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Abstract

The failure of humans to respond to auditory medical alarms has resulted in numerous patient injuries and deaths and is thus a
major safety concern. A relatively understudied source of response failures has to do with simultaneous masking, a condition where
concurrent sounds interact in ways that make one or more of them imperceptible due to physical limitations of human perception.
This paper presents a method, which builds on a previous implementation, that uses a novel combination of psychophysical modeling
and formal verification with model checking to detect masking in a modeled configuration of medical alarms. Specifically, the new
method discussed here improves the original method by adding the ability to detect additive masking while concurrently improving
method usability and scalability. This paper describes how these additions to our method were realized. It then demonstrates the
scalability and detection improvements via three different case studies. Results and future research are discussed.
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1. Introduction

Auditory medical alarms have many problems that can make
them difficult to perceive and respond to (Edworthy, 2013; Boyd,
2010). The Pennsylvania Patient Safety Authority reports that
there have been 194 documented problems with operators’ re-
sponses to telemetry monitoring alerts from June 2004 to Decem-
ber 2008 resulting in at least 12 deaths (ECRI Institute & ISMP,
2009). A Sentinel Event Alert issued in 2013 reported 98 alarm-
related incidents from 01/2009 to 06/2012: 80 resulted in patient
death, 13 produced “permanent loss of function,” and 5 extended
the patient’s hospital stay (The Joint Commission, 2013a). These
types of problems occur because the sheer number of alarms
sounding in modern medical environments often exceeds human
perceptual and cognitive capabilities (Edworthy, 2013; Cvach,
2012; Way et al., 2014; The Joint Commission, 2013a; Lacherez
et al., 2007). In statistics cited by the Joint Commission (The
Joint Commission, 2013a), one patient can produce hundreds
of alarms a day. This corresponds to thousands of alarms per
day from a single unit and tens of thousands of alarms a day in a
hospital. These problems have shown themselves to be difficult
to solve and, as a result, medical alarms have consistently been
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identified as one of the most significant technological hazards
to patient safety for more than a decade (ECRI Institute, 2014;
Stead & Lin, 2009).

One of the understudied problems that occurs with simulta-
neously sounding alarms is simultaneous masking, a condition
where multiple sounds interact in a way that prevents the human
perceptual system from hearing one of or more of them (Fastl &
Zwicker, 2006). The Joint Commissions 2014 National Patient
Safety Goal (NPSG) to “improve the safety of clinical alarm
systems” claimed that “individual alarm signals are difficult
to detect” (The Joint Commission, 2013b) and thus partially
responsible for the patient safety problems associated with med-
ical alarms (The Joint Commission, 2013a). As such, alarm
audibility and distinguishability are largely acknowledged as
problems that need to be overcome to address this NPSG (ECRI
Institute, 2014; Vockley, 2014). Simultaneous masking is one of
the factors that influences whether or not an alarm is audible. It
is difficult to assign specific injury or fatality numbers to alarm
masking because it is an extremely challenging problem to iden-
tify and no standards exist for determining if masking played a
role in alarm non-response. However, we do have good evidence
that masking is, in part, responsible for medical practitioners
failing to respond to alarms. In an analysis of 26 operating
room alarms and 23 intensive care unit alarms, Momtahan et al.
(1993) found 25 pairs of alarms where one alarm was completely
masked by the other. This analysis did not account for the effect
of multiple, concurrently sounding alarms nor did it account
for additive masking. Thus, there were likely more instances of
masking than were detected. Further, Toor et al. (2008) found
that low priority sounds could often mask higher priority alarms
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in an operating room environment. As such, many experts and
researchers (Edworthy & Meredith, 1994; Meredith & Edworthy,
1995; Konkani et al., 2012; Edworthy & Hellier, 2006, 2005;
Patterson et al., 1990; Patterson, 1982) have acknowledged that
simultaneous masking is a problem that needs to be addressed.

Despite this, the vast majority of the work on alarm safety
has focused on other areas (Edworthy, 2013). Auditory masking
can be very difficult to detect experimentally because it may
only occur with very specific interactions of multiple, concur-
rently sounding medical alarms. This problem is exacerbated by
two conditions. First, most medical alarms are represented as
melodies (patterns) of tonal sounds, which are particularly sus-
ceptible to simultaneous masking. Second, the number of alarms
in modern medical environments (Thangavelu et al., 2014), given
that the likelihood of masking increases with the frequency and
number of concurrently sounding alarms (Humes & Jesteadt,
1989; Bosi & Goldberg, 2003).

To give analysts the ability to detect masking in configura-
tions of tonal medical alarms without the need for experimenta-
tion, we have developed a computational method (Hasanain et al.,
2014, 2015). The method uses a novel combination of psychoa-
coustic modeling and model checking. The psychoacoustics
of simultaneous masking quantitatively relate sounds’ physi-
cal characteristics (frequency/tone and volume) to the masking
effect the sounds have on human perception using biologically-
grounded mathematics (Bosi & Goldberg, 2003; Baumgarte
et al., 1995; Schroeder et al., 1979; Ambikairajah et al., 1997;
Brandenburg & Stoll, 1994; Brandenburg & Bosi, 1997). Model
checking is an automated approach for conducting proofs (some-
times referred to as formal verification) (Clarke et al., 1999).
Used together in our method, an analyst is able to model the
sounding behavior of a configuration of tonal alarms and use
model checking to determine if the psychoacoustics predict if
the represented alarms can mask each other.

In the research presented here, we present an updated version
of our method that improves its masking detection capabilities
while simultaneously improving its scalability. Below we pro-
vide the necessary background to understand our previous and
updated methods. We then state the objectives of our new work,
present an updated version of the method, and present results that
demonstrate its improved scalability and analysis capabilities.

2. Background

In the following, we cover the necessary background on
model checking, the psychoacoustics of simultaneous masking,
and the previous version of our method.

2.1. Model Checking

Model checking comes from the field of formal methods.
Formal methods are mathematical languages and techniques for
the specification, modeling, and verification of systems (Wing,
1990). Specifications are formulated to rigorously describe desir-
able system properties, systems are modeled using mathematical
languages, and verification mathematically proves whether or
not the model satisfies the specification. Formal methods have

been used successfully in a number of applications, especially
in the analysis of computer hardware and software.

Model checking is an automated approach to formal verifi-
cation (Clarke et al., 1999). A model describes a system as a set
of variables and transitions between variable states, usually as a
state machine or automaton. Specification properties, typically
in a temporal logic (Emerson, 1990), assert ordinal, temporal
relationships between system elements using system model vari-
ables. Verification processes exhaustively search through the
system model to determine if these propositions hold. If they
do, the model checker returns a confirmation indicating that it
has proven the property is true. If there is a violation, an ex-
ecution trace through the model, called a counterexample, is
produced that shows exactly how the failure occurred. Model
checking is particularly good at finding problems in systems
with concurrency, where system elements can interact in ways
unanticipated by designers (Grumberg & Veith, 2008). Model
checking is normally used to evaluate discrete systems. How-
ever, hybrid modeling and analysis techniques can avoid this
limitation (Dutertre & Sorea, 2004; Henzinger, 1996; Podelski &
Wagner, 2006) by associating each discrete state in a model (like
the sounding state of an alarm) with a value from a non-discrete
continuum. For example, when using a timed automaton (Alur
& Dill, 1994; Dutertre & Sorea, 2004), every discrete state in a
formal model is assigned a real numbered time.

