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AB STRACT

q1 The trend of marine 87Sr/86Sr against stratigraphic level through sections, whether linear or not, can identify hiatuses
and changing rates of sedimentation through those sections and so be a valuable constraint on attempts to assign
numerical ages to sediments on the basis of astrochronology or U/Pb dating of zircons. Here we illustrate that value
for the Campanian, Pliensbachian, Toarcian, and Valanginian ages by comparing 87Sr/86Sr profiles for different lo-
calities and comparing those to the 87Sr/86Sr profile through time. The analysis reveals possible problems both with
current time scales and with some astrochronological calibrations. Our analysis is neither comprehensive nor final;
rather, with a few examples, we show how Sr-isotope stratigraphy can be used to moderate other methods of assigning
numerical ages to sediments.

Introduction

The seminal hypothesis of Wickman (1948), that
87Sr/86Sr of Sr dissolved in the ocean should in-
crease linearly with time, was falsified by the pi-
oneering work of Peterman et al. (1970), Dasch and
Biscaye (1971), Veizer and Compston (1970), and
Burke et al. (1982), who showed that the 87Sr/86Sr
of marine Sr rose and fell repeatedly during the
Phanerozoic. Since then, that variation in 87Sr/86Sr
through time has become well documented, espe-
cially for the period 0–40 Ma (fig. 1). For this in-
terval, the 87Sr/86Sr calibration (fig. 1) shows many
linear segments separated by intervals, mostly
around 1 Ma, during which the rate of change in
87Sr/86Sr with time itself changed.
The trend through time shown in figure 1 and

the longer-term trend of marine 87Sr/86Sr through
Phanerozoic time are patched together from nu-
merous profiles of 87Sr/86Sr against stratigraphic level
through sedimentary sections that are assumed to be
largely complete and to which numerical dates have
been assigned. It is profiles of 87Sr/86Sr against strati-
graphic level, rather than against time, that are most

revealing. The shape of such a profile can reveal the
presence of hiatuses, faults, and changes in sedi-
mentation rate. The interplay of sedimentation rate
and the rate of change in 87Sr/86Sr with time are
shown in figure 2.
Comparisons between sections of Sr-isotope pro-

files against stratigraphic level can be revealing as to
whether the reference curve is linear (fig. 2). Never-
theless, such trends are most easily interpreted by
comparison with the linear parts of the reference
curve (fig. 1) because the human eye perceives depar-
tures from linearity more easily than it does depar-
tures from curvature. Fortunately, through some geo-
logical intervals, 87Sr/86Sr changed linearly with time
(fig. 1) or the changewas so close to being linear that it
makes no practical differences to an assumption of
linearity. The earliest exploitation of linearity was
that ofMiller et al. (1988), who used it to calculate the
duration of hiatuses in deep-sea sediments.
Here we use linear or nearly linear parts of the

reference curve to (1) examine aspects of time scales
given in the geological time scale of Gradstein et al.
(2012; hereafter, GTS12) and in other publications
and (2) assign durations to biozones of several stages.
In addition, as both GTS12 and the other time scales
we cite make use of cyclostratigraphy for numerical
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calibration, we show how profiling 87Sr/86Sr against
stratigraphic level through a sedimentary section can
constrain and inform that process.

Rock and Time

To begin,we emphasize the old adage that rock does
not equal time (Ager 1973). While all geologists
know this, departures from the principle are not
unknown—for example, use of the phrase “a rapid
rise in 87Sr/86Sr” with implications of time, when
what was observed was a rise in 87Sr/86Sr against
stratigraphic level greater than that recorded in ei-
ther underlying or overlying strata (i.e., condensa-
tion;q2 fig. 2). To emphasize the well-known differ-
ence between rock and time, we differentiate them
as follows: by the term dR/dt we mean the rate at
which 87Sr/86Sr changed with time. By the term dR/
dl, wemean the rate at which 87Sr/86Sr changes with
stratigraphic level upward through a sedimentary
section.

Where 87Sr/86Sr profiles against stratigraphic
level is linear through a section (i.e., dR/dl is con-
stant), then it follows that dR/dt was constant
through that interval (i.e., that 87Sr/86Sr increased
linearly though time during that interval). In such
sections, the relative thicknesses of the events re-
corded in the section (e.g., ammonite zones, isoto-
pic excursions) therefore reflect their relative dura-
tions. By “constant” is meant at a rate sufficiently
steady for hiatuses not to be detectable by depar-
tures of 87Sr/86Sr from a linear trend.With the present
analytical uncertainty of no better than 50.000003,
the time thus represented has a lower limit of no
less than 50 k.yr. for periods of time when marine
87Sr/86Sr was changing rapidly with time (≈0.000060
per Ma; Oligocene, earliest Triassic) and is greater
for periods where 87Sr/86Sr was changing less rap-
idly with time. The uncertainty on whatever cali-
bration curve is used will increase the duration of
the period below which a hiatus might be identi-
fied.

Figure 1. Evolution of marine 87Sr/86Sr through time (dR/dt) for the past 25 m.yr., modified from the locally weighted
scatterplot smoothing (LOWESS) fit of McArthur et al. (2012) in the geological time scale of Gradstein et al. (2012;
GTS12). The profile comprises linear sections A–D, connected by intervals of changing dR/dt. Least squares linear
regression coefficients for each segment are shown, together with the maximum deviation from the regression line
(the residuals) of the LOWESS line. The deviations are all less than typical analytical uncertainty of singlet analysis of
87Sr/86Sr of 0.000015. This time period is used to illustrate linearity because the temporal calibration is unequivocal.
All dates are normalized to standard values of 0.710248 for NIST987, which equals 0.709175 for EN-1. A color version
of this figure is available online.
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Figure 2. Comparison of trends of marine 87Sr/86Sr through time (dR/dt) with trends of marine 87Sr/86Sr with
stratigraphic level (dR/dl). A color version of this figure is available online.
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Comparisons to Cyclostratigraphy

Cyclostratigraphic analysis has contributed much
to calibrating the geological time scale when it has
been applied to pelagic and hemipelagic carbonate-
rich sediments in which sedimentation for long pe-
riodsmay have been continuous and sedimentation
rate reasonably constant or closely tied to repetitive
orbital cycles (Weedon 2003; Kuiper et al. 2008).
When applied to clastic sediments deposited on shal-
lowcontinental shelves in shallowepeiric seas,where
sedimentation is anything but continuous and sedi-
mentation rate highly variable (Ager 1973), cyclo-
stratigraphy appears to be less successful (Bailey
and Smith 2008a, 2008b; Vaughan et al. 2011, 2014;
Ruebsam et al. 2015).

