1	Ocean acidification affects fish spawning but not paternity at CO ₂ seeps				
2	Marco Milazzo ^{1,*} , Carlo Cattano ¹ , Suzanne H. Alonzo ² , Andrew Foggo ³ , Michele Gristina ⁴ , Riccardo				
3	Rodolfo-Metalpa ⁵ , Mauro Sinopoli ⁶ , Davide Spatafora ¹ , Kelly A. Stiver ⁷ , Jason M. Hall-Spencer ^{3,8}				
4					
5					
6 7 8	¹ Department of Earth and Marine Sciences (DiSTeM), CoNISMa, University of Palermo, Palermo, Italy.				
9 10 11	² PBSci-Ecology & Evolutionary Biology Department, Institute of Marine Sciences, University of California Santa Cruz, CA, USA.				
12 13 14	³ Marine Biology and Ecology Research Centre, School of Marine Science & Engineering, Plymouth University, UK.				
15 16	⁴ CNR-IAMC, Mazara del Vallo (TP), Italy.				
17 18	⁵ Institut de Recherche pour le Développement, UMR 250 ENTROPIE, Nouméa, New Caledonia.				
19 20	⁶ Institute for Environmental Protection and Research (ISPRA), Palermo, Italy.				
21 22	⁷ Psychology Department, Southern Connecticut State University, New Haven, CT, USA.				
23 24 25 26	⁸ International Educational and Research Laboratory Program, Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan				
27					

28 Abstract

29 Fish exhibit impaired sensory function and altered behaviour at levels of ocean acidification 30 expected to occur due to anthropogenic carbon dioxide emissions this century. We provide the first 31 evidence of the effects of ocean acidification on reproductive behaviour of fish in the wild. Satellite 32 and sneaker male ocellated wrasse (Symphodus ocellatus) compete to fertilize eggs guarded by 33 dominant nesting males. Key mating behaviours like dominant male courtship and nest defence did 34 not differ between sites with ambient versus elevated CO₂ concentrations. Dominant males did, 35 however, experience significantly lower rates of pair spawning at elevated CO₂ levels. Despite the 36 higher risk of sperm competition found at elevated CO₂, we also found a trend of lower satellite 37 and sneaker male paternity at elevated CO₂. Given the importance of fish for food security and 38 ecosystem stability, this study highlights the need for targeted research into the effects of rising 39 CO₂ levels on patterns of reproduction in wild fish.

40

41 Introduction

42 Ongoing ocean acidification is an inevitable consequence of continued atmospheric CO₂ 43 emissions and is expected to have profound effects on marine biodiversity and ecosystem function 44 [1]. Coping with the physiological stress of ocean acidification has metabolic costs that can impair 45 reproduction in a range of marine organisms, including fish [2,3]. Elevated CO₂ also causes striking 46 behavioural and sensory disruptions in fish, involving loss of lateralization and of learning ability, 47 reversal of olfactory and auditory functions, and impaired decision-making [4-8]. This 48 neurosensory impairment may have consequences on marine communities as increased levels of 49 CO₂ can cause juvenile fish to be attracted by predator odors they would normally avoid [5] or by 50 sounds of unfavorable habitats for settlement [7]. These effects can be rapidly reversed by 51 reducing GABA-A receptor activity [8], highlighting a link between increasing seawater CO₂ levels 52 and brain function in fish [9].

53 Successful reproduction will be essential for the persistence of marine populations as seawater 54 CO₂ levels continue to rise [10]. When cinnamon anemone fish (*Amphiprion melanopus*) parents 55 are exposed to high-CO₂ conditions their offspring do not show behavioural impairment, however 56 their potential for behavioural acclimation across generations is not fully restored, as in many 57 instances their escape performance is negatively affected [11]. Similarly, other studies showed 58 minimal potential for transgenerational acclimation in the tropical damselfish *Acanthochromis*

59 polyacanthus [12] and in several other tropical fish chronically exposed to elevated CO₂ at volcanic 60 seeps [13]. In aquaria, simulated ocean acidification increases the reproductive output of females 61 (e.g., egg production) in some fish [2,14] but not others [15]. Intense sperm competition has 62 resulted in male behavioural adaptations that may be affected by rising CO_2 levels. At present, 63 mating system structure and reproductive behaviour are critically understudied in relation to the 64 effects of high CO₂ on fish and other marine organisms [16]. Given the complex sexual behaviour 65 of many fish in the wild, there are concerns that mating behaviour and reproductive success might 66 be affected by ongoing rising CO₂ levels. The present study is the first to investigate this issue in 67 fish exposed to high CO₂ levels in their natural habitat.

