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Introduction 
 
The retinal vasculature is unique in that, unlike any other systemic vascular bed, it can be 

assessed directly and non-invasively in vivo. Optometrists routinely evaluate the state of the 

retina and its microvasculature as part of any normal ophthalmic assessment and if 

considered carefully, such an evaluation has the potential to provide a unique insight into 

general vascular health. Advances in imaging technology have enhanced our ability to 

evaluate and document changes in the retinal vasculature over time and the recent 

introduction of new objective retinal image analysis techniques has the potential to 

significantly improve the accuracy and usability of quantifiable retinal vessel parameters 

such as calibre, arteriovenous ratio (AV ratio) and vessel tortuosity. This article will aim to 

outline the relevant anatomy and physiology of the retinal vasculature and go on to 

summarise the current evidence linking alterations in the retinal microvasculature to the 

occurrence of ocular and systemic vascular disease, with reference to the recent 

developments in imaging technology that are aiding our ability to make these links now and 

into the future.  

 
Anatomy and physiology of the retinal vasculature 
 
The retina has the highest oxygen consumption per volume in the body (Yu and Cringle, 

2001). To maintain normal retinal function a stable and sufficient blood supply, that can meet 

the metabolic demands of the retinal tissues whilst not impeding on the precise optics and 

transparency of the system, is required. To this effect the retina has evolved to have a dual 

blood supply, with the inner retinal layers (extending from the nerve fibre layer to the inner 

section of inner nuclear layer) being supplied by the central retinal artery (CRA) and the 

outer retina layers (extending from outer section of inner nuclear layer to the retinal pigment 

epithelium) being supplied from below by the choriocapillaries, via the short posterior ciliary 

arteries (Zhang, 1994). Maintenance of the outer retinal layers and photoreceptors in 

particular is vital for normal retinal function and as such 65-85% of the total blood supply to 

the retina comes via the choriocapillaries, with the remaining 20-30% being distributed 

across the inner retinal layers via the CRA (Lutty et al., 2012). 
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The CRA, on entering the eye via the optic nerve, divides into 4 main arterial branches, 

visible on ophthalmoscopy as the superior and inferior, nasal and temporal arcades. These 4 

main branches lie within the nerve fibre and ganglion cell layers of the retina and branch 

down further into arterioles and ultimately into capillaries as they spread across the retina. 

These retinal capillaries form a complex network that is distributed throughout the inner 

retinal layers and is commonly divided into three main sections, namely the radial 

peripapillary capillaries (RPCs), the inner (superficial) capillary bed and the outer (deep) 

capillary bed (Zhang, 1994). Whilst not directly visible themselves, the localisation of these 

capillary beds has relevance with regard to the different forms of retinal haemorrhage that 

can be visualised on fundus examination and their associated causes, as detailed in table 1. 

The RPCs lie within the inner part of the nerve fibre layer and run along the paths of the 

major CRA branches. The inner capillaries on the other hand lie in the nerve fibre and 

ganglion cell layer, underlying the RPCs and form a complex superficial capillary inner 

plexus. Finally, the outer capillaries lie deeper within the inner plexiform layer and inner 

nuclear layer and run to the border of the outer plexiform layer (Zhang, 1994). This complex 

retinal capillary network extends throughout the length of the retina, with the only exception 

being in the central macula region where a capillary free zone exists parafoveally (Zhang, 

1994). Drainage of the retinal circulation is achieved via the central retinal vein (CRV), which 

travels centrally within the optic nerve, alongside the CRA, before exiting the nerve and 

ultimately draining into either the superior ophthalmic vein, other intraorbital venous 

branches or directly into the cavernous sinus (Zhang, 1994). Drainage of the choroidal 

circulation and hence the outer portion of the retina is via the vorticose veins.     

 

Anatomically, the retinal vascular system can be described as having a traditional end-

arterial hierarchy, whereby the main central retinal artery branches into arterioles, which 

divide to form capillaries, which are then drained by venules that ultimately feed into veins. 

On leaving the optic disc, normal retinal arteries have a luminal diameter of around 160µm 

(Lee et al., 2007), with a thin endothelial basement membrane and thick wall of smooth 

muscle. In contrast, normal retinal veins have a much wider luminal diameter of around 

230µm (Lee et al., 2007) at this same point, with only a thin layer of smooth muscle. The 

retinal capillaries are much smaller, with a diameter of between 3.5 to 6µm and are 

composed of a single continuous layer of endothelial cells which are surrounded by pericytes 

in a 1:1 ratio (Lutty et al., 2012).  