Researchers have used formal verification to successfully
find and correct human factors issues in automated systems (see
(Bolton et al., 2013) for a review). However, outside of our
previous results (Hasanain et al., 2014, 2015), none of this work
has explored how human perception and problems associated
with it can be included in formal analyses.

2.2. The Psychoacoustics of Simultaneous Masking
The psychoacoustics of simultaneous masking mathemati-

cally relate a sound’s physical characteristics (its frequency/tone
and volume) to the masking effect the sound has on human per-
ception. The most successful of these are based on the expected
excitation patterns of the human ear’s basilar membrane (the
physical structure largely responsible for allowing humans to
distinguish between different sounds) (Bosi & Goldberg, 2003;
Baumgarte et al., 1995; Schroeder et al., 1979; Ambikairajah
et al., 1997; Brandenburg & Stoll, 1994; Brandenburg & Bosi,
1997). Conceptually, these models predict how a potentially
masking sound (the masker ) will stimulate the receptors on the
basilar membrane based on its volume and relative frequency
to the potentially masked sound (the maskee). This stimulation
creates a higher volume threshold (in dB) that the maskee must
exceed to be perceivable (Bosi & Goldberg, 2003).

The psychoacoustics used to describe masking represent
frequency on the Bark scale (E. Zwicker and R. Feldtkeller,
1967). Specifically, the Bark scale maps a frequency (in Hz) to
a location on the basilar membrane where the sound stimulates
the receptors the strongest. Frequency to Bark conversion is
calculated as

zsound = 13 · arctan(0.00076 · fsound)

+ 3.5 · arctan
(

(fsound/7500)
2
)
,

(1)
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where fsound is the sound’s frequency in hz (E. Zwicker and R.
Feldtkeller, 1967).

The masking threshold is then represented by a “masking
curve” formulated as:

curvemasker (zmaskee) = spreadmasker (δz)

+ vmasker −∆.
(2)

vmasker is the volume of the masker in dB. δz is defined as

δz = zmaskee − zmasker , (3)

where zmaskee and zmasker are the frequency of the maskee and
masker respectively on the Bark scale. spreadmasker defines
how the volume/magnitude of the masking threshold changes
with δz. ∆ is the minimum difference between a masker’s and
maskee’s volume under which masking can occur.

There are multiple psychoacoustic spreading functions for
different types of sounds (Bosi & Goldberg, 2003). Similarly,
there can be different formulations of ∆ depending on types of
sounds. An example of a masking curve can be seen in Fig. 1

These psychoacoustics can determine if a single sound can
mask another sound and were the basis for previously published
results (Hasanain et al., 2014, 2015). However, when there are
multiple concurrent sounds, their combined masking threshold
can be greater than the sum of each individual masker’s effect.
This additive masking (Humes & Jesteadt, 1989; Bosi & Gold-
berg, 2003) is modeled by combining the masking curve values
of each potential masker on the power scale. Using the following
equation to represent a volume (v in dB) on the power scale

power (v) = 10v/10, (4)

for a given potential maskee and N potential maskers, the aggre-
gate masking threshold (in dB) is calculated as

power (mthreshmaskee) = power (absmaskee)

+
(∑N

n=1 power (curvemaskern(zmaskee))
α
)1/α

.
(5)

In this, α is a positive constant (Green, 1967) and absmaskee

is the absolute threshold of hearing (in dB) at the maskee’s

Masker Volume

δz

dB

0

∆

Masking

Masking Curve

Figure 1: An example masking curve. Peak masking occurs at δz = 0, where
any sound with a volume ∆ below the masker’s will be masked. The masking
effect decreases in accordance with the masking curve’s spreading function as
δz moves away from zero.

frequency (fmaskee in Hz) calculated as (Terhardt, 1979)

absmaskee = 3.64 ·
(
fmaskee

1000

)−0.8

− 6.5 · e−0.6
(

fmaskee
1000 −3.3

)2

+ 10−3 ·
(
fmaskee

1000

)4

.

(6)

These psychoacoustics have shown themselves to be valid
and useful for predicting masking for normal human hearing
for decades (Bosi & Goldberg, 2003). They have been used
to identify masking between recorded medical sounds (Toor
et al., 2008). They have also served as the basis for lossy audio
compression techniques like those used in the different versions
of MPEG (Bosi & Goldberg, 2003).

2.3. Our Original Method

In our original method (Hasanain et al., 2014, 2015), an
analyst was required to manually model a configuration of medi-
cal alarms based on a set architecture and code patterns. This
allowed an analyst to describe each alarm as a state machine,
where the frequency (in Hz) and volume (in Db) would change
at specific times. Specifications could also be created using
specification patterns for asserting the absence of partial and
total masking. Model checking could then be used to determine
if any given alarm could ever be masked by other alarms based
on the psychoacoustics in Eq. (2). It is important to note that
masking could only be detected between pairs of alarms, though
multiple pairs of alarms could ultimately contribute to the total
masking of a given alarm.

In this version of the method, we used the spreading function
(for computations using Eq. (2)) from the MPEG2 audio codec
(Schroeder et al., 1979). This is formulated as

spreadmasker(δz) =15.81 + 7.5 · (δz + 0.474)

− 17.5 ·
√

1 + (δz + 0.474)2.
(7)

This spreading function was chosen specifically because of the
expressiveness limitations of model checking. In particular,
model checkers are unable to represent non-linear mathematical
operations on model variables. Thus, non-linear psychoacoustics
were implemented using lookup tables (Hasanain et al., 2015).
Because this spreading function has only one independent vari-
able (δz), it was computationally feasible to implement a lookup
table for all of the possible values of δz at a resolution of 0.1
barks. We also used a ∆ formulated as

∆ = 14.5 + zmasker (8)

because (Jayant et al., 1993) found this to be appropriate for
tonal maskers.

While this version of the method proved itself to be useful
(see Hasanain et al. 2014, 2015) it has four significant limita-
tions. First, because it only considers masking between pairs
or alarm sounds, it does not account for the additive effect of
masking (Humes & Jesteadt, 1989; Bosi & Goldberg, 2003).
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Second, because Eq. (7) was predominantly used because of
its computational convenience, there are psychoacoustics better
suited to modeling the effect of tonal alarms. Third, the method
scaled badly, resulting in analyses that would take prohibitively
long to give useful results for complex applications (Hasanain
et al., 2015). Fourth, the method required manual formal model-
ing and specification by analysts and provided no user support
for interpreting analysis results.

3. Objectives

The work presented here shows how our method was re-
implemented to address the above limitations of the original. To
this end, we enable our method to account for the additive of
masking. We also update the psychoacoustics used to compute
masking curves to better reflect the tonal nature of the masking
sounds of alarms. We further create a computer program that
enables the lookup tables to be optimized to improve scalability
while using new psychoacoustics. Finally, this program was
given features to simplify the model creation process and allow
analysts to automatically visualize counterexamples to identify
when and how masking can occur. Below we describe how
these features were realized. To demonstrate the scalability
improvements of the method and show that the new version has
comparable detection capabilities to the original, we re-evaluate
the application presented in (Hasanain et al., 2014, 2015) and
compare the results. We also demonstrate the ability of the
method to detect additive masking in another simple application.
Finally, we show the ability of the method to detect additive
masking in a realistic application by applying it to the alarms
used in a telemetry monitoring system.

