for eight iterations of an actual convergence example can be heard here:

https://soundcloud.com/alexiskirke/quantum-pmap-convergence-example

Looking at twenty eight of the thirty example runs, average errors during convergence

are shown in Figure 15. The reason only 28 are included is that two of the runs became stuck

in local maxima. Run 12 stuck at Bell CHSH value between 2.4 and 2.5, corresponding to

phase alpha of around 0.6π rather than 0.5π. So this was still close to maximum

entanglement. However run 13 became stuck in a local maximum a long way from the

quantum region: a Bell CHSH of 0.7 which corresponded to a phase α of around 1.84π.

https://soundcloud.com/alexiskirke/quantum-pmap-convergence-example

Figure 14: The four examples of Bell CHSH convergence using PMAP from Figure 13,

shown with their tempo outputs on the second MAND in Figure 12.

Figure 15: The mean error during convergence across 28 examples run, across twenty

iterations.

These local maxima in the PMAP system, which are not present in the quantum

computer, are not surprising, given how different the modalities are in the calculation:

quantum versus PMAP. What is surprising is that only two of them were found in 30 runs,

and that only one of them actually “broke” the functionality of the system. Even with the

outliers included, the average Bell CHSH value across all 30 runs after 20 iterations was 2.45

and standard deviation 0.34, with most of the standard deviation coming from a single outlier.

A form of attractor diagram is show in Figure 16 – plotting the average phase alpha

(divided by 2π) during convergence against the mean tempo on the output of the PMAP

circuit – for the 23 examples that converged to 0.5π. The average starting point is around 0.7

and all then converge to an α of around 0.5π at a tempo just under 140. For five of the

examples, the starting point and delta meant that it converged to 2.5π rather 0.5π, which is

also the same maxima of the Bell CHSH curve. These are in shown Figure 17.

Figure 16: Mean Tempo vs. Mean Phase α/2π for 23 of the 30 examples

Figure 17: Tempo vs. Phase α/2π for 5 Examples which converge towards 2.5

Given the non-triviality of the Bell CHSH calculation, it is unlikely that the PMAP circuit is

causing the convergence by chance. However to further examine this, various elements in the

PMAP circuit were adjusted to confirm the system did not converge for any similar PMAP

circuit. Firstly the MNOT after the MSHIFT register from Figure 12 was removed. This was

then replaced, and the first MAND was changed to a MOR. Ten runs were done for each of

these conditions. For the first the average final Bell value after 20 iterations was 0.85 with

standard deviation 0.72. For the second it was average value 0.94 with standard deviation

0.89. This compares unfavourably with the 30 runs with the Figure 12 set-up – the average

bell value (including the outlier) was 2.45 and standard deviation 0.34.

 In terms of PMAP’s originally envisioned functionality – giving insight into the

computation process – do the PMAP melodies give insight into what is occurring? Suppose

two virtual “probes” are placed into the circuit in Figure 12 at the output of the first MAND

and the output of the second MAND gate. At maximum bell value achievable – 2.538 – the

tempo on the output of the first MAND is 142, and the tempo at the output of the second

MAND is also 142. Away from the maximum bell values these tempos are different. Also the

further away the PMAP system is from entangling the photons the lower those tempos are.

This means that listening to the PMAP data at these two points can have three effects:

1. It gives an insight into the process development – the closer the system comes

to entanglement, the more in synch the two PMAP streams will sound.

2. It gives an emotional insight into what is occurring: higher tempo in a major

key communicates higher “happiness” [18]. Thus the closer the system gets to

fulfilling its aim (maximum entanglement of qubits) the happier it sounds. This

fulfills one of PMAPs aims to give an emotional insight into calculations.

3. It gives an insight into the process itself. A non-expert might observe that for

the system to achieve entanglement requires the outputs of the two MANDs to be

higher and more similar tempos. So it might start the non-expert thinking along

the lines of what photon output counts would lead to this tempo. This provides

another model of considering the nature of the entanglement equations which may

be more understandable to an individual unfamiliar with quantum computing.

Although this particular PMAP process is not a practical one – we know how to entangle

qubits – it gives a demonstration of how more useful processes could also be given greater

transparency thanks to unconventional virtual computing, as well as how UVC can be

combined with other forms of computation to give consistent functionality.

6 CONCLUSIONS

The purpose of this paper has been to introduce the concept of Unconventional Virtual

Computing (UVC). In particular a form of UVC has been introduced called PMAP. It has

been applied in a simple hybrid system involving a UVC and a simulated photonic quantum

computer. The UVC successfully kept the quantum computer qubits in a state of

entanglement using gradient descent. It also showed how UVC can give insight into the

computation going on, in novel ways.

It is interesting to note that this not the first time sound has been used in quantum

computing: researchers at the University of Bristol Centre for Quantum Photonics have used

a system involving photo-diodes, a tone generator and a loudspeaker to detect the location of

Hong-Ou-Mandel dips [29] in hardware photon beam splitters. However – and putting aside

any contributions to UVC - to build a music-based system which can interface with real

single photons, real quantum systems which we can't see and which are actually entangled, is

to our knowledge a new contribution.

This paper has been written from the point of view that with the increasing

virtualization of computers, and the recognition that this year’s virtual computers are as fast

as the hardware computers of 10 years ago, it is becoming clear that we are only limited in

our modes of computation by our imagination. Given that improvements in computer

efficiency are not always due to increasing computation speed, UVC has the potential for

speeding up working with computers by making their processes more human-understandable.