Cyclostratigraphic analysis requires that the ex-
pression of cyclic forcings is captured in sediments
that either accumulate at a constant rate or accu-
mulate at a rate that varies with rigorous repetitive-
ness through being tied tightly to cyclic forcings for
long periods of time. A change in sedimentation rate
will change the frequency with which a cycle is ex-
pressed in the sediment where stratigraphic level is
used as a reference frame. Such changes in sedimen-
tation rate can be detected by adaptions of the cy-
clostratigraphic method (Huang et al. 1993), but
unless detected, multiple peaks at differing wave-
lengths will present for the same cycle. In view of
this, the finding in Toarcian sediments of the Paris
Basin ofq3 “a rich series of sub-Milankovitch to Milan-
kovitch frequencies (precession, obliquity and ec-
centricity)” by Boulila et al. (2014) might suggest that
the series has been enhanced by multiple changes in
sedimentation rate (cf. Ruebsam et al. 2015), thereby
giving opportunity to misassign detected frequencies
to incorrect orbital cycles. Furthermore, it seems odd
that most cyclostratigraphic analysis in deep time
involves an initial detrending step that removes var-
iation in the signal that itself might be cyclic in ori-
gin. Such a step needs to be rigorously justified but
seldom is.

Durations derived via cyclostatigraphy are accu-
rate only where a complete set of cyclostratigraphic
expressions are present. Sedimentary hiatuses may
not be identified by cyclostratigraphic analysis (e.g.,
Myers and Sageman 2004) because even multiple
gaps in a section may only degrade the power of any
periodicity seen rather than remove it entirelyq4 (e.g.,
Bailey and Smith 2008a, 2008b). Unlessmeans exist
to recognize hiatuses and estimate the time they
represent, durations obtained by cyclostratigraphy
will be underestimates.

Finally, cyclostratigraphic data are often “sam-
pled” or “resampled” to obtainq5 even distance values

for analysis. This process involves interpolation be-
tween real data points and yields “virtual” data
points, seldom explicitly identified as such, that are
more evenly spaced than the raw data. The use in
cyclostratigraphy of such a term should not be taken
to imply that new, real samples were collected. In
addition, cyclostratigraphers often employ the term
“tune” as a synonym for “assign by guesswork.”
Taken together, such terminology may project, to
some, an image of unwarranted rigor. While un-
doubtedly powerful, cyclostratigraphic analysis can,
like any method, be misapplied by, for example, not
fully accounting for confidence limits in a rigorous
way (Vaughan et al. 2011, 2014). Finally, in deep time,
the method relies not only on tuning but also on the
assumption that all orbital parameters in deep time
were the same as today’s, a matter still in debate for
all but the approximately q6405 ka cycle.

Application

Campanian. In figure 3a we plot the record of
marine 87Sr/86Sr through time for the Campanian of
the US Western Interior (US WI). Numerical ages
and the ammonite zonation are from GTS12, and
zonal values of 87Sr/86Sr are from McArthur et al.
(1994), with additional data from the analysis of a
new sample given in table 1. The trend is calibrated
by numerous dates for bentonites (Obradovich 1993;
Cobban et al. 2006). The trend is reasonably linear
in its upper half, from the Baculites scotti Zone up-
ward, but is nonlinear in its lower half, which shows
two strong points of inflection between the zones of
Scaphites hippocrepis III and Baculites obtusus.

The record of marine 87Sr/86Sr against stratigraphic
level through the Chalk of northwestern Germany
is plotted in figure 3b; the data are from McArthur
et al. (1993), updatedwith new 87Sr/86Sr values for 34
belemnites, a revised stratigraphy from Voigt and
Schönfeld (2010), and the base of the Maastrichtian
now placed at the base of the Belemnella obtusa
Zone (Gradstein et al. 2012) rather than at the base
of the Belemnella lanceolata Zone, a traditional ear-
lier placement. The profile of 87Sr/86Sr against level
fits well to two linear segments, one below the level
of 167 m above datum (the top of the Patagiosites
stobaei ammonite zone) the other above it. As dR/
dl was constant in each segment, it follows that dR/
dt must have been constant in each (fig. 2). The
simplest interpretation of the change in slope is that
sedimentation rate changed at that point, although
a change in dR/dt might equally well explain the
change in slope.