4. Method

The updated version of our method is shown in Fig. 2. To use
it, an analyst first examines alarm documentation and describes
the behavior of the alarms using a MS Excel spreadsheet, where
each alarm is described as a sequences of tones (and pauses
between tones) each with a defined frequency (Hz), volume
(dB), and duration (s). Figure 3 shows an example of how a
single alarm would be described in our spreadsheet. When
done modeling alarms, the analyst uses the computer program
to automatically convert the described alarm configuration’s
behavior into a formal model.

Model

Checking

Formal Model 

& Specification 

Generation

Verification

Report

Medical Alarm 

Documentation
Specification 

Properties

Formal Alarm 

Configuration 

Model

&

Figure 2: A sequence diagram of our masking detection method.

Name Freq (Hz) Vol (dB) Time (s) …

AnAlarm 523 72 0.1

0 0 0.1

698 72 0.1

0 0 0.1

784 72 0.1

Figure 3: An example of an alarm as it would be described in a spreadsheet in our
implementation of the method. The presented alarm has three tones separated by
two pauses, where the order of tones and pauses is specified from top to bottom.
The ... is used to indicate that additional alarms would be described similarly to
the right of the presented alarm.

4.1. Formal Modeling Architecture

The formal model used in the method has a set architec-
ture (Fig. 4). The formal system model is made of a set of
synchronously composed sub-models, each with a particular
purpose. The clock sub-model uses a timed automaton (Alur
& Dill, 1994; Dutertre & Sorea, 2004) to advance model time
(globalTime) and communicate it to the other sub-models. Each
alarm is represented as a sub-model that can start or stop sound-
ing at appropriate times and adjust its state based on its current
state and how long it has been sounding. Alarm state represents
each of the distinct tones or pauses that occur over a complete
sounding. For example, the alarm shown in Fig. 3 would have
six states: one for when it is not sounding and one for each of
the listed tones and pauses. A single masking computation sub-
model uses the current state of each alarm, its associated “power
alpha” (discussed subsequently), and the psychoacoustics of si-
multaneous masking to determine if any alarm is masked by the
other sounding alarms. This sub-model also find the minimum
of the alarms’ recommended next times (the alarmNextTime
variables) to recommend a maximum amount (maxNextTime) to
advance the clock.

4.2. The Method’s Psychoacoustics

Model checkers cannot handle the nonlinear arithmetic of
model variables (De Moura et al., 2004). Thus our method uses

Clock

Masking

Computation

Psychoacoustic 

Functions
maxNextTime

∀Alarms:

∀Alarms: alarmMasked

Alarms

alarmState

alarmPowerAlpha
alarmSounding

alarmNextTime

globalTime

Figure 4: The architecture for formally modeling a configuration of medical
alarms in our method.
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a pre-computed lookup table (functions) to represent nonlinear
psychoacoustic computations. However, the size of your lookup
tables can reduce the efficiency of your model. Thus, in our
new method, we encapsulate all of the necessary non-linear
mathematical operations into a single lookup table. This was
optimized to ensure the minimum number of necessary entries
for any given model. This was done to reduce verification time.

The “power alpha” value discussed above and in Fig. 4 plays
an important role in this optimization and allows for the detection
of masking using a model checker. By transforming the maskee’s
volume and the masking effect of maskers into “power alpha”
values using lookup tables, masking can be detected using only
linear arithmetic operations. Figure 5 explains the formulation
and rational for the “power alpha” transformation.

Our method uses the relationship from Eq. (14) (Fig. 5) as
the basis for its optimization. Specifically, the computer program
pre-computes each alarm’s “power alpha” values (using Eq. (12))
for each of the alarm’s states. In the formal model, the alarm’s
state and “power alpha” value are communicated to the masking
computation sub-model (see Fig. 4). The masking computation
sub-model uses the lookup table (pre-computed by the computer
program to implement Eq. (13) and optimized to minimize the
number of entries) to obtain the “power alpha” value associated
with each potential maskee-masker pair of alarms, based on
each alarm’s respective state. For each sounding alarm, the
masking computation sub-model adds up each of the “power
alpha” values with the given alarm as the maskee and compares it
with the “power alpha” value from that alarm’s associated alarm
sub-model to determine if masking is occurring (see Eq. (14)).
Thus, the use of the “power alpha” values allows our method to
implement additive masking detection formally. We use α =
0.33, which Lutfi (1983) found best captured the “over adding”
of the masking effects of tones. However, the computer program
allows for different analyst specified α values.

The “power alpha” computation in Eq. (13) relies on mask-
ing curve values. Because these values are pre-computed in
our new method, we were able to be more selective in what
spreading function Eq. (2) we use. Specifically, we can now use

the more computationally complicated spreading function of

spreadmasker (δz) =

−17 · δz+0.15 · vmasker

· (δz − 1) · θ(δz − 1)
for δz ≥ 0

− (6 + 0.4 · vmasker ) · |δz|
− (11 + 0.4 · vmasker · (|δz| − 1))

· θ(|δz| − 1)

otherwise

(15)

where θ(x) = 1 for x ≥ 0 and θ(x) = 0 otherwise. This
particular spreading function was chosen because it is the most
appropriate for modeling the masking effects of tones on other
tones (Brandenburg & Stoll, 1994). We also updated the way
that ∆ (from Eq. (2)) was computed. In the new version

∆ = 6.025 + 0.275 · zmasker dB. (16)

This new formulation was used for several reasons. First, it has
been shown to be appropriate for tones (Ambikairajah et al.,
1997). It was also used in the MPEG audio codec (Bosi &
Goldberg, 2003), thus it has a well-established validity. Further,
it will always be smaller than the ∆ used in the original method
(Eq. (8)). This means that it will increase the chances that our
method will detect masking. Given that missing the detection
of masking has significantly worse consequences than a false
alarm, this was a preferable value of ∆ for our purposes.

4.3. Formal Model and Specification Generation

When the computer program generates the formal model and
specifications, it creates a formal model in the input language
of the symbolic analysis laboratory’s (SAL’s) infinite bounded
model checker (De Moura et al., 2004) (see Fig. 6).

The model has eight parts. First, there are type definitions.
These represent variable types that are used by other elements
in the modeling architecture for representing real-valued time
(which cannot be negative), “power alpha” values, and alarm
state. Note that alarm state assumes there are M alarms, where
each alarm will have N states and N can be different for each

We know from Eq. (5) that a set of maskers will mask a maskee if

power (vmaskee) ≤ power (absolutethresholdmaskee) +
(∑N

n=1 power (curvemaskern (zmaskee))α
)1/α

. (9)

Using basic algebraic operations, we know that

power (vmaskee) − power (absolutethresholdmaskee) ≤
(∑N

n=1 power (curvemaskern (zmaskee))α
)1/α

(10)

and thus that
(power (vmaskee) − power (absolutethresholdmaskee))α ≤

∑N
n=1 power (curvemaskern (zmaskee))α. (11)

If we let
poweralphamaskee = (power (vmaskee) − power (absolutethresholdmaskee))α (12)

and
maskingpoweralphamasker (maskee) = power (curvemasker (zmaskee))α , (13)

then we know that the maskee will be masked by the set of N maskers if

poweralphamaskee ≤
∑N
n=1 maskerpoweralphamaskern

(maskee). (14)

Figure 5: Explanation of “power alpha” and how it can be used to determine if masking is occurring.
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alarmConfiguration : CONTEXT =
BEGIN

%Type definitions
TIME : TYPE = {X : REAL | X >= 0}; % in s
POWERALPHA : TYPE = {X : REAL | X >= 1};
ALARMSTATE : TYPE

= {Alarm1_0, Alarm1_1, ..., Alarm1_N1,
Alarm2_0, Alarm2_1, ..., Alarm2_N2,
...
AlarmM_0, AlarmM_1, ..., AlarmM_NM};

%Constants
bigMax : TIME = 60;

%Function definitions
...