 

It is at the level of the retinal capillaries that the exchange of oxygen and nutrients and the 

removal of waste products to and from the surrounding retinal tissue, occurs. In order to 

ensure the integrity of the retinal tissue is maintained, tight junctions exist between the 
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retinal capillary endothelial cells, forming an inner blood-retinal barrier (BRB) similar to the 

blood-brain barrier of the central nervous system. This inner BRB, in conjunction with the 

RPE which forms an outer BRB, is an important feature of the retinal vasculature as it helps 

to prevent the passage of all but essential metabolites from the bloodstream into the retinal 

tissues. Indeed, a breakdown of the BRB, for example under conditions of hypoxia or 

ischaemia, is the originating factor in the development of a number of classic signs of retinal 

pathology commonly observed clinically, as will be discussed later in this article.  

 

Finally, within the architecture of the retinal vasculature many arteriovenous crossings exist. 

At the majority of these crossing points, the retinal artery is situated anterior to the vein and 

both vessels are enclosed by a common basement membrane. The close approximation of 

these vessels at these crossing points makes these locations vulnerable sites for vascular 

occlusion, for example as a result of occlusion of the underlying vein by an overlying 

arteriosclerotic retinal artery (Lutty et al., 2012).      

 

From a physiological viewpoint, retinal circulation is characterised by a low level of flow and 

high level of oxygen extraction (Delaey and van de Voorde, 2000). It is autoregulated, 

allowing vessel diameter and hence blood supply to be altered according to changes in 

metabolic demand, blood pressure, oxygen and carbon dioxide levels, however, unlike many 

other systemic vascular beds it receives no autonomic innervation (Delaey and van de 

Voorde, 2000). This is in comparison to the choroidal circulation which is characterised by 

very high flow and low oxygen extraction and has the greatest density of autonomic 

innervations in the body, but little autoregulatory capacity. These two vascular supply 

systems work together to maintain normal retinal function. 

 
Why is it important to assess the retinal vasculature? 
Both the physiological process of ageing and the pathological effects of ocular and/or 

systemic disease can cause alterations in the anatomy and physiology of the retinal 

vasculature. Being able to recognise these alterations and understand their implications is 

becoming of increasing importance to eye care professionals, as is the need to consider 

systemic as well as ocular health when examining a patient’s retina.  

 

Recent evidence has highlighted the potential role that retinal vascular assessment could 

play in evaluating an individual’s cardiovascular risk (Seshadri et al., 2014, Ikram et al., 

2013), as well as in determining the presence of systemic vascular diseases, such as 

coronary heart disease (Wong et al., 2006), chronic kidney disease (Yau et al., 2011), stroke 



4 
 

(Ikram et al., 2006a) and Alzheimer’s disease (Cheung et al., 2014), alongside the more 

traditional diabetes mellitus (Hiller et al., 1988) and arterial hypertension (Dimmitt et al., 

1989). Such insights have largely arisen as a result of both the introduction of new high-

resolution imaging technologies and an increase in awareness of the anatomical and 

physiological similarities that the microvasculature of the retina shares with other systemic 

vascular beds, in particular the cerebral and coronary circulations (Patton et al., 2005). 

Indeed, the anatomical positioning of the cerebral and coronary microcirculations makes 

them notoriously difficult to assess non-invasively, however it has been proposed that 

targeted non-invasive assessment of the more easily accessible retinal microvasculature 

could be used  to provide a window into cerebral and/or coronary vascular health 

(Mroczkowska et al., 2014, Liew et al., 2008b). Whilst this has exciting potential and 

promising links have been identified, the task moving forward is to determine which 

parameters could be most useful in this regard and how they can be best evaluated, imaged 

and monitored in clinical practice.  

 
How can the retinal vasculature be assessed? 
 
Traditionally, in accordance with the guidance for professional practice set out by the 

College of Optometrists (College of Optometrists., 2014), the retinal vasculature has been 

routinely assessed by means of either direct ophthalmoscopy or slit lamp indirect 

biomicroscopy, through either dilated or undilated pupils, with judgements on factors such as 

retinal vessel calibre, AV ratio, vessel integrity, vessel tortuosity and the presence of 

retinopathy lesions being made subjectively by the examiner and recorded on the patient’s 

record. Whilst these techniques remain a main stay of optometric practice, rapid advances in 

imaging technology over recent years have seen imaging of the retina become an 

increasingly established component of the clinical care and management of patients, 

particularly in those presenting with retinal and/or systemic disease (Patton et al., 2006). 

