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ABSTRACT

We develop a free surface tracking solver for numerical simulation of
unsteady irrotational fully non-linear water waves in a freely available
open-source computational fluid dynamics toolbox OpenFOAM R©-Ext,
which is community-driven release of OpenFOAM R©. The solver is
based on the solution of the Laplacian of the velocity potential with mov-
ing free surface. The free surface is tracked by solving the kinematic
boundary condition based on the normal flux out of the surface. We also
develop the necessary boundary conditions for the realistic wave genera-
tion at inlet and the absorption boundary condition at the outlet boundary.
To avoid numerical instability, a 5-point smoothing technique is used to
smooth the free surface elevation. Solution of Laplace’s equation for the
velocity potential, the non-linear free surface boundary conditions, the
wave generation and the absorption boundary conditions are all not part
of the standard OpenFOAM R© distribution. The potential flow solver is
able to simulate large amplitude standing and progressive waves. We
validate the solver by comparing the numerical results with analytical
results for second order standing waves, and progressive waves with ex-
perimental results and satisfactory agreement is found.

KEY WORDS: free surface flows; surface tracking; finite volume
method; nonlinear potential flow theory; Laplace’s equation.

INTRODUCTION

The numerical simulation of unsteady free surface waves has received
considerable attention in computational fluid dynamics because of the
challenge in determining the free surface. A variety of methods have
been developed and can be classified namely as “surface capturing”
and “surface tracking”. In surface capturing methods, the solution is
obtained in a computaional domain that covers at least two fluids. This
method mostly solves the Navier-Stokes equations in the computational
domain with an additional equation for a scalar field to determine the
location of the free surface at each instant in time. This approach can
easily capture complicated flow phenomena e.g waves overturning, wave
breaking and bubble generating. However solving two fluid regions with
an additional scalar transport equation results in high computational

cost. Moreover, the scalar field also suffers from numerical diffusion. In
the surface tracking approach, the flow is solved only for one fluid in a
computational domain with the free surface treated as a moving upper
boundary. Among this method, many reserachers (Mayer, Garapon
and Sorensen, 1998; Zwart, Raithby and Raw, 1999; Muzaferija
and Peric̀, 1997), solve the full Navier-Stokes equations without
making any simplifying flow assumptions, whilst others (Greaves,
Wu, Borthwick and Taylor, 1997; Ma, Wu and Taylor, 2001; Santos
and Greaves, 2006) solve a Laplacian equation assuming the fluid to
be inviscid and the flow to be irrotational and incompressible, as is
the case of the method presented herein. Following the irrotational
flow assumption, the solution has been obtained by various numerical
methods including boundary element method (Wu and Taylor, 1995),
finite element method (Greaves, Wu, Borthwick and Taylor, 1997;
Ma, Wu and Taylor, 2001; Santos and Greaves, 2006) and by finite
volume method (Mehmood, Graham, Langfeld and Greaves, 2015).
The method is efficient and can follow the evolution of a simple free
surface profile very accurately. This approach is accurate and less ex-
pensive, however, restricted by when the free surface breaks or overturns.

In the present paper, we have updated the moving boundary finite volume
formulation (Mehmood, Graham, Langfeld and Greaves, 2015) for
two-dimensional fully nonlinear time-dependent free surface waves. The
current nonlinear full potential flow (NLPF) solver has been developed
in OpenFOAM R©-Extend environment. In recent years, a wide range of
community is using the open source CFD library OpenFOAM R©-Extend
for various applications. Among them hydrodynamic group is also
an active one which uses it for coastal related applications. Different
toolboxes namely waves2Foam (Jacobsen, Fuhrman and Fredsoe,
2012) and ihFoam (Higuera, Lara and Losada, 2013) have been
created for the community to generate and absorb free suface flows.
In waves2Foam, waves are generated actively while abosrbed using
wave relaxation zones, wheras in ihFoam, waves are gnerated and
absorbed actively, thus reducing the computational cost. However, both
these tools are using the existing interFoam as a solver while solving
three-dimensional Navier-Stokes equations for two fluids. Both these
tools are used to create very accurately the wave profiles and different
sea conditions. However, in case of large domains and specially the
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domains where waves do not steepen and break, these tools will result in
high computational cost. A key element for coastal engineering studies
currently lacking within OpenFOAM R©-Extend is the ability to generate
and propagate waves using less computational resources. In this article,
we describe a solver that will generate and propogate waves with less
computational cost. The solver will make calculations upto the point
where the wave begins to overturn. It has been coded from scratch
using the OpenFOAM R©-Extend functions to realistically generate and
propogate waves.