%Clock sub-model
...

%Alarm sub-models (alarm1 - alarmM)
...

%Masking computation sub-model
...

%Composition of the full system model
system : MODULE = clock

|| alarm1
|| ...
|| alarmM
|| maskingComputation;

%Specification properties
...

END

Figure 6: An overview of the implementation of the formal modeling architecture
(Fig. 4) as generated by our computer program. This implementation is written
using the notation of SAL (see de Moura et al. 2003). Note that in this listing
(and all subsequent listings), code highlighting is used to improve readability.
SAL language reserved words (including built-in basic types) are blue; declared
types are dark blue; constants are green; functions are orange (these appear
in subsequent listing); comments start with a % and are gray; and everything
else is black. Ellipses “...” are used to indicate the omission of content that
is either detailed in subsequent listings or indicates an incremental series of
like components or operations (e.g. the synchronous compositions of the alarm
sub-models: alarm1 || ... || alarmM).

alarm. This is followed by constant definitions. The model
contains only one constant, bigMax, which represents an arbi-
trarily large maximum on how much time can advance in any
given modeled step. The constant definitions are followed by
function definitions. This represents the lookup table used for
computing the “power alpha” values of masking curves. See
Section 4.3.3 for a deeper discussion of how this is computed.

The clock sub-model, which is responsible for maintaining
and advancing time, is next. It is described in Section 4.3.1. A
series of sub-models representing the behavior of each alarm in
the configuration come next. Each of these represents the behav-
ior of a given alarm. Section 4.3.2 describes how each alarm is
modeled. The masking computation sub-model follows and is
responsible for determining if masking is occurring at any given

clock-indicated time. This is described further in Section 4.3.3.
All of the sub-models are ultimately synchronously composed
into the complete system model.

Finally, specification properties are used to assert the absence
of masking in a model. These are discussed in Section 4.3.4.

4.3.1. The Clock Sub-model
The clock sub-model (Fig. 7) is unchanged from the previous

version of the method (Hasanain et al., 2015). The clock is
responsible for communicating the current time (globalTime)
to the other sub-models. It is also responsible for advancing
the clock. The globalTime is initially set to 0. For every
following step in the model, globalTime is advanced to a
new time that is always greater than the current globalTime
and less than or equal to the maxNextTime, an input from the
masking computation sub-model.

4.3.2. The Alarm Sub-Models
The behavior of each alarm is described in separate sub-

models, where each alarm model follows the same implemen-
tation pattern (Fig. 8). Each alarm has a constant value repre-
senting the length of its sounding cycle in seconds (alarmX-
CycleTime) which is set to a value [TCycle] derived by
the description of the alarm behavior used in the generation pro-
cess. Each alarm also has a variable representing its start time
(alarmXStartTime). This is initially 0.

The alarm model is responsible for setting the start time and
computing the amount of time the alarm has been sounding. Our
model assumes that an alarm will sound for a single cycle and
then stop (it can restart at any later time).

Thus, at any given globalTime, an alarm that is not sound-
ing can begin sounding in the next state by setting the start
time to the globalTime in the next state (see the code un-
der TRANSITION in Fig. 8.). A start time greater than zero
indicates that the alarm is sounding (alarmXSounding =
alarmXStartTime > 0), information used by the mask-
ing computation sub-model. If sounding, the alarm computes
how long it has been doing so as the difference between the
global time and the alarm’s start time (alarmXTimeInCycle
= globalTime - alarmXStartTime). If the alarm is
sounding and has not been sounding for longer than its cycle

clock : MODULE =
BEGIN

INPUT maxNextTime : TIME
OUTPUT globalTime : TIME

INITIALIZATION
globalTime = 0;

TRANSITION
globalTime’ IN {X: TIME | (X > globalTime)

AND (X <= maxNextTime)};

END;

Figure 7: SAL code for representing the clock in the formal model.
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alarmX : MODULE =
BEGIN

INPUT globalTime : TIME

LOCAL alarmXStartTime : TIME
LOCAL alarmXCycleTime : TIME
LOCAL alarmXTimeInCycle : TIME

OUTPUT alarmXState : ALARMSTATE
OUTPUT alarmXSounding : BOOLEAN
OUTPUT alarmXPowerAlpha : POWERALPHA
OUTPUT alarmXNextTime : TIME

INITIALIZATION
alarmXStartTime = 0;

DEFINITION
alarmXCycleTime = alarmXTCycle;
alarmXTimeInCycle = globalTime - alarmXStartTime;
alarmXSounding = alarmStartTime > 0;
alarmXState = IF alarmXStartTime > 0 AND (alarmXTimeInCycle < alarmXTime1) THEN alarmX_1

ELSIF alarm1StartTime > 0 AND (alarmXTimeInCycle < alarmXTime2) THEN alarmX_2
...
ELSE alarmX_0 ENDIF;

alarmXPowerAlpha = IF alarmXState = alarmX_1 THEN alarmXPAlpha1
ELSIF alarmXState = alarmX_2 THEN alarmXPAlpha2
...
ELSE 1 ENDIF;

alarmXNextTime = IF alarmXState = alarmX_1 THEN alarmStartTime + alarmXTime1
ELSIF alarmXState = alarmX_2 THEN alarmStartTime + alarmXTime2
...
ELSE BigMax ENDIF;

TRANSITION
alarmStartTime’ IN {X: TIME | ((alarmStartTime = 0) AND ((X = globalTime’) OR (X = 0)))

OR ((alarmXStartTime > 0)
AND (globalTime’ < (alarmXStartTime + alarmXCycleTime))
AND (X = alarmXStartTime))

OR ((alarmXStartTime > 0)
AND (globalTime’ >= (alarmXStartTime + alarmXCycleTime))
AND (X = 0))};

END;

Figure 8: Generic SAL code for representing alarm behavior. alarmX is the name of the generic alarm that would be replaced with an actual alarm name in the
generated model code. Note that red names represent alarm-dependent values that are inserted into the model by the computer program. alarmXTCycle represents
the alarm’s cycle time in seconds. alarmXTime1 ... represent the times at which each corresponding alarm state ends. For example, the alarm is in state alarmX 1
if alarmXTimeInCycle < alarmXTime1. alarmXPAlpha1 ... represent the “power alpha” values associated with each state.

time in the next state’s global time, the alarm keeps its current
start time in the next state. If the alarm has been sounding for
its full cycle time at the next global time, the alarm ceases to
sound (sets the start time to zero) in the next state. Note that this
behavior is the same as described in our original version of the
method (Hasanain et al., 2015).

In the original method (Hasanain et al., 2015), an alarm
would update its volume, frequency, and next time based on
the amount of time the alarm had been sounding. In the new
method, the alarm model updates its state in response the
alarms sounding time. Based on this state, the alarm sub-
model computes its other output values: the “power alpha”
(alarmXPowerAlpha) associated with that state (a value pre-
computed by the generating computer program) and the alarm
next time (alarmXNextTime; the time that the next state
change will occur).