Fundus photography and optical coherence tomography (OCT), for example, are now widely 

used in the diagnosis and monitoring of ocular disease in both the primary and secondary 

care settings and are becoming much more familiar features of everyday optometric practice. 

Fundus photography is a mainstay in the population-based screening of diabetic retinopathy 

(DR) and the use of OCT has become increasingly widespread in the diagnosis and 

evaluation of both age-related macular degeneration (AMD) and glaucoma. Furthermore, in 

the hospital setting, retinal vascular integrity is commonly evaluated using the gold standard 

imaging technique of fundus fluorescein angiography (FFA) and this technique has proven 

particularly useful in the assessment and characterisation of conditions such as neovascular 

AMD and ischaemic central retinal vein occlusion.   



5 
 

 

Alongside considering the structure of the retina, the importance and relevance of evaluating 

the function of the retinal vessels, with regard to determining cardiovascular risk and 

evaluating systemic vascular health, has also been increasingly recognised over recent 

years (Lim et al., 2013, Mroczkowska et al., 2013, Seshadri et al., 2014). Assessing how 

retinal vessels respond to a flicker light stimulus for example, using a device called the 

dynamic retinal vessel analyser (DVA), can infer information about the autoregulation 

capacity and functioning of the retinal vascular endothelium (Garhofer et al., 2010). 

Autoregulation and microvascular endothelial function is thought to be altered at the earliest 

stages of a vascular disease process, often before symptoms or alterations in the 

macrovasculature are clinically detectable. This makes functional evaluation of the retinal 

microvessels an attractive proposition. The use of DVA as an imaging and evaluation 

technique is still primarily restricted to the research setting however and is yet to fully 

translate into clinical practice.  

 

So what should be looked for when assessing the retinal vasculature? 
 

When conducting any evaluation of the retina, be it through direct ophthalmoscopy, slit lamp 

indirect biomicroscopy or fundus photography, the examiner needs to be mindful of signs of 

both physiological and/or pathological retinal vascular changes. These signs can be broadly 

split into two main groups, those that fall under the heading of ‘classic retinopathy’ and those 

that relate more specifically to the structure and appearance of the retinal vessels and their 

architecture, both are important to look out for. 

 

Classic retinopathy lesions and their implications 

Classic retinopathy lesions include microaneurysms, haemorrhages, hard exudates, cotton 

wool spots and neovascularisation, along with vessel nipping, focal vessel narrowing, 

arteriolar wall opacities and the presence of emboli. These signs primarily develop in 

response to the presence of known or recognisable systemic disease such as hypertension 

or diabetes mellitus and the classic stages and associated features of these two 

retinopathies should be familiar to the optometrist.  

 

The presence of any classic retinopathy lesion is an indicator that structural and/or functional 

alterations have occurred at one of the anatomical sites of the retina or within one of retinal 

capillary beds. Retinal haemorrhages, for example, occur when the endothelial cells which 

line the walls of the retinal microvasculature are damaged, meaning the BRB is 

compromised and the constituents of the vessel leak out. The most common trigger of such 
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damage is hypoxia, caused by an insufficient or inconsistent blood supply to the affected 

region; however inflammation and other pathological processes have also been implicated 

(Bek, 2013). Alongside red blood cells, blood plasma also leaves the damaged vessels, 

causing localised oedema. The blood plasma is laden with proteins and lipids, the latter of 

which can accumulate to form hard exudates. Occlusion of the pre-capillary arterioles can 

create an ischaemic environment, which triggers vessel calibre changes and potentially a 

neovascular response (Wong et al., 2001).  

 

Although most commonly linked to the presence of recognisable systemic disease, 

retinopathy lesions can also develop in isolation, with a number of studies having 

demonstrated that such lesions can be present in around 2-14% of the non-diabetic adult 

population aged over 40 (Klein, 1992). The occurrence of such isolated lesions in this 

population presents a diagnostic challenge, as they could reflect damage to the retinal 

vasculature from normal ageing or more likely, from other forms of undiagnosed 

cardiovascular or systemic disease.  