Particular reason of developing this solver in OpenFOAM R©-Extend is
to couple this solver with the existing incompressible and compressible
Navier-Stokes solvers. Since the method can not predict cases of wave
breaking, bubble capturing which will be made possible by coupling it
with the already built-in incompressible and compressible Navier-Stokes
(NS) solvers through a proper boundary condition that will enable
simulations of the full range of wave conditions. Additional advantages
include utilization of their built-in utilities including parallelization,
various time and spatial discretisation schemes, meshing types, mesh
motion solvers, selection of different waves conditions. The current wave
generating and absorption boundary conditions have been implemented
following OpenFOAM R©-Extend C++ class structure and hence can be
updated easily. The adoption of object oriented programming imlpies
that an extension of the wave theories merely requires knowledge of the
variation of ux as a function of space and time: hence additional wave
theories can easily be added.

In this method, the Laplace’s equation for the velocity potential is solved
inside the flow domian with the Neumann and Dirichlet type boundary
conditions on the boundaries. Kinematic and dynamic boundary condi-
tions are imposed on the free surface. The moving free surface is tracked
as a part of the solution along with the flow velocity. In the implemented
scheme, the free surface is allowed to deform and the inside mesh moves
to accommodate the free surface deformation at each time step. Model-
ing of the nonlinear free surface waves which satisfies the Laplaces of the
velocity potential inside the fluid domain with the inclusion of kinematic,
dynamic, waves generating and radiation boundary conditions were not
part of the standard distribution. OpenFOAM R©-Extend uses a finite vol-
ume discretisation approach on unstructured meshes consisting of arbi-
trary convex polyhedrals. In the current simulations, we used structured
meshes, since the solver will make the calculations up to the point when
the free surface breaks or overturns. For a full description of space and
time integration schemes in OpenFOAM R©-Extend, readers are referred
to (e.g. Jasak, 1996).

Fig. 1 Computational domain.

MATHEMATICAL FORMULATIONS

Assuming the fluid to be inviscid, incompressible, and the flow to be
irrotational, the governing equation of the fluid flow is written in the
form as:

∇2φ(x, t) = 0, (1)

where x = (x, y) and φ represents the velocity potential. We consider a
right-hand Cartesian coordinate system O-xyz, with the origin placed at
the left of the domain and on the undisturbed free surface represented by
dotted line as shown in Fig. 1. The y-axis is negative downward.

Eq. 1 is solved by specifying on all rigid surfaces, the Neumann type
boundary conditions and at the free surface, the dynamic and kinematic
boundary conditions which are given as, respectively:

∂φ

∂t
= −gη −

1
2
∇φ.∇φ, (2)

∂η

∂t
=
∂φ

∂y
−
∂φ

∂x
∂η

∂x
, (3)

where η and g denotes the free surface elevation and the gravitational
acceleration, respectively. ∇ is the gradient operator vector and t is time.
We compute the fluid velocities by its gradient, u = ∇φ. The kinematic
boundary condition Eq. 3 based on the volume flux can be rewritten as
Mayer, Garapon and Sorensen (1998):

∂η

∂t
=

u.n
ny

, (4)

where u.n is the normal volumetric flux out of the surface, and ny is the
vertical component of the unit normal pointing out of the fluid domain.

Eq. 4 expresses the temporal change of the free surface geometry
based on the volume flux, resulting in a change in mesh. Note that
in the OpenFOAM R©-Extend implemented finite volume method, the
flow variables are defined at cell centres. Moreover, the fluxes and
the boundary conditions are computed at the face centre. However,
in order to update the mesh, the change in the free surface geometry
must be specified at cell vertices. Therefore, we interpolate the normal
volumetric flux (u.n) from the face centre to the cell vertices and then
integrate the values according to Eq. 4. Furthermore, the velocities are
not defined at cell face centre, they are only defined at cells centres. We
therefore extrapolate the velocities using first-order extrapolation to the
face centre. The dynamic boundary condition Eq. 2 is then solved to
give the velocity potential on the free surface for the next time step.