68 We used a gradient in CO₂ near volcanic seeps off Vulcano Island (Italy) [17] to examine mating 69 behaviour and fertilization success of the ocellated wrasse S. ocellatus (figure 1). Ocellated wrasse 70 'dominant males' build nests and provide parental care to eggs, attract females for pair spawning, 71 chase off sexual competitors ('satellite' and 'sneaker' males) [18], and sometimes refuse to mate 72 when other males are prevalent [19]. Satellite males cooperate with dominant males to attract 73 females and drive away sneakers, but they also engage in sneak fertilization of the eggs [20,21]. 74 Sneaker males, which release more sperm per spawn than dominant nesting males or satellites, do 75 not cooperate or care and only attempt to sneak spawn [19]. Thus high levels of sperm 76 competition occur in the wild [20]. We filmed multiple wrasse nests at present-day Ambient-CO₂ 77 conditions (~400 μ atm pCO₂) and High-CO₂ conditions (~1100 μ atm pCO₂) [22] (Electronic 78 Supplementary table S1), recording the number of male competitors and females visiting each 79 nest (i.e. nest composition), assessing dominant males courtship, nest defense against male 80 competitors and spawning disruptions. We counted the number of pair-spawns (involving one 81 dominant male with a female) and sneak-spawns (involving accessory males). To assess male 82 fertilization success we genotyped fin clips and embryos from nests exposed to Ambient and High-83 CO₂ levels for paternity tests. Finally, to examine potential population differences in fish response 84 we compared nest composition, mating behaviour, and spawning at nesting sites exposed to 85 present-day Ambient-CO₂ conditions at Vulcano Island with those at Cala Isola, more than 150 km 86 away (see Methods).

Given that ocean acidification may affect reproduction, cause sensorial disruptions and impair
decision-making in fish, our hypotheses were that elevated CO₂ levels would affect ocellated
wrasse reproductive behaviour, reducing dominant male pair spawns and their fertilization
success due to increased sperm competition by accessory males.

92 Methods

Carbonate chemistry at study sites. Seawater carbonate chemistry was characterized daily on
several visits at two nesting sites off Vulcano Island in 2012 (n=11) and 2013 (n=12) and at Cala
Isola in 2012 (n=14) (see Electronic Supplementary table S1 for details).

96 A 556 MPS YSI (Yellow Springs, USA) multiparametric probe was used to measure salinity and pH 97 and temperature (°C). The sensor was calibrated using NBS scale standard buffers and then soaked 98 in seawater for one hour. For each site, average pH was calculated from hydrogen ion 99 concentrations before reconverting back to pH values. Water samples for total alkalinity (TA) were 100 filtered through 0.2µm pore size filters, poisoned with 0.05 ml of 50% HgCl₂ to avoid biological 101 alteration, and then stored in the dark at 4° C. Three replicates were analyzed at 25° C using a 102 titration system (Mettler Toledo, Inc.). The pH was measured at 0.02 ml increments of 0.1 N HCl. 103 Total alkalinity was calculated from the Gran function applied to pH variations from 4.2 to 3.0, 104 from the slope of the curve HCl volume versus pH. Total alkalinity measurements were corrected 105 using standards provided by A.G. Dickson (batch 99 and 102). The pCO₂ levels were calculated 106 from pH_{NBS}, TA, temperature and salinity with the free-access CO₂ SYS package [23], using the 107 constants of Roy et al. [24] and Dickson [25].