 

The concept that a link may exist between the presence of retinopathy and the presence of 

systemic disease has been around for some time, being first introduced back in 1988, when 

it was proposed that the development of retinopathy lesions could be indicative of the 

presence of a more generalised microangiography, affecting not only the eyes of the 

individual, but also other systemic vascular beds (Hiller et al., 1988). Over recent years, and 

following the introduction of retinal photography, along with more standardised techniques 

for assessing and categorising retinopathy lesions (Patton et al., 2006), a large body of 

evidence has accumulated linking the presence of retinal haemorrhages, microaneurysms 

and cotton wool spots, to an increased risk of subclinical and clinical stroke (Wong et al., 

2001, Liew et al., 2008b) and cardiovascular mortality (Wong et al., 2001, Liew et al., 2008b). 

The diagnostic importance of these signs should therefore not be undervalued and careful 

documentation; imaging and onward referral to the general practitioner for investigation of 

the underlying cause of such findings is warranted. 

 

Changes in the architecture of the retinal vasculature 

Alongside detecting classic retinopathy lesions, an assessment of the architecture of the 

retinal vasculature is also judged to be an essential element of any retinal examination. Such 

architectural alterations most commonly refer to changes in retinal artery and/or vein calibre, 

which is traditionally reflected in the recording of the arteriovenous (AV) ratio, or as 

alterations in the degree of retinal vessel tortuosity. Retinal vascular architectural changes 

such as these can be very subtle to detect with the naked eye and have traditionally only 
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been able to be judged subjectively, which has historically limited their use and diagnostic 

ability (Heitmar et al., 2014). Recent advances in imaging and analysis software, along with 

the introduction of more standardised semi-automated measurement techniques however, 

has the potential to make the evaluation of these parameters much more accessible. 

Furthermore, in the advent of such new technologies, additional architectural parameters, 

such as fractal dimension and retinal vascular branching angle, have the potential to also be 

considered alongside the more traditional measurements and subsequently the relevance of 

global changes in the geometry of the retinal vasculature to systemic vascular health have 

the potential to be evaluated quantitatively for the first time (Kalitzeos et al., 2013, Liew et al., 

2008a).  

 

In current optometric practice, the awareness and use of semi-automated parameters is still 

not widespread, with most practitioners still resorting to subjective judgements of AV ratio 

and vessel tortuosity. An increasing amount of attention however is now being paid to 

evaluating and measuring retinal vessel structure and geometry quantifiably and in a 

standardised manner, as the potential insight that these parameters can give is being 

increasingly realised (Patton et al., 2006, Liew et al., 2008b). Indeed, alterations in the small 

microvessels in particular are thought to develop at the earliest stages of a disease process 

making the microvasculature a good screening target and furthermore retinal vessel calibre 

changes and functional abnormalities of the retinal micro-vessels have been suggested to be 

good indicators of an increased risk for future damage (Ikram et al., 2013). This is as 

opposed to the presence of retinopathy lesions, which are considered a relatively late 

indication of target organ damage (Wong et al., 2001). So what semi-automated options are 

there and are eye care professionals really missing important vascular indicators by solely 

relying on subjective assessment of the retina? 

 

Subjective (quantitative) versus objective (qualitative) evaluation of the retinal 
vasculature 
Subjective analysis of the morphology and progression of retinal vascular signs, although 

still a mainstay of optometric practice, has been shown to suffer from a number of 

drawbacks, including low sensitivity and specificity, poor inter-observer agreement and high 

exposure to observer bias (Patton et al., 2006, Liew et al., 2008b). This is particularly the 

case when it comes to trying to judge subtle changes in vessel calibre, arteriovenous (AV) 

ratio and retinal vessel tortuosity (Dimmitt et al., 1989, Heitmar et al., 2014). One of the main 

factors that has contributed to these drawbacks is the lack of standardisation that has 

existed with regard to measurement location and lack of awareness of what is considered to 
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represent a normal/healthy retinal vascular structure. This is particularly the case for 

subjective AV ratio assessment where, depending on the source used, evaluation of the ratio 

of the retinal artery and veins can be recommended to be taken after the 1st bifurcation 

(Grosvenor, 1982), after the 2nd bifurcation, or at a certain disc diameter distance away from 

the optic nerve head (Elliott, 2014, Bass, 2009). Additionally, what is considered to be a 

‘normal’ AV ratio can vary from 2/3 or 3/4 depending on which resources are used and there 

are inconsistencies over whether the measurement should be recorded as a ratio or as a 

percentage (Elliott, 2014, Grosvenor, 1982, Bass, 2009). These issues are all further 

exacerbated by the wide degree of variation that is known to exist in the retinal vascular 

branching patterns between healthy individuals (Stokoe and Turner, 1966) which makes the 

process of selecting vessels of a comparable order of division and hence subjective analysis 

of the retinal architecture inherently difficult (Stokoe and Turner, 1966, Wong et al., 2001).  