Knowing the free surface vertex points, the inner domian is solved using
the OpenFOAM R©-Extend standard solvers. In the developed method,
the grid points at the free surface are moved explicitly and the inte-
rior grid points are moved based on “displacementLaplacian” solver, for
which quadratic inverseDistance diffusivity was selected (most appro-
priate solver based on the author experiments). Since the flow vari-
ables are not computed at cell vertices, they are interpolated either
from face centers or cell centers, causing saw-tooth free surface. To
overcome this numerical instability, a 5-pt smoother has been used.
The smoothed value at each vertex i on the free surface is calculated
using the formula (Bai, Mingham, Causon and Qian, 2010): fi =

(− fi−2 + 4 fi−1 + 10 fi + 4 fi+1 − fi+2) /16, where subscripts i − 2, i − 1, i,
i + 1, i + 2 denote the values at corresponding neighbouring vertices. It
is also worth mentioning that the while using the smoothing, the 1st and
last 2 points at the edges need special attention. For standing waves,



these points were used as a symmetry to the inner points whereas for
progressive waves, these points were computed from inner domain using
3rd-order approximation as:

fi−1 = 3 fi − 3 fi+1 + fi+2, (5)

fi−2 = 6 fi − 8 fi+1 + 3 fi+2. (6)

We also developed different necessary boundary conditions for the sim-
ulation of various test cases in the OpenFOAM R©-Extend envioronment.
The boundary conditions implemented in the present study are defined
as:

1. inlet: The condition on this boundary can be expressed as

∂φ

∂x
= F(y, t), (7)

where F(y,t) is zero for the standing wave cases (i.e zero gradi-
ent) and for the progressive waves, a horizontal component of the
velocity of the known wave theory is imposed as:

∂φ

∂x
= ux(y, t). (8)

The applied velocity ux(y, t) may be either Stokes velocity pro-
files or it could be like physically piston wave makers. Moreover,
the amplitude of the imposed boundary velocity is superposed by
a ramp function. Currently sinusoidal and linear ramp functions
are supported.

2. freeSurface: At this boundary, the kinematic boundary condition
Eq. 4 and a dynamic boundary condition Eq. 2 are applied.

3. bottom: a zero-gradient boundary condition is applied for all
cases.

4. outlet: In addition to above conditons, a proper boundary condi-
tion needed to be specified at the downstream end in order to re-
move reflections as much as possible. We implemented the Som-
merfeld condition

∂φ

∂t
+ c

∂φ

∂n
= 0, (9)

where c is the phase velocity of the linear harmonic wave and
n is the normal pointing out of the surface of the downstream
boundary. We consider the parameter c as the velocity of linear

harmonic wave c =

√
g ∗ tanh(kH)

k
, where H is the water depth,

k the wave number. Morover, a zero gradient boundary condition
is applied for the standing waves test cases.

Sequence of the Solution Procedure
The sequence followed for integrating the system of fluid motion and
free surface from time step tn to tn+1 is as follows.

1. Generate the grid.

2. Apply the boundary conditions.

3. Solve Laplace’s equation for the velocity potential.

4. Compute the required variables (i.e., velocities, fluxes).

5. Solve the kinematic boundary condition using Eq. 4, yielding
new free surface geometry.

6. Update the grid based on the surface elevation computed in the
previous step (step 5).

7. For the new grid, compute the velocity potential on the free sur-
face using the dynamic boundary condition Eq. 2, thus providing
the new velocity potential for the next time step and accordingly
update the boundary conditions on the remaining 3-boundaries.

8. Advance the solution in time by repeating the procedure (step
4-8) in every time step.

RESULTS AND DISCUSSION

The developed method was tested using a number of linear standing wave
test cases having analyical solutions in Mehmood, Graham, Langfeld and
Greaves (2015). Here, we present test cases on more difficult problems.
We consider test cases involving standing and progressive waves of high
amplitudes.

Standing Waves
At t=0, the boundary condition at free surface was defined as

φ(x, y) = 0, η(y) = F(x),

where F(x) is a function describing the initial shape of the free surface
based on the linear and 2nd-order approximation. On the remaining
boundaries, a zero gradinet boundary condition is specified. Here, we
consider test cases having relatively large wave amplitudes and small
water heights where we can observe the nonlinear effects. We consider
a standing sinusoidal wave with amplitudes a = 0.01 m, wavelength
λ = 1.0 m and mean water depth H = 0.1 m as simulated by Santos and
Greaves (2007). The initial profile of the free surface at t = 0 was set
according to 2nd-order standing wave Eq.10 (Cozzi, 2010) as shown in
Fig. 2 and the fluid is initially at rest. The time step was set to ∆t = 0.002.