The shape of the trend of 87Sr/86Sr through the
early and middle Campanian of the US WI differs
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markedly from the bilinear trend of 87Sr/86Sr shown
by the Chalk of Germany. The discrepancy may
have three explanations: critical dates for the US
WI may be wrong, critical bentonite samples from
the US WI may have been miscorrelated, and the
87Sr/86Sr data for the US WI are wrong in part. We
examine these possibilities below.
First, for the numerical calibration of the Cam-

panian, much hinges on the accuracy of the date
for the B. obtusus Zone, as it is the middle date of
only three of 11 contiguous zones from the B. hip-
pocreppis II Zone to the B. scotti Zone. Are these
dates incorrect? In the following discussion, dates
are given relative to Fish Canyon Tuff of 28.201
and the decay constants of Min et al. (2000). Nu-
merical dates for the B. obtusus Zone (appendix 2
of GTS12; largely from Obradovich 1993 and
Cobban et al. 2006) are 80.62 5 0.40 Ma (95% con-
fidence interval) for the Ardmore Bentonite of the

Red Bird section ofWyoming (Hicks et al. 1999) and
81.3 5 0.55 Ma for the Big Bentonite (taken to be
theArdmore Bentonite) of the Elk Basin (Hicks et al.
1995). These localities are 500 km apart. The two
dates were obtained by similar methods, and repeat
analysis by Sageman et al. (2014) of four older
bentonites dated by similar methods gave results
indistinguishable from the original dates. For ex-
ample, a date of 81.84 5 0.22 Ma was obtained by
Sageman et al. (2014) for a bentonite low in the zone
of Scaphites hippocrepis II, while the date for a
bentonite in this zone of 81.87 5 0.25 Ma (recal-
culated) is reported in GTS12 (after Cobban et al.
2006 and Obradovich et al. 1993). The agreement
attests to the robustness of the Ar/Ar dates for the
US WI given in GTS12. Error in dating therefore
seems unlikely.
Second, there is a possibility that the bentonites

dated byHicks et al. (1995, 1999) from theB. obtusus

Figure 3. a, Trends of 87Sr/86Sr against numerical age for the Campanian of the US Western Interior. Time scale and
ammonite zonation are from the geological time scale of Gradstein et al. (2012; GTS12). Black open circles are data of
McArthur et al. (1994). Black filled circles are data for five new samples. Italic numbers are mean 87Sr/86Sr for the
relevant zones. Values of 87Sr/86Sr for stage boundaries are interpolated to the base of the Baculites baculus and
Scaphites leei III Zones. b, Trend against stratigraphic level through the Campanian Chalk of northern Germany.
Dates are from McArthur et al. (1993) plus 34 new belemnite analyses. Stratigraphic levels in Germany of indicated
zones are from Schulz et al. (1984). The date for the early/late boundary is from Voigt and Schönfeld (2010). Italic
numbers are 87Sr/86Sr of zone boundaries derived from regression fits of 87Sr/86Sr on depth. Values of 87Sr/86Sr for stage
boundaries are for the base of the Gonioteuthis granulataquadrata Zone (Campanian) and the base of the Belemnella
obtusa Zone (Maastrichtian); these boundaries differ from those in McArthur et al. (1993). A color version of this
figure is available online.
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Zone were not collected from that zone. As those
authors pointed out, the Ardmore Bentonite Bed ac-
tually consists of an interval of shale with multiple
bentonite beds. However, this interval has been very
well documented at the informal type section of the
Pierre Shale at Red Bird, Wyoming (Gill and Cobban
1966), where it occurs near the bottom on the Sharon
Springs Member at the base of the B. obtusus Zone.
Thus, it is unlikely thatq7 Hicks et al. (1995) sampled
the wrong bentonite.

Third, the values of 87Sr/86Sr are incorrect for the
interval Baculites sp. smooth to Baculites grego-
ryensis. For this to be the case, it would be neces-
sary for 12 values of 87Sr/86Sr derived from 11 separate
ammonites spread through five zones all to be in-
correct in a systematic manner such that the errors
in the 87Sr/86Sr values first increase upsection and
then decrease upsection.

To test the 87Sr/86Sr data, we have analyzed five
new specimens of ammonites; the data are shown
in table 1. They confirm the validity of the 87Sr/86Sr
data of McArthur et al. (1994). There is also good
agreement between the 87Sr/86Sr value used here
of 0.707674 5 10 (2 SE, n p 5) for the Baculites
compressus Zone (from McArthur et al. 1994) and
that obtained independently on different specimens
by Cochran et al. (2010) for the same zone of
0.707684 5 13 (mean and range of their two best-
preserved samples). The agreement is similar for
two specimens from the Didymoceras cheyennense
Zone reported by Landman et al. (2012), which, at
0.707692 and 0.707701, are some 0.000030 higher
(twice analytical uncertainty) than those inferred
from the trendline of McArthur et al. (1994) and
shown in figure 3. Furthermore, the values of 87Sr/
86Sr for the base of the Maastrichtian and the base of
the Campanian agree wellq8 (fig. 3) for the present def-
initions of these boundaries, considering the uncer-

tainties inherent in both the analytical uncertainty
of the 87Sr/86Sr analysis and the biostratigraphic cor-
relation (unquantifiable).

There is a possibility that nonmarine influences
affected the 87Sr/86Sr composition of the US WI,
either through dilution by freshwater runoff (Mc-
Arthur et al. 1994; Cochran et al. 2003) or through
the action of methane seeps (Landman et al. 2012).
We discount the former for reasons given at length
in McArthur et al. (1994), not least of which is that
those authors analyzed mostly ammonites, which
are mostly stenohaline. We discount the latter be-
cause biogenic calcite in specimens affected by ex-
halations from methane seeps typically have very
depleted values of d13C and may also show depleted
values of d

18O (Landman et al. 2012); the data of
McArthur et al. (1994) excluded samples with anom-
alous stable-isotopic compositions. Furthermore,
methane seeps identified to date are found in strata
of late middle Campanian to Early Maastrichtian
age; our major anomaly in 87Sr/86Sr is in the late
Early through middle Campanian.