 

Semi-automated, quantitative, methods of measuring retinal vascular changes have the 

potential to provide a much more objective and reliable assessment of the retinal vasculature 

than can be obtained subjectively and to also allow vascular changes to be better monitored 

over time. Whilst they are receiving great interest in a research setting however, their use 

has not yet become that widespread in optometric practice. As our understanding of what 

the semi-automated parameters are telling us, along with accessibility to suitable software 

grows however, it is envisaged that their usage in a clinical setting will increase. In the same 

regard, fully automated techniques that allow the identification and detection of classic 

retinopathy lesions from fundus photographs in, for example, diabetic patients are also being 

explored and as technology progresses the integration of this type of quantitative measure 

into a practice setting may also increase (Patton et al., 2006). 

 

Measurement of the retinal architecture using semi-automated techniques 
The most basic requirement for the objective or quantitative assessment of the retinal vessel 

architecture using a semi-automated analysis software package is the obtainment of a 

fundus photograph, which ideally, is centred on the disc and monochromatic (red-free). This 

set-up ensures vessel visibility and contrast is at a maximum for measurement (figure 1). 

Some imaging devices, depending on the manufacturer, have such semi-automated 

measurement packages incorporated into their software; however there are also a number of 

independent software packages available that can operate with any fundus image, 

independent of the camera system used to acquire the image.  

 

One of the prime benefits of semi-automated analysis techniques is that they have the 

potential to allow a more reliable and repeatable analysis of the calibre of the retinal vessels 
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and hence AV ratio, than is possible by subjective means. Some of these analysis 

techniques also allow the semi-automated measurement of retinal vessel tortuosity, retinal 

branching angle and fractal dimension. Semi-automated software packages that are 

currently available for license include Visualis Vesselmap2 software (Imedos Systems, 

Germany)(IMEDOS, 2009), SIVA (Singapore ‘I’ Vessel Analysis, Singapore Eye Research 

Institute, Singapore) (SingaporeEyeResearchInstitute, 2011), IVAN (Vasculo-matic ala 

Nicola version 1.1, Department of Ophthalmology and Visual Science, University of 

Wisconsin-Madison, Madison, WI)(Shah et al., 2009) and Vampire (Vessel assessment and 

measurement platform for images of the Retina)(Perez-Rovira et al., 2011), amongst others. 

Additionally, the free software Image J can also be used to obtain semi-automated retinal 

vessel measurements.        

 

1. Semi-automated measurement of retinal vessel calibre 

The first attempts at semi-automated assessment of retinal vessel calibre were made in the 

1960s and 1970s, shortly after the introduction of retinal photography (Patton et al., 2006). 

These so called micrometric measurements were taken from enlarged projected images 

using callipers and used to generate a quantitative assessment of AV ratio (Patton et al., 

2006). Since then, imaging technologies and software options have advanced and semi-

automated methods of vessel analysis have become significantly more standardised and 

sophisticated.  

 

For the majority of the software packages now available, once a fundus image is acquired, a 

concentric annulus is superimposed on to the image. This concentric annulus is situated half 

a disc diameter (DD) from the outer boundary of the ONH and is half a DD wide (figure 2).  

The examiner is then simply required to select the relevant arteries and veins from within this 

concentric annulus (figure 3). All calculations are then computed and generated for the user 

automatically. It has been shown that by measuring the diameter of the vessels within this 

concentric region it ensures that the arteriolar vessels which are more likely to exhibit 

changes are being used for measurement purposes as opposed to the bigger arteries and it 

allows a much greater standardisation in measurement than has been achievable previously. 

The retinal vessel calibre measurements generated by these semi-automated techniques 

are denoted as the Central Retinal Artery Equivalent (CRAE) and Central Retinal Vein 

Equivalent (CRVE), which are then used to derive the arteriovenous ratio (AVR). 