4.3.3. The Masking Computation Sub-model

At every time assumed by the clock (globalTime), the
masking computation model (Fig. 10) does two things. First, it
uses the state and information of all of the alarms to determine
if each alarm is being masked, where a Boolean variable asso-
ciated with each alarm (alarm1Masked – alarmNMasked)
is computed to be true or false if masking is or is not occurring
respectively. The values of these variables are determined using
the pre-computed “power alpha” lookup table (a function) gen-
erated by the computer program (see Fig. 9). Specifically, for
each possible maskee, the thresholdPowerAlpha function
values are computed for each other alarm being treated as a
masker and summed together. This sum is then compared to
the given maskee’s “power alpha” value. If the sum is greater
than or equal to this value, then the Boolean variable is true.
Otherwise it is false.

7



thresholdPowerAlpha(maskerState : ALARMSTATE, maskeeState : ALARMSTATE): POWERALPHA
= IF maskerState = Alarm1_1 AND maskeeState = Alarm2_1 THEN powerAlpha1_1_2_1

ELSIF maskerState = Alarm1_1 AND maskeeState = Alarm2_2 THEN powerAlpha1_1_2_2
...
ELSE 1 ENDIF;

Figure 9: Lookup table implementation of Eq. (13) for use in the determination of whether masking (including addictive masking) is occurring. Note that this uses the
masking curve formulation from Eq. (2) with the spreading function from Eq. (15) and the ∆ from Eq. (16). The number of entries in this table is computed by
the computer program based on the number of possible pairs between potential maskee and masker alarms. For example, powerAlpha1 1 2 1 represents the
pre-computed “power alpha” value associated with masker Alarm1 in state Alarm1 1 and maskee Alarm2 in state Alarm2 1.

maskingComputation : MODULE =
BEGIN

INPUT globalTime : TIME
OUTPUT maxNextTime : TIME

INPUT alarm1State : ALARMSTATE
INPUT alarm1PowerAlpha : POWERALPHA
INPUT alarm1NextTime : TIME
INPUT alarm1Sounding : BOOLEAN
OUTPUT alarm1Masked : BOOLEAN
...

DEFINITION
alarm1Masked = alarm1Sounding AND (thresholdPowerAlpha(alarm2State, alarm1State)

...
+ thresholdPowerAlpha(alarmMState, alarm1State)) >= alarm1PowerAlpha;

...

maxNextTime IN {x: TIME | (x = alarm1NextTime OR ... OR x = alarmMNextTime)
AND (x <= alarm1NextTime AND ... AND x <= alarmMNextTime)};

END;

Figure 10: Generic SAL code for the masking computation sub-model.

The second responsibility of the masking computation sub-
model is to calculate the maximum next time (maxNextTime).
This is the maximum amount of time the clock can advance to
in the next step. It is calculated by finding the minimum of all
of the alarm next times from each of the alarm sub-models.

4.3.4. Specification Properties
To model check whether or not masking is present in a

model, specifications must assert its absence. Our computer
program also generates specification properties using minor vari-
ations of the patterns identified in our previous work (Hasanain
et al., 2015). For each alarm, two properties are created
(Fig. 11). The first (alarmXPartialMasking) is used to
detect if any masking of a given alarm can occur. This uses lin-
ear temporal logic (LTL) to assert that, for all paths through
the model (G), there should never be a situation where the
alarm is making noise (alarmXPowerAlpha > 1) and the
alarm is masked (alarmXMasked). The second specification
(alarmXTotalMasking) is meant to check that an alarm is
never completely masked: masked for its entire sounding cycle.
Using LTL, this states that for all (G) paths through the model,
it should never be true that the alarm goes from not sounding to
sounding and masked in the next (X) state such that, from then
on, the alarm is sounding and masked until (U) it is no longer
sounding.

alarmXPartialMasking : THEOREM system
|- G(NOT(alarmXPowerAlpha > 1 AND alarmXMasked));

alarmXTotalMasking : THEOREM system
|- G(NOT((NOT alarmXSounding)

AND X(alarmXSounding AND alarmXMasked
AND U(alarmXSounding AND alarmXMasked,

NOT alarmXSounding))));

Figure 11: Specification property patterns for a given alarm (alarmX).
alarmXPartialMasking asserts the absence of any masking for a given
alarm. alarmXTotalMasking asserts that a given alarm will never be
masked over its entire sounding cycle.

4.3.5. Running the Model Checker
With a completed alarm configuration model, model check-

ing can be performed. The model are computer program creates
is meant to be run with the infinite bounded model checker of
SAL (De Moura et al., 2004). The model checker is run as on a
Linux command line as follows:

sal-inf-bmc model specification -d D

where sal-inf-bmc is the command for invoking the model
checker, model is the name of the SAL model being evaluate,
specification is the name of the specification to check,
and -d D sets the search depth to positive integer value D. In
our analyses, depths should be set high enough to account for
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all of the possible transition states an analyst wants to consider.
To ensure that all of the possible alarm interactions contained
in a configuration are accounted for, this should be set to the
sum of the total number of alarm states of each alarm. Such
a value ensures that every alarm can fully transition through a
entire cycle independently of all the other alarms. However, it is
important to note that smaller search depth can be used. Because
increasing the search depth will likely increase verification time,
an analyst may wish to save time by using smaller depth. Any
counterexamples returned from shorter searchers will still con-
stitute valid results. However, a failure to find a counterexample
at a depth below the suggested one may not genuinely indicate
the absence of masking.

4.4. Counterexample Visualization

In the original method, a model checker produced coun-
terexample needed to be manually interpreted by analysts. We
found that a variation of a vertical bar graph could be used to
effectively show how alarms in a counterexample sounded in
relation to each other and indicate when masking was occurring
(Hasanain et al., 2015). Thus, in our new version of the method,
we have added the ability to automatically create these graphs
from a counterexample input.

Created graphs list the names each alarm in a configuration
along the vertical axis. Time is shown on the horizontal axis.
Bars are plotted in the chart to show when the tones of each
alarm are sounding. Smaller black lines are overlaid on the bars
to show when a particular tone (or part of a tone) is masked.
Examples of these plots can be seen later in Figs. 12 to 14.

5. Case Studies

Below we present three different case studies that illustrate
the power of the presented method. First, we evaluate the case
study originally presented by Hasanain et al. (2015) to show both
that the new formulation of the method can detect the masking
of the original, but also that it does so more quickly. Second,
we apply the method to a simple case study that demonstrates
the ability of the method to detect additive masking. Third,
we apply the method to a realistic application based on the
GE CARESCAPETMMonitor B850 (GE Healthcare, 2010), a
telemetry monitoring system.

In all of the reported case studies, formal verifications were
performed using SAL’s infinite bounded model checker on a
Linux workstation with a 3.3 GHz Intel Xeon processor and 64
GB of RAM.

5.1. Case Study 1: The Original Application

In the case study originally presented in (Hasanain et al.,
2015), there were three alarms (Table 1). All three of these
had a cycle featuring two tones separated by a pause. Each
tone frequencies, tone and pause lengths, and volumes were
all consistent with those commonly found in medical alarms
(Momtahan et al., 1993; IEC 60601-1-8, 2003-08-14).