A need for adjustment to the scaling for the Cam-
panian in GTS12 is highlighted by Walaszczyk et al.
(2008), who correlated the northern European zones
of P. stobaei and (overlying) Gaterites vulgaris to
the US WI zones of B. obtusus and the (overlying)
Baculites maclearni, respectively (fig. 3). The lower
biostratigraphic correlation agrees well with the Sr-
isotope correlation, considering the uncertainties in-
herent in both methods. The 87Sr/86Sr correlation of
the European G. vulgaris Zone, however, includes
zones from the B. maclearni up to the B. scotti Zone
because of the low slope of the plateau region of the
middle Campanian of the US WI. This amounts to a
potential error in correlation of up to 5 m.yr. and
emphasizes the perplexity of the paradox noted here.
Much, but not all, of the plateau in 87Sr/86Sr in the

Table 1. Results of 87Sr/86Sr analysis of samples of molluscan shell material from the US Western Interior analyzed for
this study as a check on the data of McArthur et al. (1994)

Sample Zone Unit Locality 87Sr/86Sr

D4261 B. asperiformis Cody Shale Johnson County, Wyoming .707572 5 8
D4255 B. sp. (weakly ribbed) Cody Shale Johnson County, Wyoming .707572 5 9
AMNH 102643 B. smooth (early) Pierre Shale Butte County, South Dakota .707517 5 11
AMNH 51754 B. smooth (early) Pierre Shale Butte County, South Dakota .707518 5 9
AMNH 102654 (a) B. smooth (early) Pierre Shale Butte County, South Dakota .707516 5 7
AMNH 102654 (b) B. smooth (early) Pierre Shale Butte County, South Dakota .707518 5 10
Isotope standards:

EN-1 .709180 5 7
EN-1 .709173 5 8
SRM 987 .710247 5 10
SRM 987 .710249 5 6

Note. All of the samples are from the name-bearing species of Baculiteswithin each zone except for D4261, which is
a Hoploscaphites species from the B. asperiformis Zone. Dp USGS Mesozoic locality; AMNH p American Museum
of Natural History.
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middle Campanian of the US WI can be removed by
adjusting zonal durations for the middle Campa-
nian—for example, decreasing the durations of zones
in the upper part of the middle Campanian and in-
creasing those in the lower part—but the plateau
cannot be entirely removed by this process without
reducing some zonal durations almost to zero, which
seems unreasonable.
A need for adjustment to the scaling for Cam-

panian in GTS12 is also highlighted by Voight et al.
(2010), who used cyclostratigraphy to assign a date
of 77.5 5 0.4 Ma to the boundary between the
early and late Campanian in northern Germany
(Lägerdorf-Kronsmoor; fig. 3). The rigor of this date
has not been assessed here, but we note that it
agrees well with the correlation of Walaszczyk et al.
(2008), highlights the discrepancy between Germany
and the US WI, and requires (as does the 87Sr/86Sr)
the presently compressed durations of the zones S.
hippocrepis II to B. (weakly ribbed) to be greatly
expanded and the durations of the overlying zones
up to the B. scotti Zone to be greatly compressed.
Differential rates of sedimentation in different

zones or groups of zones might influence scaling of
time between those zones. The base of the Sharon
Springs Member probably represents a condensed
interval that formed at the beginning of the Claggett
transgression (Gill and Cobban 1966). It consists of
organic-rich shale with abundant fish teeth and
scales. In contrast, the stratigraphic interval above
the B. obtusus Zone and extending to the B. scotti
Zone is much more expanded. Hicks et al. (1999,
their table 4) estimated that the sedimentation rate
in this part of the section was 45% greater than that
in the lower part of the section. This difference in
sedimentation rate can explain only a small part of
the 87Sr/86Sr paradox.
The application of linear 87Sr/86Sr has therefore

revealed a problem affecting the scaling of zonal
duration zonation for the US WI, the Sr-isotope
stratigraphy of the US WI, the numerical age of
bentonites from the B. obtusus Zone, the inter-
pretation of the rates of sedimentation through the
section, or an unfortunate combination of one or
more of these factors. To establish the relative con-
tributions of these factors, dating of new middle
Campanian tuffs are required. Also required are
further analysis for 87Sr/86Sr of specimens from lo-
calities known to be free of methane seeps and lo-
cated away from the well-known shorelines of the
time (Gill and Cobban 1973; Wright 1987; Lille-
graven and Ostresh 1990; Slattery et al. 2013). Bel-
emnite calcite would be the best sampling medium,
as the low-magnesium calcite of the belemnite ros-
trum resists diagenetic alteration better than does

ammonite aragonite and is easier than ammonite
aragonite to assess for alteration.

Pliensbachian. Sr-isotope stratigraphy. The am-
monite zonation of the lower Jurassic of north-
western Europe is summarized in Page (2003). For
the Pliensbachian of Yorkshire, United Kingdom,
ammonite zonal boundaries have been defined to
decimeter accuracy in the well-exposed coastal
sections of Yorkshire by Howarth (1955) and Phelps
(1985), summarized in Hesselbo and Jenkyns (1995).
The record of 87Sr/86Sr against stratigraphic level
through the Pliensbachian of Yorkshire is shown in
fig. 4a. The 87Sr/86Sr of the ammonite zonal bound-
aries are defined well. The trend of 87Sr/86Sr against
stratigraphic level shows some sinuosity, which
might result from variations in sedimentation rate,
dRdt, or both. The plateau in 87Sr/86Sr through the
Davoei Zone was ascribed byMcArthur et al. (2000)
to an increase in sedimentation rate through this
interval. The steep decline in 87Sr/86Sr in the upper
gibbosus Subzone is known to arise from the pres-
ence of a hiatus at this level in coastal exposures, a
hiatus that cuts out an increasing thickness of
Pliensbachian stratawith increasing distance inland
(Howard 1985).
To compare the Yorkshire profile to those from

elsewhere, we take the 87Sr/86Sr values of the zonal
boundaries in Yorkshire (fig. 4a) and place them
into other sections. Figure 4b shows the profile of
87Sr/86Sr with stratigraphic level in a composite
section through the Pliensbachian of the Basque-
Cantabrian Basin (BCB) of northern Spain (Rosales
et al. 2003). Through the BCB profile, dR/dl is
constant except in the Jamesoni Zone. It follows
that, Jamesoni Zone apart, dR/dt was also constant
through the section in Spain, and so, JamesoniZone
apart, q9the zonal thickness reflects zonal duration.
The linearity of the 87Sr/86Sr profile through most
of the BCB section proves that the sinuosity of the
Yorkshire profile was caused by variations in sedi-
mentation rate.
The profile of 87Sr/86Sr against time and ammo-