References

1. Goldberg, R. (1974) Survey of Virtual Machine Research, Computing, June, 34-45

2. Freund,S, Mitchell, J. (1999). A formal framework for the Java bytecode language

and verifier. In Proceedings of the 14th ACM SIGPLAN conference on Object-

oriented programming, systems, languages, and applications (OOPSLA '99), Berman,

A. (Ed.). ACM, New York, NY, USA, 147–166.

3. VMWare Inc. (2007) Understanding Full Virtualization, Paravirtualization, and

Hardware Assist, Retrieved April 2015, from

http://www.vmware.com/files/pdf/VMware_paravirtualization.pdf

4. Seo, K., Hwang, H., Moon, I., Kwon, O., Kim, B. (2014) Performance Comparison

Analysis of Linux Container and Virtual Machine for Building Cloud, Advanced

Science and Technology Letters 66:105-111.

5. Guohui W. Ng, T. (2010) The Impact of Virtualization on Network Performance of

Amazon EC2 Data Center, 2010 Proceedings IEEE INFOCOM, , 14-19 March 2010,

pp.1-9.

6. Huber, N., von Quast, M. Et al. (2011) Evaluating and Modeling Virtualization

Performance Overhead for Cloud Environments. In Proceedings of the 1st

International Conference on Cloud Computing and Services Science (CLOSER

2011), Noordwijkerhout, The Netherlands, May 7-9, SciTePress. May 2011, pp. 563 -

573.

7. Coates, A., Huval, B. et al. (2013) Deep learning with COTS HPC Systems . Stanford,

CA: Stanford University Computer Science Dept.

8. Garmon, J. (2010) What were the original system requirements for Windows 1.0?

Accessed April 2015, From http://www.jaygarmon.net/2010/11/what-were-original-

system-requirements.html

9. Jones, J. (2010) The Emergence and Dynamical Evolution of Complex Transport

Networks from Simple Low-Level Behaviours, International Journal of

Unconventional Computing 6(2):125-144.

10. Bull, L., Budd, A., Stone, C., Uroukov, I., Costello, B. d. L. and Adamatzky, A.

(2008) Towards unconventional computing through simulated evolution: Control of

nonlinear media by a learning classifier system. Artificial Life, 14 (2). pp. 203-222.

11. Spector, Lee, et al. "Finding a better-than-classical quantum AND/OR algorithm

using genetic programming." Proceedings of the Congress on Evolutionary

Computation. Vol. 3. 1999.

12. Kirke, A., Miranda, E. (2014) Towards Harmonic Extensions of Pulsed Melodic

Affective Processing - Further Musical Structures for Increasing Transparency in

Emotional Computation. International Journal of Unconventional Computation, 10(3):

pp. 199-217.

13. Kirke, A., Miranda, E.R. (2014) Pulsed Melodic Affective Processing: Musical

structures for increasing transparency in emotional computation. Simulation, 90(5):

pp. 606-622.

14. Malatesa, L., Karpouzis, K. et al. (2009). Affective intelligence: the human face of AI,

In Artificial intelligence, Springer-Verlag.

15. Banik, S., Watanabe, K. et al. (2008) Affection Based Multi-robot Team Work, In

Lecture Notes in Electrical Engineering, pp. 355--375.

16. Picard, R. (2003). Affective Computing: Challenges, International Journal of Human-

Computer Studies, Vol. 59, No. 1-2, pp. 55-64.

17. Kirke, A., Miranda, E. (2015). A Multi-Agent Emotional Society Whose Melodies

Represent its Emergent Social Hierarchy and Are Generated by Agent

Communications, Journal of Artificial Societies and Social Simulation, 18(2).

18. Juslin, P., Laukka, P. (2004). Expression, perception, and induction of musical

emotion: a review and a questionnaire study of everyday listening. Journal of New

Music Research, vol. 33, pp. 216-237.

19. Juslin, P. (2005). From Mimesis to Catharsis: expression, perception and induction of

emotion in music, In Music Communication, Oxford University Press, pp. 85-116.

20. Chang, M., Wang, G. at al. (2010) Sonification and vizualisation of neural data.

Proceedings of the International Conference on Auditory Display, June 9-15,

Washington D.C.

21. Kirke, A., Miranda, E. (2012). Pulsed Melodic Processing – the Use of Melodies in

Affective Computations for Increased Processing Transparency. In Music and

Human-Computer Interaction, S. Holland, K. Wilkie, P. Mulholland and A. Seago

(Eds.), London: Springer.

22. Kielpinski, D., Monroe, C., Wineland, D. (2002) Architecture for a large-scale ion-

trap quantum computer, Nature 412:709-711.

23. Kelly, J., et al. (2015) State preservation by repetitive error detection in a

superconducting quantum circuit, Nature, 519:66-69.

24. Knill, E., Laflamme, R., Milburn G. (2001) A scheme for efficient quantum

computation with linear optics, Nature 409:46–52.

25. Shadbolt, P., Verde, M., Peruzzo, A., Politi, A., Laing, A. Lobino, M., Matthews, J.,

Thompson, M., O'Brien, J. (2012). Generating, manipulating and measuring

entanglement and mixture with a reconfigurable photonic circuit, Nature Photonics 6,

pp45-49.

26. Shadbolt, P., Vértesi, T., Liang, Y. Branciard, C., Brunner, N., O'Brien, J. (2012)

Guaranteed violation of a Bell inequality without aligned reference frames or

calibrated devices. Scientific Reports, volume 2(article number 470).

27. Clauser, J., Horne, M., Shimony, A., Holt, R. (1969) Proposed experiment to test local

hidden-variable theories. Phys. Rev. Lett. 23 (15), pp880–884.

28. Quantiki Wiki (2015) List of QC Simulators, From

http://www.quantiki.org/wiki/List_of_QC_simulators, Accessed April 2015.

29. Hong, C., Ou, Z., Mandel, L. (1987)."Measurement of subpicosecond time intervals

between two photons by interference. Phys. Rev. Lett. 59 (18): 2044–2046.