η(x, t) = a cos(kx) cos(ωt)+

πa2

λ

[
cos2(ωt) −

1
4 cosh2(kH)

+
3 cos(2ωt)
4 sinh2(kH)

]
cos(2kx). (10)

The time trace of the wave elevation measured at the centre of the
tank is shown in Fig. 3. The linear and 2nd-order Airy solutions
are also plotted for comparison. Note that the values have been non-
dimensionalized as follows: η/a, where η is the calculated wave eleva-
tion and a is the initial wave amplitude. Similarly on the x-axis time is
non-dimensionalized by the wave period which is calculated according

to relation T =
2π√

gk tanh(kH)
. This plot shows non-linear behaviour,

H

Initial wave profile
wave amplitude

Fig. 2 Initial profile of the standing wave.



showing higher crests, the phenomenon also observed by Santos and
Greaves (2007) (Fig. 12). A second cases was also simulated with higher
wave amplitudes a = 0.015 m while keeping all other parameters the
same. The corresponding non-dimensionalized time history of the wave
elevation calculated at the middle of the tank is shown in Fig. 4, again
illustrating non-linear behaviour. From these figures, we can see that the
overall appearance of the wave profile is very similar between the theo-
retical and the calculated ones, but a difference exists at the peak levels
of the wave. The source of this difference seems to come from the wave
nonlinearity for the considered wave parameters, which can not be cap-
tured using 1st and 2nd-order approximations. Qualitatively, the same
non-linear behaviour was observed by Santos and Greaves (2007) (Fig.
13).
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Fig. 3 Time history of free surface elevation at the center of the
domain for a = 0.02 m, H = 0.1 m.
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Fig. 4 Time history of free surface elevation at the center of the
domain for a = 0.015 m, H = 0.1 m.

Progressive Waves
For progressive waves, we impose a non-zero gradient boundary
condition both at inlet and outlet. At inlet, waves are generated by
specifying the expression of the horizontal component of the velocity
Eq. 8 of the known wave theories. The expression could have the effect
of water depth, where the wave maker boundary condition acts as a
sinusoidal wave paddle or it could be of the form where the wave paddle
moves backward and forward with a constant speed all along the water
height, having no effect of water depth. At outlet, we impose a radiation
boundary condition Eq. 9 to absorb the incoming waves.

Firstly, we performed numerical simulations for progressive waves by
specifying at inlet boundary, the horizontal component of the velocity
from 1st order Stokes theory. The length of the tank was considered
as L = 10 m, long enough that will enable us to simulate waves over
a long period of simulated time and to see the effect of any reflection
coming back from the outlet boundary. We consider regular incident
wave of amplitude a = 0.01 m, wave period T = 1.5s. The depth of
water was set as H = 1.5 m; and wave number was calculated from the
the linear dispersion relation ω2 = gk tanh(kh), with k being the wave
number and g the acceleration due to gravity. Fig. 5 show the time
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Fig. 5 Time history of free surface elevation at location x = 6.0
m (from inlet boundary) for a = 0.01 m, H = 1.5 m.
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Fig. 6 Time history of free surface elevation at location x = 6.0
m (from inlet boundary) for a = 0.06 m, H = 1.0 m.

history of the nondimensionalized wave elevation at location x = 6.0
m. The wave elevation and time are nondimensionalized by the incident
wave amplitude and wave period of the imposed wave, respectively. In
the second case, we increase the wave amplitude of the incident wave
to a = 0.06 m, and reduced the water depth to H = 1.0 m, and kept
T = 1.5s. The non-dimensionalized time history of the wave elevation
calculated at location x = 6.0 m is shown in Fig. 6. Moreover, in both
test cases, the incident wave velocity was “ramped” using a sinusoidal
function (sin(2π/(4.0 ∗ T )), where T is the wave period of the incident
wave. The ramping is done from t = 0 to t = T , so that the wave maker
imposes only a little disturbance at first and then gradually builds to
the full disturbance level. From both these plots, we can see that the
solver accurately capture the wave period and the amplitude of the wave
elevation of the unsteady progressive waves. Moreover, the simulations
were run for 20s long enough where the waves will be reflected back and
forth from the outlet and inlet boundaries and passing through locations
x=6.0 m. From the periodic response of wave elevations as shown in
Figs. 5 and 6, we can see that there is no significant reflection coming
back from the outlet boundary or re-reflection from the inlet boundary.