When evaluated with the original method (Hasanain et al.,
2015), analyses were conducted on four different models. One

Table 1: Case Study 1 Alarm Configuration

Name Freq. (Hz) Vol. (dB) Time (s)

Alarm 1 261 80 0.250
0 0 0.100

370 80 0.250
Alarm 2 277 60 0.150

0 0 0.050
277 60 0.150

Alarm 3 524 85 0.200
0 0 0.075

294 85 0.200

Note. A given alarm’s tones are listed vertically (from top to bottom) in the
order that they sound in the alarm’s cycle. A pause is indicated by a frequency
and/or volume of 0.

model for each possible pair of alarms from Table 1 and one
with all three. Each of these models were also modeled and eval-
uated with our new method to ensure the same analysis results
were achieved and to compare verification times. A compar-
ison of the analysis results with both methods can be seen in
Table 2. These show that each specification property produced
the same outcome when verified. Further, an examination of the
counterexamples with our visualizer revealed that they both dis-
covered the same masking conditions. Alarm 2 can be partially
masked by Alarm 1 when Alarm 2’s second tone overlaps with
Alarm 1’s first tone. Alarm 2 is partially masked by Alarm 3
when Alarm 2’s first tone overlaps with Alarm 3’s second tone.
With specific timing such that Alarm 2’s first tone completely
overlaps with Alarm 3’s second tone and Alarm 2’s second tone
completely overlaps with Alarm 1’s first tone, Alarm 2 is com-
pletely masked. An illustration of this condition found by both
versions of the method can be seen in Fig. 12.

The results in Table 2 also demonstrate the scalability im-
provements of our new method. Specifically, the new method

Table 2: Case Study 1 Verification Results

Model Masking Original Output New Outputs

Alarms Alarm Spec. Time (s) Result Time (s) Result Decrease

1 & 2 1 Partial 87.26 X 0.15 X 99.83%
Total 63.76 X 0.11 X 99.83%

2 Partial 99.31 × 0.47 × 99.53%
Total 56.11 X 0.24 X 99.57%

1 & 3 1 Partial 67.05 X 0.11 X 99.84%
Total 32.88 X 0.12 X 99.64%

3 Partial 66.37 X 0.16 X 99.76%
Total 127.57 X 0.1 X 99.92%

2 & 3 2 Partial 180.56 × 1.24 × 99.31%
Total 95.82 X 0.17 X 99.82%

3 Partial 85.49 X 0.15 X 99.82%
Total 69.52 X 0.09 X 99.87%

1, 2, & 3 1 Partial 392.76 X 6.65 X 98.31%
Total 320.62 X 1.58 X 99.51%

2 Partial 1281.26 × 89.97 × 92.98%
Total 492.76 × 148.29 × 69.91%

3 Partial 297.92 X 3.74 X 98.74%
Total 1205.43 X 1.46 X 99.88%

Note. X indicates a verification confirmation and × indicates a verification
failure with a counterexample.
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Figure 12: Method-created counterexample visualization of how Alarm 2 can be
completely masked by alarms 1 and 3 for the configuration described in Table 1.
Specifically, the first tone of Alarm 2 is masked by the second tone of Alarm 3
and the second tone of Alarm 2 is masked by the first tone of Alarm 1.

was able to perform all of the analyses substantially faster than
the original method, with reductions in verification times from
69.96% to 99.92 %.

This case study illustrates the performance improvements
that were achieved with the new version of the system. It also
shows that comparable detection capabilities exist in this new
version. However, this case study does not illustrate the additive
masking detection capabilities of the method because, as the re-
sult in Fig. 12 show, masking does not require multiple maskers
to overlap to produce masking. Additive masking detection is
demonstrated in the next case study.

5.2. Case Study 2: Additive Masking Detection

The second case study evaluated the alarms shown in Table 3.
These particular alarms were chosen because, with the exception
of minor timing differences, these alarms are consistent with
reserved alarm sounds from the international medical alarm
standard (IEC 60601-1-8, 2003-08-14).

Because we were particularly interested in seeing if our
method could detect additive masking, we used these alarms
to construct four different models. One for each possible pair
of alarms and one with all three alarms. By using our method
to evaluate all four of these models we were able to determine
if our method could find additive masking. Specifically, if we
found masking that occurred due to the overlapping of two or
more masking alarms with a maskee, where masking did not

Table 3: Case Study 2 Alarm Configuration

Name Freq. (Hz) Vol. (dB) Time (s)

Alarm A 261 84 0.1
0 0 0.1

329 84 0.1
0 0 0.1

392 84 0.1
Alarm B 261 84 0.1

0 0 0.1
329 84 0.1

0 0 0.1
293 84 0.1

Alarm C 523 84 0.1
0 0 0.1

293 84 0.1
0 0 0.1

392 84 0.1

occur when each potential masker alone overlapped the maskee,
then our method could find additive masking conditions.

We checked the specification properties for each alarm (for
both partial and total masking) in each model created as part
of our method. For models containing two alarms, verification
search depths were set to 12. The model with all three alarms
used a search depth of 18 for all verifications. Verification results
are shown in Table 4.

Table 4: Case Study 2 Verification Results

Model Masking Verification Output

Alarms Alarm Spec. Time (s) Outcome

A & B Alarm A Partial 4.48 X
Total 1.09 X

Alarm B Partial 3.42 X
Total 2.34 X

A & C Alarm A Partial 4.31 X
Total 0.99 X

Alarm C Partial 2.89 X
Total 1.85 X

B & C Alarm B Partial 3.96 X
Total 1.40 X

Alarm C Partial 3.60 X
Total 1.48 X

A , B & C Alarm A Partial 189.20 X
Total 13.56 X

Alarm B Partial 670.23 ×
Total 9.83 X

Alarm C Partial 815.29 ×
Total 16.94 X

Note. X indicates a verification confirmation and × indicates a verification
failure with a counterexample.

These results reveal that the only masking that occurs hap-
pens when all three alarms are in the model. The results also
show that only partial masking occurs for Alarms B and C.
When the counterexamples associated with these verification
failures were visualized (Fig. 13) they showed that masking only
occurred as a result of additive masking. Specifically, partial
masking of Alarm B’s third tone occurs when it sounds con-
currently with Alarm A’s first tone and Alarm C’s second tone.
Alarm C’s second tone can be partially masked if it sounds con-
currently with Alarm A’s first tone and Alarm B’s third tone.
Since no masking occurs in the models that only contain two
alarms, this indicates that the observed masking is additive.

It is important to note that the partial masking shown in
the two plots of Fig. 13 both occur in the same condition: the

Alarm A

Alarm B

Alarm C

Tone 1

Tone 2

Tone 3

Masking

Time(s):

Alarm B Partially Masked Alarm C Partially Masked

59 59.5 58.5 59.1 59.7 60.358.5

Figure 13: Method-created counterexample visualization of how Alarms B and
C can be partially masked by additive masking caused by the other two alarms
in the configuration.
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concurrent sounding of Alarm A’s first tone, Alarm B’s third tone,
and Alarm C’s second tone. This would mean that, when actually
heard by a human, that either of the potentially masked tones
(Alarm B’s third or Alarm C’s second) would be unhearable. It is
a potential limitation of the method that it cannot identify which
of these would actually be masked. Despite this limitation, the
presented analyses do demonstrate the ability of the method to
detect additive masking. However, even though the included
alarms are realistic, this case study is still artificial. The ability
of the method to detect masking in a more realistic context is
explored in the third case study.

5.3. Case Study 3: The GE CARESCAPETMTelemetry Monitor

To evaluate a realistic application, we used our
updated method to analyze the alarms in the GE
CARESCAPETMMonitor B850 (GE Healthcare, 2010), a
telemetry monitoring system compatible with the international
medical alarm standard (IEC 60601-1-8, 2003-08-14). The

GE monitor had the alarms shown in Table 5. There were four
high-priority alarms that each played the same ten-tone alarm
melodies (with the same timings), one medium-priority alarm
with a three-tone melody, and one low-priority alarm with one
tone. Our analyses assumed that any of these alarms could
sound simultaneously.