nite zonation as given in GTS12 is shown in fig-
ure 4c. The profile approximates to linear. That
time scale applied a linear Sr trend from McArthur
et al. (2000) for scaling the A. margaritatus and P.
spinatum Zones and then an equal-subzone scale
for the lower 10 subzones of the early Pliensbachian
(J. Ogg, pers. comm., March 2016). Application of a
rigorously linear 87Sr/86Sr model gives the zonal du-
rations in figure 5, which differ a little from those
given in GTS12.
Figure 4d shows the profile of 87Sr/86Sr against

stratigraphic level in the Llanbedr (Mochras Farm)
borehole, United Kingdom (Woodland 1971). For
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Figure 4. Stratigraphy is from Ivimey-Cook (1971); ammonite zonation and boundaries were redetermined for this
work by K. Page and are largely confirmed: the base of the Jamesoni Zone is placed here 8.5 m lower than in Ivimey-
Cook (1971).a, Profiles of 87Sr/86Sr against stratigraphic level for Pliensbachian sections in the United Kingdom
(Yorkshire). Data for Yorkshire are fromMcArthur et al. (2000); data for the Jamesoni Zone are from Jones et al. (1994)
and Hesselbo et al. (2000). b, Profiles of 87Sr/86Sr against stratigraphic level for Pliensbachian sections in Spain.
Stratigraphy is from Rosales et al. (2003). c, Profiles of 87Sr/86Sr through Pliensbachian time to the geological time
scale of Gradstein et al. (2012; GTS12). d, Profiles of 87Sr/86Sr against stratigraphic level for the Pliensbachian core
from Mochras, Wales. Stratigraphy is from Ivimey-Cook (1971), updated by Page (2013), with ammonite zonation
redetermined for this work by K. Page using ammonites from a curated core held at the British Geological Survey,
Keyworth, United Kingdom. Apart from the position of the base of the Jamesoni Zone, which is placed here 8.5 m
lower than in Ivimey-Cook (1971), other differences in level are too small to show on the diagram. To illustrate
departures of trends from linear, dotted straight lines are drawn arbitrarily through 87Sr/86Sr values for the base of the
Toarcian and the base of the Ibex Zone. A color version of this figure is available online.
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figure 4, zonal boundaries were redetermined by
examination of several hundred ammonites from
the curated core. The extant zonal boundaries were
largely confirmed and any differences in level are
too small to show on our figures.
The Mochras profile approximates a linear trend

but shows two weak inflections, one at the base of
the Ibex Zone and the other at the base of the
subnodosus Subzone. Nevertheless, the weak in-
flection in the base of the Ibex Zone gives a trend
through the Jamesoni Zone that is much lower in
dR/dl (and so putative dR/dt) than that seen in the
profile for Spain or GTS12. The Mochras profile

therefore shows that the sedimentation rate for the
Jamesoni Zone in Spain was lower than it was for
that zone at Mochras and also that the duration of
the zone in GTS12 may be underestimated.
Cyclostratigraphy. In the Mochras profile, dR/dl

varies from 10.9 per 10 m of section in the Jamesoni
Zone through 6.3 per 10 m in the middle Pliens-
bachian to 11.5 per 10 m in the upper Pliensbachian.
The sedimentation rate thus varied through the pe-
riod of deposition by a factor of about two. Attempts
to use cyclostratigraphy to estimate event durations
or the duration of the Pliensbachian stage and its
component zones would need to accommodate such
changes in the rate of sedimentation.

Toarcian. Sr-isotope stratigraphy. For the Toar-
cian of Yorkshire, ammonite zonal boundaries have
been defined to decimeter accuracy in the well-
exposed coastal sections by Howarth (1962, 1973,
1992), and the sequence was used to establish the
high-resolution biohorizonal scheme of Page (2004).
The record of 87Sr/86Sr against stratigraphic level
through those composited sections is shown in fig-
ure 6a, updated from McArthur et al. (2000) with
additional 87Sr/86Sr data for the Dumortieria leves-
quei Zone of the uppermost Toarcian and some re-
determinations of 87Sr/86Sr in other zones. The pro-
file comprises four linear segments with different
dR/dl. The parts are as follows, with rates of change
of 87Sr/86Sr with stratigraphic level in units of 1026

per 10 m of section:

• 9.0 above 69 m; the section’s top lacks the
aalensis Subzone and part of themoorei Subzone.

• 6.0 between 22 and 69 m; 0.3 m above base
falciferum Subzone to mid-fibulatum Subzone.

• 93 between 14 and 22 m; exaratum Subzone plus
0.3 m of falciferum Subzone.

• 14 between 0 and 14 m; Tenuicostatum Zone.