Next, we compare our simulation results with the experiment conducted
by Gao (2003). The numerical simulations for this test case have also
been carried out by Qian, Causon, Mingham and Ingram (2006) and Bai,
Mingham, Causon and Qian (2010) using full Navier-Stokes(NS) com-
putations. In the current simulations, regular waves were generated in a
wave tank long L = 8.85 m, water depth H = 0.28 m, wave period as
T = 1.0 s and wave amplitude a = 0.025 m. The waves were generated
by prescribing a time varying velocity according to the expression:

ux = aω sin(kx − ωt). (11)

For this test case, a linear ramped function is superposed from t = 0
to t = T . A total of 12 s was simulated to compare with the available
experimental data. In the experiment, the wave elevation was recorded
at various locations along the wave tank. We obtained the solution for
two different mesh discretisation (refined mesh 708 x 33 x 1) and (coarse
mesh 354 x 17 x 1). The current numerical results (fine-mesh) are shown
by black solid line and that of coarse mesh by blue dotted line and the
data from the experiment is shown by red line. Fig. 7 show the com-
parison for free surface elevation with the experimental data at the same



locations (x = 0.55 m,x = 3.55 m,x = 5.45 m-from the inlet of the tank).
The agreement with the experimental data for locations at x = 0.55 m
as shown in Fig. 7a, is excellent, even better than the NS simulations by
Qian, Causon, Mingham and Ingram (2006) (Fig. 7(a)) and Bai, Ming-
ham, Causon and Qian (2010) (Fig. 13(a)). The wave extremes are well
captured even with the coarsest discretisation used. The results at loca-
tions x = 3.55 m and at x = 5.45 m are also in good agreement with the
experimental results.
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Fig. 7 Comparison between experimental data and current nu-
merical simulations for free surface elevation at locations.
(a) x = 0.55 m, (b) x = 3.55 m, (c) x = 5.45 m.

Parallel Computations
The main reason to create the existing solver in OpenFOAM environment
was to use the OpenFOAM built-in capabilities and also to couple with
the existing incompressible and compressible Navier Stokes solver for
the full range of wave conditions. To show that the new generated solver
and all of its required boundary conditions work in parallel, we run some
simulations here. All computations were carried out on a Intel R© Core
i7-4790 CPU workstation with 16 Gb memory and a 3.6 GHz Power 8
processor. In the current simulations, we used ‘simple” method of de-
composition in the OpenFOAM R©-Extend available decomposition envi-
ronments. Fig.8 shows the speed-up curves for two different grid sizes
(Grid-I-708 x 33 x1) and (Grid-II- 354 x 17 x 1 ) along with the linear
(ideal) speed-up curve. The speed-up is defined as:

Speed-up =
Simulation time on 1 processor

Simulation time on Np processors
, (12)

where Np is the number of processors. It is observed that the Grid-I
shows better performance than the Grid-II because the ratio of compu-
tation to communication (per processor) becomes larger for Grid-I. The

plot show that solver runs in parallel, although does not show a good
parallel speed-up compare to the ideal one. However, it is also worth
to mention that current computations are performed on small domains
where the grid sizes are small. It has been known that in order to get
good performance in OpenFOAM, at least 20, 000 cells per processor
are needed.
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Fig. 8 Speed-up trends of the current solver for different grid
sizes.

CONCLUSIONS

In this paper, a freely available open source code OpenFOAM R©-Extend
has been extended to actively generate and absorb single phase free sur-
face flows using the nonlinear full potential flow theory. The method has
been used to simulate various kinds of standing and progressive waves in
a rectangular tank. The solver has been validated by application to a num-
ber of test cases, ranging from shallow water standing waves to different
wave amplitudes progressive waves. The numerical simulation results
agreed well with the available analytical solutions, and excellent agree-
ment with the experimental data shows successful implementation of the
solver and implemented boundary conditions in OpenFOAM R©-Extend.
The results show that the present scheme could be used as a solver to sim-
ulate the waves in large domains with low computational cost and can be
easily extended to three-dimensional nonlinear free surface waves. The
developed solver and the associated boundary conditions will be released
as an open-source for the marine and offshore community.
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