We modeled these alarms in our new method and evaluated
each alarm to see if they were ever partially or totally masked.
Because of the complexity of the model, we anticipated scal-
ability problems. Thus we attempted to minimize the search
depth used in the verifications. Specifically, all properties were
verified iteratively starting with the minimum depth capable of
detecting masking. If no masking was found, the search depth
was increased by one for each verification until masking was
discovered or the verification took a prohibitively long amount
of time. For partial masking properties, this meant search depths
started at 2 and increased from there. For total masking prop-
erties, search depths started at the total number of states in the

Table 5: Alarms from Case Study 3, the GE CARESCAPE Telemetry Monitoring System

Name Freq. (Hz) Vol. (dB) Time (s) Name Freq. (Hz) Vol. (dB) Time (s) Name Freq. (Hz) Vol. (dB) Time (s)

CPU-C1 523 72 0.1 D15K 523 81 0.1 D19KT 523 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

698 72 0.1 698 81 0.1 698 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

784 72 0.1 784 81 0.1 784 82 0.1
0 0 0.3 0 0 0.3 0 0 0.3

880 72 0.1 880 81 0.1 880 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

988 72 0.1 988 81 0.1 988 82 0.1
0 0 1 0 0 1 0 0 1

523 72 0.1 523 81 0.1 523 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

698 72 0.1 698 81 0.1 698 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

784 72 0.1 784 81 0.1 784 82 0.1
0 0 0.3 0 0 0.3 0 0 0.3

880 72 0.1 880 81 0.1 880 82 0.1
0 0 0.1 0 0 0.1 0 0 0.1

988 72 0.1 988 81 0.1 988 82 0.1
0 0 5 0 0 5 0 0 5

SystemHigh 523 84 0.1 SystemMedium 523 83 0.2 SystemLow 523 79 0.2
0 0 0.1 0 0 0.2

698 84 0.1 784 83 0.2
0 0 0.1 0 0 0.2

784 84 0.1 988 83 0.2
0 0 0.3 0 0 19

880 84 0.1
0 0 0.1

988 84 0.1
0 0 1

523 84 0.1
0 0 0.1

698 84 0.1
0 0 0.1

784 84 0.1
0 0 0.3

880 84 0.1
0 0 0.1

988 84 0.1
0 0 5

Note. CPU-C1, D15K, D19KT, and SystemHigh are high-priority alarms. SystemMedium is a medium-priority alarm. SystemLow is a low priority alarm.
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associated alarm and were iteratively increased up to 21. Note
that search depths greater than 21 were not considered because
of the amount of time required for the analyses. Further, because
a depth of 21 would encapsulate what was likely to be the worst
possible masking condition for the three high-priority alarms
(when they all sounded at the same time as each other due to
them all having the same tones), this was seen as sufficient.

A summary of our results can be seen in Table 6. These
show that masking is possible between the alarms of the GE
CARESCAPE. Specifically, partial masking was observed for
all of the alarms. Two of the alarms can be totally masked:
CPU-C1 and SystemLow (Fig. 14(b) and (h) respectively). This
is concerning because it means that these alarms may not be
heard or responded to by an observer. Because SystemLow is
a low-priority alarm, one could argue that it being masked by
higher priority alarms is not of that much concern. However,
CPU-C1 is a high-priority alarm. The length of this alarm’s
cycle is 8.2 seconds. This means that if the alarm is masked,
someone will not respond to it for at least that long. In a safety
critical medical environment, this is an extremely long time. As
such, the ability of CPU-C1 to be completely masked represents
a significant patient safety problem with this device.

6. Conclusion and Discussion

The work presented here has introduced a novel extension
of our original method that accounts for its shortcomings. By
changing the way that masking detection is performed in our
computational model, we are now able to properly account for
the additive effect of multiple maskers as well as use a more
appropriate spreading function. This means that our masking
prediction is more accurate than in the previous version and
can thus detect masking conditions that it could not previously.
In implementing our new approach to masking detection, we
have also improved the scalability of our method. This improves
the usefulness and applicability of the method. By providing a
computer program that can generate formal models from alarm

Table 6: Case Study 3 Verification Results

Masking Search
Alarm Spec. Depth Time (s) Outcome

CPU-C1 Partial 2 145.70 ×
Total 21 60,967.05 ×

D15K Partial 2 135.21 ×
Total 21 145,870.50 X

D19KT Partial 2 135.21 ×
Total 21 148,252.81 X

SystemHigh Partial 2 139.02 ×
Total 21 395,441.48 X

SystemMedium Partial 2 104.24 ×
Total 21 203,702.73 X

SystemLow Partial 2 81.24 ×
Total 4 216.66 ×

Note. Because a full search depth of 21× 4 + 7 + 2 = 93 was not used in these
analyses, it is possible (but unlikely) that a verified property might be untrue at a
higher search depths. Thus, verified properties are only guaranteed to be true at
the presented search depth.

configuration descriptions and visualize counterexamples, we
have improved the usability of the method.

In addition to these contributions, we have provided three dif-
ferent case studies that demonstrate different capabilities of the
method. The first case study illustrates the significant scalability
improvements that were achieved without any loss of detection
capabilities. The second one shows that the method is indeed
capable of detecting additive masking in a simple alarm con-
figuration. Finally, the last case study showed how the method
could be used to find masking conditions in a real application.
As such, the method clearly has utility and, if used by medical
device engineers and/or hospitals to evaluate and design alarm
configurations, could significantly increase the chance that med-
ical alarms are perceivable. This could have a profound impact
on patient safety.

Despite these advances, there are still ways that the method
could be improved and applied. These should be addressed in
future efforts.

6.1. Scalability
Although our new version of the method significantly im-

proved the method’s scalability, the results shown for the third
case study still indicate that the method does not scale well.
The approach for iteratively increasing the search depth should
allow analysts to mitigate some scalability concerns. However,
scalability will definitely limit what systems the method can be
applied to and when it will be appropriate. For example, the time
required to run an analysis on a complex application would likely
take a prohibitively long time for use in a dynamic environment
like a hospital. There may be additional ways to improve the
scalability of the method. Compositional verification (Cobleigh
et al., 2003) is a process where large models can be verified
using smaller independently verified, model components. As
such, it may be possible to use compositional verification to
check the interactions of specific tones across multiple analyses
and use these analyses to draw conclusions about more complex
configurations that use the analyzed tones. Many alarms, like
those in the GE CARESCAPE, can have repeated patterns both
within and between alarms. Thus, it may be possible to exploit
symmetry in the models to further improve the scalability of
the method (Emerson & Sistla, 1996). Future efforts should
investigate how these and other approaches could be used to
improve our method’s scalability.

Even if scalability persists as a limitation, this does not
preclude the usefulness of the method. Specifically, the method
could still be used for simple alarm configurations. Alternatively,
system designers should have enough time to evaluate designed
systems with other common alarm sounds (like those found
in the international standard; (IEC 60601-1-8, 2003-08-14)) to
ensure they avoid masking. Further, analyses could target alarm
standards so that, although analyses may take a long time, their
results could influence standard development and thus impact
the safety of medical alarms across the industry without the
method needing to be used by designers or hospitals. This is
further explored in the next section. Thus, while future efforts
may improve the scalability of the method, the method should
still have utility.