The differing dR/dl occur because the four parts
of the profile accumulated at different rates (Mc-
Arthur et al. 2000; this work). The upper two parts
represent samples collected either side of a strike-slip
fault that has juxtaposed strata for which sedimen-
tation rates differed in Toarcian time. Downsection,
dR/dl is particularly high through the exaratum
Subzone because the unit is condensed (McArthur
et al. 2000; Jenkyns et al. 2002; McArthur and Wig-
nall 2007; Trabucho-Alexandre 2014).
It is illustrative to compare the profile of 87Sr/86Sr

against stratigraphic level (i.e., through rock) for the
Yorkshire Toarcian to profiles through time and
through Toarcian sediments elsewhere. The 87Sr/
86Sr values of the zonal boundaries in Yorkshire
(fig. 6a) are therefore inserted into GTS12, the (in-
complete) Amellago section of Morocco (Bodin

Figure 5. Numerical ages and durations of ammonites
zones for the Pliensbachian derived with a linear 87Sr/
86Sr age model. Subboreal ammonite zonations for the
Mochras borehole are from Ivimey-Cook (1971), revised
here (see legend to fig. 4). Tethyan zonal equivalence is
from Page (2003). Rather than give zonal/subzonal dura-
tions, in italic are given the percentage of Pliensbachian
times occupied by each zone/subzone, as such a division
is independent of the numerical ages of the stage bound-
aries. A color version of this figure is available online.
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Figure 6. Profiles of 87Sr/86Sr against stratigraphic level for Toarcian sections in Yorkshire, United Kngdom (a);
against time for Gradstein et al. (2012; b); against stratigraphic level for the Mochras borehole, Wales, United
Kingdom (c); and for the section at Amellago, Morocco (Bodin et al. 2010; d). Data for 87Sr/86Sr are fromMcArthur et al.
(2000), with additional analysis for the Levesqui Zone and some reanalysis of samples from lower levels. To illustrate
departures of trends from linearity, dotted straight lines are drawn through 87Sr/86Sr values for the base of the Toarcian
(0.707073) and the base of the Aalenian (0.707290). Sz. p subzone. A color version of this figure is available online.
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et al. 2010), and the biostratigraphic record for the
Mochras Farm borehole of the United Kingdom
(Wales).
Figure 6b shows the profile of 87Sr/86Sr through

time according to the time scale of GTS12. A dis-
tinct step in 87Sr/86Sr is seen in the exaratum Sub-
zone in comparison to the smoother profiles in the
Mochras borehole and the Amellago section. The
comparison suggests that GTS12 has underesti-
mated the duration of the exaratum Subzone: the
stepped temporal profile retains some of the ex-
treme condensation in that subzone shown to occur
by McArthur et al. (2000; further discussed in Mc-
Arthur and Wignall 2007).
In theMochras borehole, zonal boundaries appear

mostly to be resolved with the accuracy of a few
meters (Ivimey-Cook 1971; this work): the profile of
87Sr/86Sr against stratigraphic level through the bore-
hole (fig. 6c) lacks the severe distortion seen in the
H. exaratum Subzone of the Yorkshire profile and
so is not condensed as it is in Yorkshire. The Mo-
chras profile approximates to two near-linear seg-
ments, one above the base of the fibulatum Subzone
and the other below it. Values of dR/dl per 10 m of
strata are around 14 for the lower part and 6 for the
upper part (fibulatum Subzone and upward). A sim-
ilar shape to the profile is seen in the Amellago sec-

tion of Bodin et al. (2010) forMorocco (fig. 6d), where
the upper part of the profile has a lower dR/dl per
10 m of strata than the lower part (2.0 vs. 8.4).
The profiles of 87Sr/86Sr against stratigraphic level

forMochras and Amellago approach linearitymuch
more closely than does the profile for Yorkshire and
express little of the condensation shown by the
Yorkshire sections. Change in dR/dl in Amellago,
Mochras, and Yorkshire occurs in the BifronsZone,
but in Yorkshire it occurs in the upper part while in
Amellago and Mochras it occurs in the lower part,
confirming that it is caused by a change in the
sedimentation rate rather than a change in dR/dt.
The profiles suggest that a linear 87Sr/86Sr model

for assigning time in the Toarcian is appropriate, in
line with the models shown in figure 2. The re-
sults of applying a linear model to apportion time
is shown in figure 7, which is updated from table 2
of McArthur et al. (2000). Using the linear model,
the rise in 87Sr/86Sr through the exaratum Subzone
(figs. 6a, 7) is 28% of the rise in 87Sr/86Sr through
the entire Toarcian, so the duration of the exara-
tum Subzone must be 28% of the time allotted to
the Toarcian age, thus 2.4 m.yr. using GTS12 dates
for age boundaries. Similarly, the rise through the
Falciferum Zone (subzones falciferum over exara-
tum) is 44% of the total rise through the Toarcian,

Figure 7. Age models for Toarcian time based on a linear Sr model, and a Mochras model that assumes that zonal
duration is represented by zone thickness. Rather than give zonal/subzonal durations, in italic are given the per-
centage of Toarcian time occupied by each zone/subzone, as such a division is independent of the numerical ages of
the stage boundaries. A color version of this figure is available online.
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so 44% of Toarcian time and thus 3.8 m.yr. using
that time scale.

An alternative near-linear “Mochras model” can
be derived to apportion time in the Toarcian on the
basis of the fact that the profile of dR/dl is similar
in both Mochras and Amellago (fig. 6). This model
requires that the sedimentation rate in both lo-
calities was constant during deposition of Toarcian
sediments and that the similarity of profiles of dR/
dl arises because dR/dt was 30% lower in the late
Toarcian than in the early Toarcian. This model is
falsified by the Yorkshire profile and is further sus-
pect because a “probable fault” is recorded in the
middle of the exaratum Subzone in the Mochras
borehole; if real, it may have repeated, or cut out,
some of the exaratum Subzone. Both possibilities
would alter the interpretation of the profile. Never-
theless, the model has a limited use in that it can
provide limiting values on the durations of biozones,
and these are also shown inq10 figure. The Falciferum
Zone had a duration of 24% of the total duration of
the Toarcian, or 2.1 m.yr., while the exaratum Sub-
zone lasted 1.1 m.yr. Themain value of this model is
to show that even on a suspect nonlinear model, the
duration of the exaratum Subzone exceeds estimates
derived from cyclostratigraphy, which are discussed
below.