108

109 Study species and mating behaviour. Symphodus ocellatus is a widespread wrasse in the rocky 110 subtidal of the Mediterranean Sea with an annual breeding season lasting from late April to July 111 [18,26]. Spawning occurs in the nest and involves small females (35-75 mm, Total Length) and 112 three alternative male reproductive types that compete to fertilize the eggs [27]. Fertilization is 113 external. Large, dominant males (81-95 mm, TL) [26] build nests with pieces of algae [28], court 114 females, and provide parental care ensuring oxygenation of the eggs by fanning, and actively 115 defending the nest from egg predators and other competing males. Females are non-territorial 116 and often swim in small groups with other females, do not participate in nest-building or parental 117 care, and during the spawning phase of a nesting cycle they visit several nests to lay a portion of 118 their eggs by brushing their genital papillae against algae. Smaller breeding males, called sneakers 119 (35-60 mm, TL), hover around various nests and try to join the female and dominant male during 120 spawning. Medium sized satellite males (61-80 mm, TL), cooperate with dominant males to reduce 121 sneaker male spawning and they also help court females and sneak spawn, getting a share of

paternity in the nest as a result [21,27]. Throughout the breeding season, each dominant male

123 completes several nesting cycles (each of which involves nest construction, spawning and parental

124 care) [18], lasting on average 8-10 days [26]. Females prefer nests where other females are

present or have recently spawned (i.e., mate-choice coping) [29], and with fewer sneakers present[30].

127

128 Study sites, behavioural and statistical analyses. On 8-12 May 2012 and 7-12 June 2013, we

129 observed fish reproductive behaviour at two sites off Vulcano Island (NE Sicily, Italy), where

130 ocellated wrasse nests were exposed to present-day seawater pCO₂ conditions and those

predicted by the end of this century (High-CO₂ 38°25.184'N, 14°57.696'E; Ambient-CO₂

132 38°25.248'N, 14°57.8533'E) (Electronic Supplementary table S1). The High CO₂ and the Ambient

133 CO₂ nesting sites were at ~450 m and ~800 m distance from the main seeping area, respectively.

134 On 16-20 May 2012, an additional nesting site exposed to ambient CO₂ at Cala Isola (38°12.341'N

13°15.490'E; NW Sicily, Italy), 150 km from Vulcano Island, was investigated to assess inter-

136 population differences in mating behaviour under present-day pCO₂ conditions.

137 Nests of *S. ocellatus* were randomly selected among those in the spawning phase (which occur 138 over 3-4 days) of the nest cycle and filmed in Ambient (n=14) and High-CO₂ (n=18) conditions off 139 Vulcano and in ambient conditions at Cala Isola (n=10). The same nest (and dominant male) was 140 filmed only once, with observations typically occurring on the same days for both Ambient and 141 High CO₂ nests along the Vulcano gradient. The 42 total behavioural observations were collected 142 on different dives over the study period (16 days). All the nests considered were at 3-4 m depth in 143 rocky habitat covered by brown macroalgae. Our behavioural analyses took place when light 144 intensity and spawning activity were highest (i.e., from 10.00 to 16.00 hour). Water visibility 145 (always exceeding 10-15 m) and tidal ranges (between 20 and 40 cm) were similar in the two 146 nesting sites along the gradient off Vulcano island and in the additional nesting site exposed to 147 ambient CO₂ at Cala Isola. Each nest was filmed for 10 minutes using a GoPro 3.0 camera placed on 148 a tripod 1 m away from the nest. Five nests and dominant males from each nesting site at Vulcano 149 Island were marked for subsequent genetic analyses (see below). Details on the standard length, 150 weight, and age (from otoliths) of five dominant males belonging to nests exposed to high CO_2 151 conditions and of eight dominant nesting males from Ambient CO₂ nests are reported in the 152 Electronic Supplementary table S2.

153 To assess the 'nest composition' we subdivided each 10-min video into 15-sec. frames. For 154 each frame we recorded both the maximum number (MaxN) of females, sneakers and satellites 155 and the total number (TN) of females and sneakers participating in reproduction or visiting within 156 1 m of the nest. MaxN is a conservative estimate to avoid repeated measurements of the same 157 individual, by recording the maximum number of individuals appearing at the same time in a single 158 frame. TotN is a cumulative estimate of all individuals recorded within each frame in a 10-min 159 video. In this case the same individual could be repeatedly counted. TotN was not assessed for the 160 satellite males, as these were the same within a single video and therefore expressed as MaxN 161 only. For each nest we recorded the number of spawns by females 10 min⁻¹, the percent of time 162 the dominant nesting male spent courting females 10 min⁻¹, the number of times the dominant 163 male chased sneakers 10 min⁻¹, and the number of dominant male spawn disruption 10 min⁻¹. 164 Exploratory data analysis following Zuur et al. [31] revealed issues of heteroscedasticity of 165 variances, structuring of residuals and/or limited ranges of data values in many of the planned 166 analyses. Analytical models were therefore selected on a test by test basis using inspection of 167 residuals and, where applicable, AIC values as criteria. To control the type I error rate attendant 168 with the number of tests involved in the study, planned contrasts of intercept coefficients were 169 used to compare factor levels where pairwise testing was required, and when appropriate the 170 robustness of influence from marginal p values (0.01<p<0.05) was confirmed by bootstrapping 171 confidence intervals. All tests were conducted using R ver. 3.2.1 [32].