 

This measurement technique and the parameters derived from it all stems from the work of 

Parr and Spears, who in 1974, derived a formula based on this concentric annulus approach 

for the calculation of central retinal artery calibre from selection of all retinal arteries within 
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the annulus, termed the ‘central retinal artery equivalent’ (CRAE) (Parr and Spears, 1974). 

This work was expanded on by Hubbard and colleagues in 1992 (Hubbard et al., 1999), who 

derived a similar formula for the calculation of vein diameter, termed the central retinal vein 

equivalent (CRVE) and then used this in conjunction with the CRAE to determine the semi-

automated AVR in a less time-consuming manner than had previously been possible (Patton 

et al., 2006). The formulae obtain the CRAE and CRVE outputs by first combining pairs of 

the narrower and wider vessel branch diameter measurements taken from within the 

concentric circle and converting them into estimates of their larger trunk diameters. Pairs of 

the trunk diameters are then combined in a similar manner until all arterioles and venules are 

built up and summarised into a single central retinal artery (CRAE) and vein (CRVE) 

equivalent parameter (Hubbard et al., 1999). More extensive details of the iterations of these 

formulas can be found elsewhere (Hubbard et al., 1999, Parr and Spears, 1974, Knudtson et 

al., 2003, Heitmar et al., 2015)   

 

The Atherosclerosis and Risks in Communities (ARIC) study was the first to utilise this 

objective approach to measure AV ratio semi-automatically in large patient cohorts, and 

found semi-automated AVR to be a good measure of generalised arteriolar attenuation 

(Hubbard et al., 1999). Later, in 2003, Knudtson and colleagues went on to publish a revised 

formula for CRAE and CRVE calculation, based on selection of the 6 largest arterioles and 

venules from within the concentric measurement ring as opposed to using all of the 

acceptable vessels as had been done previously (Knudtson et al., 2003). This revised 

formula has been shown to be in agreement with the previous calculation proposed by Parr-

Hubbard (Heitmar et al., 2015), but has the added advantage of being independent of the 

units of scale and of the number of vessels measured (Patton et al., 2006). Recently Heitmar 

et al (2015) demonstrated that the most important factor to assure agreement in output 

between the two formulas with regard to AVR calculation is to ensure that the number of 

selected arterioles and venules were kept equal for each, be that at the traditional 6 or at 5 

or another alternative number. This is likely to become especially relevant as the use of 

these techniques in the clinical setting increases. The revised formula proposed by Knudtson 

et al (2003) has been adopted by some of the newer semi-automated programs and it 

currently the most widely used formula for calculating retinal vessel calibre.  

 

2. Retinal Tortuosity 

Alongside AVR, retinal vessel tortuosity is a common parameter recorded during 

assessment of the retinal vasculature and increased retinal vessel tortuosity has been linked 

to the presence of a number of systemic vascular pathologies, including more unusually, 

Alzheimer’s disease (Cheung et al., 2014), retinopathy of prematurity (Shah et al., 2009) and 
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chronic anaemia (Incorvaia et al., 2003). In the same manner as AV ratio however, 

subjective evaluation of retinal tortuosity by optometrists suffers from a number of drawbacks 

related to the high risk of observer bias and low specificity and sensitivity. As such a 

quantitative and repeatable means of determining retinal tortuosity has also been desired.  

 

The first quantitative assessment of retinal vessel tortuosity was described by Lotmar et al in 

1979. This method was then expanded upon slightly by Bracher (1982) and the generation 

of tortuosity indices has evolved further from there (Kalitzeos et al., 2013). Whilst most 

quantitative measurements of vessel tortuosity involve the subdivision of the tortuous vessel 

into a series of single arcs through the manual selection of points on a fundus photograph, a 

standardised method of obtaining this measure is yet to be clearly outlined. Instead, a large 

variety of different tortuosity indices are currently in existence (Kalitzeos et al., 2013). This 

has meant that, although it is provided with some semi-automated software packages, the 

use of quantitative retinal tortuosity measurements has struggled to move out of the 

research setting to so far but has the potential to do so more in the future. 

 

3. Fractal dimension and retinal vessel branching angle 

Some semi-automated analysis software packages allow the measurement of fractal 

dimension and retinal vessel branching angle. Fractal dimension represents a ‘global’ 

measure that summarises the whole branching pattern of the retinal vascular tree (Liew et al., 

2008a). Retinal vessel branching angle on the other hand can be defined as the first angle 

subtended between two daughter vessels at each vascular bifurcation (Cheung et al., 2014). 