Cyclostratigraphy. A negative isotope excursion
in the d

13C of organic carbon (CIEom) occurs in the
exaratum Subzone of the lower Toarcian sediments
of northwestern Europe (Küspert et al. 1982 and
many since) and elsewhere. It is assumed by many
that the excursion is the expression of a synchronous
event and is of uniform duration everywhere. That du-
rationhasbeenestimatedbycyclostratigraphy to range
from 120 k.yr. (Clémence 2006) through 260 k.yr.
(Ikeda and Hori 2014), ∼300–500 k.yr. (Boulila et al.
2014), 500 k.yr. (Sabatino et al. 2009), 620 k.yr.
(Huang and Hesselbo 2014), 790 k.yr. (elegantulum
Subzone of Ruebsam et al. 2014), and 930 k.yr. (Suan
et al. 2008). Either the event is not synchronous and
so not of equal duration everywhere, as implied re-
cently by Neumeister et al. (2014), or some or all of
these estimates of duration are incorrect.

In the lower Toarcian sediments of Yorkshire,
the CIEom is marginally longer in duration than the
coincident H. exaratum Subzone (i.e., the elegan-
tulum Subzone of theMediterranean province; Page
2003). The duration of the H. exaratum Subzone is
shown here to be around 2.4m.yr., with a less likely
minimum duration of 1.1 m.yr. derived from the
Mochras model. The estimate of 1.1 m.yr. is 56%
longer (i.e., 480 k.yr. longer) than the duration of
620 k.yr. arrived at for the sections in Yorkshire by
Huang andHesselbo (2014) using cyclostratigraphy.

That cyclostratigraphic analysis claimed to reveal
six C-isotope cycles in six separate European sec-
tions, one of which contains condensation and hia-
tuses q11(fig. 8), q12is a matter of record elsewhere (Mc-
Arthur et al. 2000; McArthur and Wignall 2007;
Trebucho-Alexandre 2014). Clearly, if the cycles
identified are real, they are not a complete set.
Others attempting cyclostratigraphic analysis of
the H. exaratum Subzone in Yorkshire found no
cyclicity at all in its upper part (Kemp et al. 2011).

Valanginian. q13Sr-isotope stratigraphy. For the Va-
langinian sediments of the Vocontian basin of south-
eastern France, accounts of the lithostratigraphy and
biostratigraphy have been given by Busnardo (1979),
Busnardo and Thieuloy (1979), Cotillon et al. (1980),
Reboulet et al. (1992), Bulot et al. (1993), and many
since. Zonal boundaries, and so the bases of the

Figure 8. Schematized hiatuses and condensation in
theH. exaratum Subzone of Yorkshire, United Kingdom,
figured in Jenkyns et al. (2002).

q11,q12
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Figure 9. Profiles of 87Sr/86Sr for Valanginian sections in southeastern France against stratigraphic level (a) and time
(b) from Gradstein et al. (2012); against time from Gréselle and Pettit (2010; c); against time fromMartinez et al. (2013;
d); and against stratigraphic level from Möller et al. (2015; e). Data for 87Sr/86Sr are from McArthur et al. (2007). To
illustrate departures of trends from linearity, dotted straight lines are drawn through 87Sr/86Sr values from McArthur
et al. (2007) for the base of the Valanginian (0.707294) and the base of the Hauterivian (0.707383); in e, these two
values are shown as larger filled black circles. A color version of this figure is available online.
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Valanginian and Hauterivian stages, can be posi-
tioned with decimeter accuracy. We take the 87Sr/86Sr
values of these zonal boundaries as determined in the
Vocontian Basin of southeastern France byMcArthur
et al. (2007) and use them to compare age models for
the interval that are given in GTS12, Gréselle and
Pettit (2010), Martinez et al. (2013), and Möller et al.
(2015). The comparisons are shown in figure 9.

A high dR/dl in the lowermost T. pertransiens
Zone (fig. 9a) confirms condensation of the strata
in the basal Valanginian, as noted by others (for a
discussion, see sect. 8.4.2 of McArthur et al. 2007).
The rest of the profile is fitted well by two linear
regressions, with dR/dl being steeper in the lower
Valanginian than in the upper Valanginian. The
profile of 87Sr/86Sr against numerical age, with ages
from GTS12, is shown in figure 9b. The numerical
ages are based largely on the cyclostratigraphy of
Huang et al. (1993). Using that apportionment of
time, the 87Sr/86Sr profile approximates a straight
line. The apportioning of time through the Valan-
ginian by Gréselle and Pettit (2010; fig. 9c), which
is based on sequence stratigraphic recognition of
cyclicity in the sediments, closely approximates
the apportioning of time given in GTS12, and so
the profile of dR/dt is similar to that for GTS12
(fig. 9b). In contrast, the allocation of time based
on the cyclostratigraphy of Martinez et al. (2013;
fig. 9d) lengthens the late Valanginian at the ex-
pense of the early Valanginian. This process gen-
erates a distinctly nonlinear profile for dR/dt. Huang
et al. (1993) stated that, for their studied sections at
Angles and Vergons in the Vocontian Basin, the sed-
imentation rate in the upper Valanginianwas around
50% higher than that in the lower Valanginian. That
interpretation is not accepted in Martinez et al.
(2013), but it fits the profile of 87Sr/86Sr, which has
lower dR/dl in the upper Valanginian than in the
lower Valanginian (fig. 9a).

The data of Möller et al. (2015) for East Green-
land, although sparse, appear tofit a linear trend and
suggest that a linear model for apportionment of
Valanginian time might be appropriate. It further
suggests that the apportionment of time in GTS12
is reasonably accurate. InMöller et al. (2015), values
of 87Sr/86Sr at stage boundaries are indistinguishable
from those for the Vocontian Basin of southeastern
France (McArthur et al. 2007): the base of the
Hauterivian is 0.707383 5 0.000005, while a value
of 0.707380 5 0.000003 pertains to the base of
the Hauterivian at Speeton, United Kingdom (Mc-
Arthur et al. 2004). The base of the Valanginian
(base of the T. pertransiens Zone) has an 87Sr/86Sr
value of 0.7072945 0.000005 in southeastern France
(McArthur et al. 2007). This value is unchanged if the

first occurrence of Calpionellites darderi is used to
define the base of the Valanginian (Bulot et al. 1996),
as this level is close to the first occurrence of T. per-
transiens; for example, at Montbrun-les-Bains, these
levels are !3 cm apart (McArthur et al. 2007).