172 Differences in the number of accessory males (MaxN and TotN sneakers; MaxN satellites) and 173 the number of females (MaxN and TotN females) between the two nesting sites (High CO₂ and 174 Ambient CO_2) and between the two different ambient conditions populations were modelled by 175 generalised least squares (GLS) fitting using maximum likelihood. The same approach was used to 176 test effects of nesting site (fixed factor: High CO₂ and Ambient CO₂) and satellite males (fixed 177 factor: satellites present or absent) upon the number of spawns by females 10 min⁻¹, the 178 proportion of male time spent in courtship and the number of chases performed. In all cases F-179 tests with Type III sums of squares were used to generate p values for main effects and 180 interactions. The number of dominant nesting male spawning disruptions was only exceptionally 181 greater than one, and was therefore analysed as a binary response by binomial family GLM with 182 chi-squared likelihood ratio tests used to generate p values.

183 We also recorded the number of spawns involving one dominant male with a female (pair 184 spawns), and the spawns involving both dominant and accessory males (sneak spawns). GLS by

maximum likelihood was again used to determine whether the number of spawns differed
between types (pair and sneak), nesting sites (Ambient and High CO₂) and nests with or without
satellites.

188

Genetic analyses and paternity assignments. For paternity analyses, we focused on the developmental stage most likely to be from the same day as the behavioural observation. Since spawning tends to occur over a few days (3-4 d) and it takes 3-5 days for eggs to hatch [26] depending on seawater temperature, we expected larvae to hatch at the recorded temperature value about 80 hours after spawning. Therefore, we waited 2.5 days (about 60 hours) to sample nests, fertilised eggs and marked dominant males and used only larvae with pigmented eyes (which usually form around 60 hours after fertilization) for subsequent genetic analyses.

196 Specifically, five of the dominant males that had been observed from each nesting site were 197 captured by SCUBA diving. Fin clips were collected and fin fragments were preserved in 80% 198 ethanol for later paternity analyses. Nests were also collected to allow a comparison of the 199 number and size of eggs laid between the two nesting sites (n=200). Individual egg surface (mm²) 200 was measured using digital photography and the open access software ImageJ was used to 201 estimate diameter to the nearest 0.01 mm. Wilcoxon rank sum tests (with continuity correction in 202 the case of egg surface area) were used to determine whether the number of eggs and their 203 surface area differed between the two nesting sites (High CO_2 and Ambient CO_2).

204 A sub-sample of embryos developed to the pigmented eye stage (n=60) was collected from 205 each nest, preserved in 80% ethanol and sent to University of Arizona Genetics Core (Tucson, USA) 206 for genotyping. DNA from 10 dominant nesting males and 585 eggs from 10 nests (n=5 at Ambient 207 and n=5 at High CO₂ conditions) was extracted using magnetic bead mediated robotic extraction 208 (Verde Labs Genomic DNA Extraction Chemistry on a Biosprint96 Extraction Robot). All samples 209 were amplified using six microsatellite loci developed for S. ocellatus (Soc1017, Soc1063, Soc1109, 210 Soc1198, Soc3121, Soc3200), and previously used for paternity assignment in this species [20]. 211 Primer lengths were modified to allow all six loci to be used in combination in a single PCR 212 reaction. DNA was amplified using a DNA Engine Tetrad[®] 2 Thermal Cycler from Biorad set at the 213 following parameters: 94°C (120s); 15 cycles of 94°C (30s), 60-54°C (30s, 60°C on first cycle, 214 decreasing by 0.5°C for each subsequent cycle), 72°C (90s); 23 cycles of 94°C (30s), 54°C (30s), 72°C 215 (90s); 72°C (10 minutes). PCR product was run for fragment analysis on an Applied Biosystem 3730 216 DNA Analyzer, visualized and scored using the standard protocol for Genemarker software from