Fractal dimension has been shown to be a relatively sensitive early indicator of vascular 

changes in diabetic retinopathy (Avakian et al., 2002), systemic hypertension and systemic 

cardiovascular disease (Liew et al., 2008a) by some studies, but not by others (Kunicki et al., 

2009). Again, this is a parameter that, whilst offered by some semi-automated software 

packages, has not fully crossed the path from research into the clinical setting to date. 

Indeed, there are natural limitations that exist when trying to apply fractal analysis to a 

branching biological structure and further insight into its clinical relevance is still required 

before its full potential can be realised.   

 
So what is the value of assessing the retinal vasculature?  
The retina offers an ideal location for the non-invasive evaluation of vascular structure and 

function. The increase in use and availability of imaging technologies has significantly 

enhanced the ability of the optometrist to document and monitor both classic retinopathy and 

vascular architectural changes over time and such changes have been shown to have the 
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potential to infer valuable information regarding not only ocular but also systemic vascular 

health.  

 

Optometrists are ideally placed to routinely document and monitor retinal vascular 

parameters over time due to their captive patient base and the regularity of routine eye 

examinations. The traditionally subjective nature of measuring and recording retinal vascular 

changes has, to date however, somewhat limited the usability of retinal vessel parameters 

as potential biomarkers for cardiovascular risk and systemic vascular health. With the 

emerging role of semi-automated methods of measuring architectural changes however, 

there is an increasing potential that the appearance and progression of vascular architectural 

changes in particular, could be more precisely measured and monitored over time. Indeed, 

determining the validity, clinical relevance and usability of semi-automated measurements of 

the retinal architecture is currently a research area of intense interest and associations 

between altered retinal vessel calibre and the presence of ocular and systemic diseases are 

being continually explored, with a view to determining whether such measurements have the 

potential to act as biomarkers for cardiovascular risk in certain patient subgroups (Ikram et 

al., 2013, Wong et al., 2001).  

 

What does the evidence suggest to date? 
There are a wide range of studies that have looked into the associations between the semi-

automated architectural parameters, CRAE, CRVE and AVR and the presence of both 

clinical and subclinical cardiovascular disease states. Interestingly, whilst AVR is the 

traditionally recommended measurement parameter, it is CRAE and CRVE individually that 

have emerged as the more sensitive biomarkers of cardiovascular disease, as they have 

been recognised to provide more clinically relevant information than can be offered by 

considering AVR in isolation. Indeed, AVR, due to its nature, is an ambiguous measure as 

both an alteration in the diameter of the artery and an alteration in the diameter of the vein 

could cause an equivalent alteration in AVR. For example the same change in AVR would 

occur if either CRAE was decreased or if CRVE were increased, but by just considering the 

AVR alone, the information about the specific direction of the change cannot be obtained. 

The requirement for this additional insight has become of particular relevance in recent years 

as imaging and semi-automated analysis methods have become more accessible, Indeed, 

changes in CRAE and changes in CRVE, when considered individually have been shown to 

link to very different disease mechanisms. 

 

With regard to retinal artery diameter, it is widely accepted that systemic hypertension leads 

to attenuation of arteries throughout the body and indeed in line with this, a decrease or 
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narrowing in CRAE, beyond that which would be expected through normal ageing (Ikram et 

al., 2013), has been strongly linked to the presence and degree of systemic hypertension 

(Hubbard et al., 1999). More interestingly, a number of longitudinal cohort studies have 

additionally demonstrated that a decrease in CRAE may actually precede the development 

of systemic hypertension and may therefore signal an increased risk for the subsequent 

development of hypertension and could act as a biomarker of risk in certain individuals 

(Chew et al., 2012). As well as systemic hypertension, a decrease in CRAE has also been 

linked to a higher risk of developing chronic kidney disease (Yau et al., 2011) and to a 2-fold 

increase in the risk of developing coronary heart disease in those with hypertension (Wong 

et al., 2006). The renal and coronary microvasculature beds share anatomical and 

physiological associations with that of the retina and therefore these findings reinforce the 

potential role that semi-automated retinal microvascular imaging could play as a window into 

general systemic vascular health.  