12



AlarmSystemLow

AlarmSystemMedium

AlarmSystemHigh

AlarmD19KT

AlarmD15K

AlarmCPUC1

AlarmSystemLow

AlarmSystemMedium

AlarmSystemHigh

AlarmD19KT

AlarmD15K

AlarmCPUC1

AlarmSystemLow

AlarmSystemMedium

AlarmSystemHigh

AlarmD19KT

AlarmD15K

AlarmCPUC1

Time (s):

Time (s):

Time (s):

AlarmSystemLow

AlarmSystemMedium

AlarmSystemHigh

AlarmD19KT

AlarmD15K

AlarmCPUC1

Time (s):

(a) CPU-C1 Parial Masking

(c) D15K Partial Masking

(e) SystemHigh Partial Masking

(g) SystemLow Partial Masking

53.559.8 60 60.1 60.2

59.9 59.95 60 60.05 60.1 60.15 60.2

59.8 59.9 60 60.1 60.2

59.8 59.9 60 60.1 60.2

(d) D19KT Partial Masking

(f) SystemMedium Partial Masking

(h) SystemLow Total Masking

59.8 59.9 60 60.1 60.2 60.3 60.4

59.7 59.75 59.8 59.85 59.9 59.95 60

59.8 59.85 59.9 59.95 60 60.05 60.1

(b) CPU-C1 Total Masking

51.5 52.5 53.5 54.5 55.5

Tone 1 Tone 2 Tone 3 Tone 4 Tone 5 Tone 6 Tone 7 Tone 8 Tone 9 Tone 10 Masking

Figure 14: Method-created counterexample visualizations of how the Alarms in the GE CARESCAPE can mask each other. Note that only masking found in the
respective analyses are shown in the graphs. The x-axis of the plots was reduced to only show the period of masking and not the full sounding cycles of the alarms.
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6.2. The International Medical Alarm Standard

The analyses presented under case studies 2 and 3 have
interesting implications for future analyses. Specifically, the GE
CARESCAPE alarms (case study 3) are in conformance with the
IEC 60601-1-8 international medical alarm standard (IEC 60601-
1-8, 2003-08-14). The alarms in case study 2 are nearly identical
to reserved alarms sounds from IEC 60601-1-8 (there are only
minor and likely inconsequential timing differences). Because
masking was detected in both of these case studies, this would
indicate that there are masking problems for alarms designed to
adhere to the standard. This is potentially very dangerous. The
method presented here offers the capabilities to systematically
evaluate the alarm requirements and reserved sounds found in
IEC 60601-1-8 and potentially explore solutions to discovered
problems. This should be a priority of future work.

6.3. More Complex Alarm Behavior and Sounds

The tonal alarms we evaluated are realistic in that they were
based on existing alarm systems and sounds from the IEC 60601-
1-8 standard. However, there are other types of alarms beyond
the tonal sounds currently supported by the method.

Features of IEC 60601-1-8 are not currently supported by
the method. Specifically IEC 60601-1-8 alarms can have sub-
frequencies, additional simultaneous frequencies that make each
tonal sound more complicated (IEC 60601-1-8, 2003-08-14).
Given that the method currently supports additive masking, ac-
counting for these sub-harmonics should be an easy extension
of the method. This should be the subject of future work. It
is important to note that while the inclusion of sub-frequencies
could make the problem of alarm identification worse by adding
additional masking potential. This could make it more likely
that the primary harmonics of the alarm would be masked and
thus potentially make it more difficult to identify. Future work
should consider this in future investigations.

Additionally, there are a number of different spreading func-
tions for representing the masking properties of different types
(tonal vs noisy) of sounds (Bosi & Goldberg, 2003). Thus future
extensions of the method should be able to readily account for
different types of sounds.

Finally, the current formulation of our method works with
discrete transitions in alarm state. However, alarm sounds can
have many dynamic elements related to the frequencies and vol-
umes of different components of a sound. In fact, IEC 60601-1-8
allows for and expert design recommendations (Patterson, 1982;
Patterson et al., 1990) encourage the use of dynamic changes
and rhythms in alarms to facilitate identification. Accommodat-
ing these dynamics naturalistically would require a significant
change in the way the method models alarms. However, heuris-
tics or abstractions could be created to allow dynamics to be
modeled with discrete steps within a given model or between
models. Future work should investigate how such abstractions
could be used with our method to allow these types of alarm
features to be accounted for. Even if this is not successful, auto-
mated theorem proving techniques exists that can account for a
wider variety of input model behaviors. However, using these
require much more skilled analyst interaction and significantly

more analysis time. Future efforts should investigate whether
automated theorem proving is viable for this application.

6.4. Additional Masking Detection
Our method is capable of detecting simultaneous masking.

However, there is also a phenomenon called temporal mask-
ing (Fastl & Zwicker, 2006). Temporal masking describes a
situation where non-concurrent sounds, but ones that sounds
in close temporal proximity, are masked. Such a phenomenon
could increase the instances of masking in a given configuration.
Psychoacoustics exist for accounting for these factors, however
they are not readily adaptable to formal modeling. Thus, future
work could investigate how to include these in our method using
either extended formal modeling techniques or through clever ex-
ploitation of other analysis approaches with formal verification.
Further, background and transient noises in health care environ-
ments can mask alarms or exacerbate other masking conditions
(Block, 1992). Laroche et al. (1991) and Zheng et al. (2003)
have developed a tool capable of evaluate the perceivability of
alarms and alerts in noisy environment. Future work should
explore how such detection capabilities could be included in our
method.

6.5. Deeper Analysis Support
As illustrated in the result for case study 2, our method can

detect masking conditions where it is unclear which of two or
more alarms would actually be masked. Future work should
investigate how to disambiguate such analysis results. Addition-
ally, it is the nature of the model checking analyses that they
only ever find one instance of a problem (a specification viola-
tion). This means that there could be more masking conditions
in any given configuration than those initial found by the method.
Ideally, our method would be able to find all of the conditions in
a configuration that produce masking. Such capabilities should
be investigated in the future. Finally, while our method can find
masking problems, it is not clear how the method should be used
to find solutions to those problems. Future work should focus
on extending the method to support the exploration of design
solutions that will avoid masking.

6.6. Experimental Validation
The psychoacoustics used in our method have been well val-

idated over the years and have served as the basis for the MPEG
family of lossy audio codecs (Bosi & Goldberg, 2003). Thus,
we expect our method to give accurate masking predictions.
However, experiments with actual human subjects in realistic
listening environments would allow us to validate our method’s
findings. This should be the subject of future work.

6.7. Other Application Domains
The work presented here and in previous analyses (Hasanain

et al., 2014, 2015) have focused on medical alarms. However,
the perceivability of alarms can play a critical role in the safety
of aviation (Bliss, 2003), automobile (Bliss & Acton, 2003),
and industrial systems (Rothenberg, 2009). Thus, future work
should investigate how our method could be used in these and
other safety critical domains.
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6.8. Other Alarm Problems

There are many problems facing medical alarms beyond
simultaneous masking (Edworthy, 2013). Because our work
constitutes the first attempt to address alarm problems formally,
there may be many future opportunities for extending our work
to explore other alarm issues. In particular, there is good evi-
dence suggesting that human mental workload can contribute to
alarm mistrust, fatigue, and inattentional deafness (Dehais et al.,
2014; Bliss & Dunn, 2000; Edworthy, 2013; Cvach, 2012; Way
et al., 2014). Formal methods could help researchers discover
when these conditions could occur. Such an analysis will need
to integrate formal approaches for modeling alarm perception
(Hasanain et al., 2014, 2015), workload (Moore et al., 2014;
Houser et al., 2015), and task behavior (Bolton et al., 2011,
2012; Bolton & Bass, 2013) to be successful. This should be
explored in future work.
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