217 Softgenetics using a newly created bin-set. Peaks were then evaluated and scored visually by two 218 observers blind to sample identity. Paternity was assigned to eggs based on strict exclusion; eggs 219 that had at least one mismatch to the putative father were left unassigned to maintain a 220 conservative estimate of the fertilization success of dominant males (see Alonzo & Heckman [20] 221 for a comparison of different parentage assignment methods using these loci in S. ocellatus). Eggs 222 were included in the analysis only if they could be compared to the putative father at three or 223 more loci (N = 505 of 585 eggs were included in the final analysis; 62 were excluded due to low 224 levels of DNA extracted and poor amplification, and 18 because they could not be compared to 225 the putative father at three or more loci). We first analysed the paternity data (e.g. the number of 226 eggs assigned to the nesting male versus not assigned to the nesting male) using a logistic 227 regression fit by maximum likelihood with nest as a random effect due to significant 228 overdispersion of the data [33] and CO₂ condition (Ambient versus High) treated as a fixed effect 229 (using glmer from the lme4 package in R) [32,34]. Given the small sample size (n=5 nests per 230 condition), to reduce the possibility of a type I error, we also fit the model using a bootstrap 231 method following Warton & Hui [33].

232

233 **Results**

234 Nest composition, nest attractiveness and egg characteristics at different CO2 levels. The 235 maximum number (MaxN) of satellites, sneakers and females visiting the nests at Vulcano Island 236 showed no differences between nesting sites exposed to different CO₂ levels (table 1; Electronic 237 Supplementary figure S1a). Similarly, the total number (TotN) of sneakers and the total number of 238 females recorded in 10-min videos did not differ between nests exposed to end-of-century and 239 ambient CO₂ (table 1; Electronic Supplementary figure S1b). Female spawning rate was also 240 unaffected by CO₂ levels (Electronic Supplementary figure S2 and table S3). Thus there were no 241 differences in nest attractiveness to ocellated wrasse females under different CO₂ levels (table 1; 242 Electronic Supplementary figure S2, Electronic Supplementary table S3). No differences in any of 243 these variables were recorded at nesting sites exposed to present-day Ambient-CO₂ conditions at 244 Vulcano Island with those at Cala Isola (Electronic Supplementary table S4). Also, there were no 245 differences in the size or number of eggs laid between nesting sites (Table 1; Electronic 246 Supplementary figure S3 and figure S4), as the Ambient-CO₂ nests had an average of 17833 (±3275, 247 S.E., n= 5) eggs and the High-CO₂ nests had 18621 (±3156, S.E., n= 5) eggs.

248

249 Behavioural interactions of the dominant nesting male. The percent time that dominant males 250 spent courting females did not differ significantly between High-CO₂ (15.8% ±2.1; S.E., n= 18) and 251 Ambient sites (21.1% ±3.3; S.E., n= 14, table 1; figure 2a). The number of times that dominant 252 males behaved aggressively towards accessory males was also similar between nesting sites (table 253 1; figure 2b) with 12.6 (±3.9 S.E., n= 12) versus 16.6 (±3.1 S.E., n= 7) chasing events 10 min⁻¹ at 254 High-CO₂ compared with Ambient-CO₂ nests respectively. The disruption of dominant male 255 spawning did not differ significantly between nesting sites (table 1; Electronic Supplementary figure S5). Similarly, no population differences in the mating behaviour of the dominant males 256 257 were recorded between nests exposed to present-day Ambient-CO₂ conditions at Vulcano Island 258 and Cala Isola (table 1).

259

260 Mating competition and dominant male paternity. Along the Vulcano CO₂ gradient, we found 261 that the number of pair spawns (a spawning event involving only a female and a dominant male) 262 were significantly lower at High-CO₂ (SpxSI interaction term, Table 1; figure 3; Electronic 263 Supplementary table S5), whilst sneak spawns (a spawning event involving both dominant and 264 accessory males) did not differ significantly between sites (SpxSI interaction, table 1; figure 3; 265 Electronic Supplementary table S₅). Spawning by satellite males accounted for the 12.5% and 17% 266 of the total sneak spawns in the High-CO₂ (n=56) and the Ambient (n=47) nesting sites 267 respectively, with the remainder involving sneaker males. There were no differences in the number of pair versus sneak spawns at High CO₂ nests (Contrast: pair = sneak, P =0.777; Electronic 268 269 Supplementary table S5), while – as expected based on earlier studies of this species [20] – the 270 number of pair spawns was higher than that of sneak spawns in the Ambient nests (contrast: pair 271 > sneak, P =0.002; Electronic Supplementary Table S5) (figure 3). Such differences in pair and 272 sneak spawning were not recorded between nests exposed to Ambient-CO₂ levels at Vulcano 273 Island and Cala Isola (Electronic Supplementary table S4).