 

Interestingly, alongside CRAE, CRVE is also emerging as an important indicator of systemic 

vascular health, with an increase in CRVE having been linked to the presence of 

cardiovascular risk factors such as cigarette smoking, obesity, raised BMI, dyslipidaemia 

(Sun et al., 2009) and other subclinical signs such as the presence of both inflammatory 

markers and markers of vascular endothelial dysfunction (Sun et al., 2009). In turn, 

increased CRVE has been linked to the presence and development of cerebral small vessel 

disease (Ikram et al., 2006b), vascular dementia (de Jong et al., 2011), diabetes (Ikram et al., 

2006c), coronary heart disease (Wong et al., 2006) and stroke (Ikram et al., 2006a). It is 

possible therefore, that recording an increase in CRVE could have the potential to signal a 

high risk for future cardiovascular disease development in certain sub-groups of patients. 

 

Aside from systemic disease and cardiovascular risk, alterations in semi-automated retinal 

vascular calibre parameters have also been linked to the development and progression of 

ocular disease. For example, larger CRVE has been linked to increased incidence and 

accelerated progression of diabetic retinopathy in type 1 diabetics (Klein et al., 2004). 

Furthermore wider CRAE has also been independently associated with the development of 

age-related macular degeneration (AMD) (Jeganathan et al., 2008) and a narrowing of 

CRAE and CRVE has been linked to RNFL loss and long term risk of primary open angle 

glaucoma development (POAG) (Ikram et al., 2013). The strength and nature of these 

associations is however still relatively uncertain as these findings have not been replicated 

by all studies and more research is required (Ikram et al., 2013), what these associations do 

demonstrate however is the potential insight that could be gained by the more widespread 
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use and quantifiable evaluation of retinal architectural changes by semi-automated means in 

the future. 

 

 
What does the future hold? 
Imaging technology is constantly developing and is highly likely to become even more 

sophisticated in future years, with increased image resolutions and enhanced image 

processing power offering the potential for an even greater insight to be gained into 

structural and functional changes of the retinal vasculature than is currently possible (Patton 

et al., 2006). Accessibility to imaging technology within the optometric community is 

continually growing and as awareness and usability of objective and/or semi-automated 

image analysis methods increases, the diagnostic capacity of the optometrist, with regard to 

determining the presence and future risk of both ocular and systemic disease also has the 

potential to expand, especially as our understanding of the pathogenesis of these conditions 

improves.   

 

The exciting introduction of new imaging modalities, such as longer wavelength and swept 

source OCT and en-face imaging, is opening up the potential for very subtle changes in not 

only the retinal but also the choroidal vasculature to be detected and evaluated (Adhi and 

Duker, 2013). Furthermore, the ongoing development of Doppler OCT and the introduction 

of retinal oximetry is offering the potential for functional changes in the retinal vasculature to 

be considered in closer conjunction with structural changes (Adhi and Duker, 2013, Patton et 

al., 2006). As the evidence base, awareness and commercial availability of these 

technologies improve it is likely that their usability will start to move out of the research 

setting and into the clinical setting more in the near future.   

 

Summary 

Evaluation of the retinal vasculature is an essential and routine part of any optometric 

examination (College of Optometrists, 2014). Both the presence of classic retinopathy 

lesions and/or the presence of subtle changes in the retinal architecture can infer valuable 

information about not only ocular, but also systemic vascular health. The retina offers an 

ideal location for non-invasive evaluation of the microvasculature and due to the anatomical 

and physiological similarities that are known to exist between different microvascular beds, 

there is a real potential for retinal evaluation to provide a valuable window into systemic 

vascular health. Promising associations between retinal vessel calibres and cardiovascular 

risk have been identified, however to date, reliable evaluation and monitoring of such subtle 
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retinal architectural changes has been limited by the subjective nature by which such 

parameters have been assessed. The use of imaging technology is now relatively 

widespread in routine optometric practice and optometrists, with their captive and regularly 

attending patient base, are ideally positioned to routinely document and monitor retinal 

vascular parameters over time. Semi-automated measurement techniques are now 

commercially available and optometrists should familiarise themselves with these techniques 

and the parameters that they can generate. The possibility that subtle architectural changes 

could act as biomarkers for cardiovascular risk is an exciting one and as awareness of the 

available imaging and analysis methods continue to improve the optometrist’s ability to 

evaluate and understand the clinical relevance of retinal vascular changes should progress 

significantly from now and into the future. 
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