Cyclostratigraphy. The Valanginian sediments
of Vocontian Basin, southeastern France, are good
candidates for cyclostratigraphic analysis because
of their apparently rhythmically interbedded marls
and limestones. Nevertheless, estimates of the
duration of the Valanginian interval that have been
derived from cyclostratigraphy range from 4.7m.yr.
(Gréselle and Pittet 2010) through 5.08 m.yr. (Mar-
tinez et al. 2013), 5.9 m.yr. (Huang et al. 1993; but
including the Thurmanniceras otopeta ammonite
zone, now assigned to the Berriasian), 6.9 m.yr. (Spro-
vieri et al. 2006), and 7.04 m.yr. (Giraud et al. 1995;
also including the T. otopeta ammonite zone). Al-
lowing for the changes to boundary definitions, their
remains some disagreement about the duration of
the age.

The 87Sr/86Sr profile against stratigraphic level
through the Valanginian strata of southeastern
France (fig. 8) shows two points of inflection that
join three linear segments of the profile, while the
profile for East Greenland is linear. The latter pro-
file (fig. 8) constrains to two the number of times
sedimentation rate changed in the studied section
of the Vocontian Basin of southeastern France; once
at the termination of basal Valanginian condensa-
tion, and once more at the boundary of the base of
the pronecostatum Subzone. Such change should be
incorporated into further attempts at cyclostrati-
graphic analysis of the Valanginian of southeastern
France.

Conclusions

Profiling of 87Sr/86Sr through sedimentary sections
can identify hiatuses, faulting, and changes in sedi-
mentation rate. In sections where the profile of 87Sr/
86Sr changes linearly with stratigraphic level, 87Sr/
86Sr was changing linearly with time. In such sec-
tions, sediment thickness is directly proportional to
time passed.

Using profiles of 87Sr/86Sr against time and against
stratigraphic level, we have shown the following:

• Condensation, hiatuses, and changes in sedimen-
tation rate can be identified. Such profiling should
be used to constrain and guide cyclostratigraphy, as
has been done here.

• Cyclostratigraphic estimates of the duration of
several ages differ greatly from author to author
and would benefit by being moderated by 87Sr/
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86Sr profiling of the sections studied to identify
major breaks in sedimentation and changes in
sedimentation rate.

• The calibration of the Gradstein et al. (2012)
time scale (i.e., GTS12) for the lower Campanian
does not agree with an apportionment based on
87Sr/86Sr. This discrepancy can be resolved only
by further work.

• The apportioning of Pliensbachian time by the
GTS12 mostly agrees with a linear model for the
evolution of 87Sr/86Sr through the interval but
may underestimate the duration of the Jamesoni
Zone, the lowermost ammonite zone of the
Pliensbachian.

• The GTS12 for the Toarcian does not agree with
the apportionment of time based on 87Sr/86Sr and
appears to allot too little time to a period of se-
vere condensation in the H. exaratum Subzone
of the interval that is represented by black shales.

• Cyclostratigraphic estimates of the duration of
the Toarcian H. exaratum Subzone, the early To-
arcian CIEom, or any other interval in clastic, near-

shore sediments are likely to be estimates of min-
imum duration only.

• The duration of the early Toarcian negative ex-
cursion in the d

13C of marine organic matter,
which is closely coincident with the H. exaratum
Subzone, is around 2.4m.yr., some 1.5m.yr. longer
than the longest cyclostratigraphic-based esti-
mate of 930 k.yr., in a range that reaches down to
120 k.yr.

• The best apportionment of time for the Valan-
ginian is GTS12, although a strictly linear pro-
file of 87Sr/86Sr through the Valanginian of East
Greenland suggests that minor refinement might
be needed.
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Q1. AU: Your article has been edited by University of Chicago Press manuscript editors for grammar,
clarity, consistency, and conformity to journal style. Please read the proof of your article carefully to make
sure that your meaning has been retained. Note that we may be unable to make revisions that conflict
with journal style or create grammatical problems. This proof is your final check of the text; once it has
been placed on the web as an ahead-of-print article, it is considered published. Thank you.
Q2. AU: The callout of “fig. 2a” here was changed to “fig. 2,” as there are no labels in figure 2; okay, or do
labels need to be added?
Q3. AU: Please provide a page number for this quotation from by Boulila et al. 2014.
Q4. AU: Note that “Bailey and Smith 2008” was edited to read “Bailey and Smith 2008a, 2008b” here;
okay? If not, please specify which reference was meant.
Q5. AU: Is “even distance values” okay as edited, or was your meaning otherwise?
Q6. AU: Would “405 ka cycle” be better expressed as “405-k.yr. cycle”?
Q7. AU: Okay to change “Hicks et al. (1995, 1995)” here to “Hicks et al. (1995),” or did you mean to cite a
second reference?
Q8. AU: In the figure 3 legend, should “Black filled circles are data for five new samples” read “Black filled
circles are data for three new samples”? I could only three black filled circles in the figure.
Q9. AU: Is “the zonal thickness reflects zonal duration” okay as edited?
Q10. AU: Please specify which figure was meant here.
Q11. AU: In the figure 8 legend, please expand the genus name in “H. exaratum Subzone.”
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makes the sentence grammatically complete.
Q13. AU: Okay to edit to read “Sr-isotope stratigraphy” here?
Q14. AU: In Gill and Cobban 1966, is “73 p.” okay as edited?
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