Genetic analyses revealed that all of the dominant males experienced extra-pair paternity;
they sired 58.2% of the embryos (39.6-80.0%; n = 5) at High CO₂ nests, and 38.3% of the embryos
(19.6-50.9%; n = 5) at nests exposed to ambient conditions (Electronic Supplementary figure S6).
The logistic regression fit using maximum likelihood to predict the probability an egg is sired by the
nesting male found a significant effect of nest condition on nesting male paternity (z value -2.248,
P= 0.0245). However the pattern of increased siring success of the dominant males at higher CO₂

levels was not statistically significant after using a bootstrapping method to address the potential
 for Type I errors, given the small sample size (bootstrap P value = 0.07).

282

283 **Discussion**

284 Here we show that dominant nesting males had approximately one third the number of pair 285 spawns at nests exposed to elevated CO₂ compared with nests at ambient CO₂ levels, 286 demonstrating a clear effect of rising CO₂ on the ocellated wrasse reproductive behaviour. 287 However, other dominant males' behaviours like female courtship and nest defence from intra-288 specific (i.e., inter-male) competition were unaffected under elevated CO₂ conditions. Although 289 ocean acidification increased the risk of sperm competition in the ocellated wrasse, sneaker males 290 were unable to benefit from impaired dominant male mating as revealed by paternity tests, 291 indicating that there was probably no net loss of reproductive success for dominant nesting males. 292 Investigations into the effects of rising CO_2 effects on fish reproduction are in their infancy; the 293 few studies to date showed mixed responses when simulating ocean acidification in aquaria 294 [2,14,15]. Laboratory studies of the effects of rising pCO₂ levels in aquaria are augmented with 295 work at natural analogues for ocean acidification as they improve ecological realism, although it is 296 more difficult to determine dose-response relationships than in experiments that control 297 variations in carbonate chemistry and great care is needed to consider the possible effects of 298 confounding factors [35]. We used sites that were as similar as possible chemically (e.g. salinity, 299 alkalinity) and physically (substratum, wave exposure, currents, light levels, tidal range, depth, 300 temperature) with the one key difference being pCO₂ levels; as such this is the first study to 301 document effects of ocean acidification on fish mating behaviour in the wild.

302 We found no differences in nest attractiveness to females at different CO₂ levels [36]. Female 303 Symphodus ocellatus base their spawning decisions primarily on the absence of sneakers at the 304 nest, high mating activity and the mate choice of other females [36], rather than on dominant 305 male phenotype (size and colour patterns) or behaviour (ability in nest defence from intra-specific 306 competitors or courtship) [20,36]. A high number of females at a nest can in turn make it more 307 attractive to sneakers, therefore increasing the risk of sperm competition and affecting the 308 reproductive success of the dominant male [36]. We found no differences in the size or number of 309 eggs laid between nesting sites. Laboratory work on the reproductive performance of the 310 cinnamon anemone fish revealed increased egg production at elevated CO_2 – which is thought to 311 be due to stimulation of the hypothalamo-pituitary-gonadal (HPG) axis [3] - with no differences in

egg size at ambient (420 µatm) and end-of-century CO₂ (1032 µatm) levels, but a significant
decrease in egg size at moderate CO₂ (584 µatm) level, suggesting a CO₂ dose dependent
investment strategy of females [2]. The effect appears to be species-specific, since, as in our study,
in the three-spined stickleback *Gasterosteus aculeatus* egg size did not differ when exposed to
ambient and end-of-century CO₂ levels [14].

317 Dominant males were actively engaged in female courtship and in aggression against the 318 sneakers and satellite males at both nesting sites, however we found that the levels of seawater 319 pCO₂ expected by the end of this century did not significantly affect these dominant male 320 behaviours, which are key in ensuring its spawning success [18]. Occasionally dominant male 321 spawning was disrupted when a sneaker male caused the female to leave a nest without laying 322 eggs, and sometimes accessory males were successful in spawning alone with a female. However 323 the frequency of spawning disruptions of the dominant male did not differ between nesting sites. 324 In laboratory tests, four-day exposure to elevated CO₂ can affect both juvenile and adult fish 325 behaviour [4,16,37] and field work off Papua New Guinea has shown that chronic ocean 326 acidification disrupts the behaviour of sedentary fish at CO₂ seeps, such as those that hide in 327 anemones or coral colonies [13]. As reported in studies elsewhere, we observed that dominant 328 nesting male ocellated wrasse stayed within a small home range (10s of meters) and attended 329 individual nests for periods of 8-10 days [18] during the breeding season. Females – often 330 travelling in small groups – and sneaker males were more mobile (100s of meters). Thus the 331 dominant males near to CO₂ seeps experienced chronic exposure to ocean acidification whereas 332 more mobile males and females will have experienced acute effects. High CO₂ levels affect 333 behavioural lateralization, visual assessment and cognition in several fish species [8,9,37-39]. 334 Work on escape behaviour has shown that ocean acidification affects decision-making time [8,9] 335 when fish try to escape predation [38]. Therefore, neuro-sensory impairment may be important 336 when dominant male ocellated wrasse have to make a quick decision about either to spawn or to 337 chase away sexual competitors, since these behaviours are key in ensuring the fertilization success 338 of dominant males [18]. Consistently, dominant nesting males had lower pair spawns at nests 339 exposed to elevated than ambient CO_2 levels, but sneak spawning was not affected. Although 340 ocellated wrasse sneaker males have a higher gonadal investment and release more sperm per spawn than dominant or satellites males [19], genetic analyses revealed a trend towards increased 341 342 dominant male paternity at elevated CO₂ levels. The fact that a near significant trend was detected 343 for increased dominant male paternity at the high CO₂, despite the low numbers of nests available

for study, suggests that there may be an important biological effect in evidence. Given the
previously observed variation among nests in both sperm competition and dominant nesting male
paternity [20], it is possible that larger sample sizes would pin down these differences in
reproductive success. In addition, it is also plausible that ocean acidification differentially affects
sperm mobility in the three types of male wrasse; a number of studies have shown that ocean
acidification affects sperm in some invertebrates [40,41] although no impact has yet been found in
fish [42].

351

In summary, our observations are the first to document effects of rising seawater CO₂

353 concentrations on the sexual behaviour of fish in the wild. We expected that increased sperm

354 competition due to ocean acidification would reduce dominant male reproductive success.

355 However, genetic paternity tests showed a 20% increase in their paternity at high CO₂ sites,

356 suggesting that sneaker and satellite mates were at a disadvantage. These results raise questions

around potential effects of increasing CO₂ levels on gametogenesis and sperm competition, on

358 embryonic development and on survival of different males' descendants. Work on the effects of

359 ocean acidification on the reproductive fitness of marine fish must be a priority given their

360 importance for ecosystem stability and for food security and livelihoods in coastal communities.

361

362 **References**

- Wittmann AC, Portner H-O. 2013 Sensitivities of extant animal taxa to ocean acidification. *Nat. Clim. Change* 3, 995–1001.
- Miller GM, Watson S-A, McCormick MI, Munday PL. 2013 Increased CO₂ stimulates
 reproduction in a coral reef fish. *Glob. Change Biol.* **19**(10), 3037–3045.
- 367 3. Heuer RM, Grosell M. 2014 Physiological impacts of elevated carbon dioxide and ocean
 acidification on fish. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* **307**, 1061–1084.
- Munday PL, Dixson DL, Donelson JM, Jones GP, Pratchett MS, Devitsina GV, Døving KB. 2009
 Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. *Proc. Natl. Acad. Sci. USA* 106, 1848–1852.
- Munday PL, Dixson DL, McCormick MI, Meekan M, Ferrari MC, Chivers DP. 2010
 Replenishment of fish populations is threatened by ocean acidification. *Proc. Natl. Acad. Sci. USA* 107, 12930–12934.

Bixson DL, Munday PL, Jones GP. 2010 Ocean acidification disrupts the innate ability of fish to
 detect predator olfactory cues. *Ecol. Lett.* 13, 68–75.

- Simpson SD, Munday PL, Wittenrich ML, Manassa R, Dixson DL, Gagliano M, Yan HY. 2011
 Ocean acidification erodes crucial auditory behaviour in a marine fish. *Biol. Lett.* 7, 917–920
 (2011).
- B. Domenici P, Allan BJM, McCormick MI, Munday PL. 2012 Elevated carbon dioxide affects
 behavioural lateralization in a coral reef fish. *Biol. Lett.* 8, 78–81.
- Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson SA, Munday PL 2012
 Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter
 function. *Nature Clim. Change* 2, 201–204.
- 385 10. Sunday JM, Calosi P, Dupont S, Munday PL, Stillman JH, Reusch TBH. 2014 Evolution in an
 acidifying ocean. *Trends Ecol. Evol.* 29(2), 117–125.
- 387 11. Allan BJM, Miller GM, McCormick MI, Domenici P, Munday PL. 2014 Parental effects improve
 388 escape performance of juvenile reef fish in a high-CO₂ world. *Proc. R. Soc. B.* 281, 20132179.
- Welch MJ, Watson S-A, Welsh JQ, McCormick MI, Munday PL. 2014 Effects of elevated CO₂ on
 fish behaviour undiminished by transgenerational acclimation. *Nature Clim. Change* 4(12),
 1086–1089.
- 392 13. Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE 2014 Behavioural impairment in reef
 393 fishes caused by ocean acidification at CO₂ seeps. *Nature Clim. Change* 4, 487–492.
- 394 14. Schade FM, Clemmesen C, Wegner KM. 2014 Within- and transgenerational effects of ocean
 395 acidification on life history of marine three-spined stickleback (*Gasterosteus aculeatus*) Mar.
 396 Biol. 161(7), 1667–1676.
- 397 15. Forsgren E, Dupont S, Jutfelt F, Amundsen T. 2013 Elevated CO₂ affects embryonic
 398 development and larval phototaxis in a temperate marine fish. *Ecol. Evol.* 3(11), 3637–3646.
- 399 16. Nagerlkerken I, Munday PL. 2016 Animal behaviour shapes the ecological effects of ocean
 400 acidification and warming: moving from individual to community-level responses. *Glob.*401 *Change Biol.* 22(3), 974–989.
- 402 17. Boatta F, D'Alessandro W, Gagliano AL, Liotta M, Milazzo M, Rodolfo-Metalpa R, Hall-Spencer
 403 JM, Parello F. 2013 Geochemical survey of Levante Bay, Vulcano Island (Italy) and its suitability
 404 as a natural laboratory for ocean acidification studies. *Mar. Poll. Bul.* **73**, 485-494.
- 405 18. Taborsky M, Hudde B, Wirtz P. 1987 Reproductive behavior and ecology of *Symphodus*406 (*Crenilabrus*) ocellatus, a European Wrasse with 4 types of male behavior. *Behaviour* 102, 82407 118.
- 408
 409 19. Alonzo SH, Warner RR. 2000 Allocation to mate guarding or increased sperm competition in a
 409 Mediterranean wrasse. *Am. Nat.* 156, 266–275.
- 20. Alonzo SH, Heckman KL. 2010 The unexpected but understandable dynamics of mating,
 paternity and paternal care in the ocellated wrasse. *Proc. R. Soc. B.* 277, 115–122.
- 412 21. Stiver KA, Alonzo SH 2013 Does the risk of sperm competition help explain cooperation
 413 between reproductive competitors? A study in the ocellated wrasse (*Symphodus ocellatus*).
 414 Am. Nat. 181(3), 357–368.
- 415 22. Meinshausen M, *et al.* 2011 The RCP greenhouse gas concentrations and their extensions from
 416 1765 to 2300. *Clim. Change* 109, 213–241.

- 417 23. Pierrot DE, Wallace DWR. 2006 MS Excel Program Developed for CO₂ System Calculations.
 418 ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National
- 419 Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee.
- 420 24. Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ, Campbell DM.
 421 1993 The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and
 422 temperatures 0 to 45° C. *Mar. Chem.* 4, 249–267.
- 423 25. Dickson AG. 1990 Standard potential of the reaction: AgCl(s) + 1/2 H₂(g) = Ag(s) + HCl(aq), and
 424 the standard acidity constant of the ion HSO₄⁻ in synthetic seawater from 273.15 to 318.15 K. J.
 425 *Chem. Thermodyn.* 22, 113–127.
- 426 26. Lejeune P. 1985 Le comportement social des Labride's mediterrane'ens: etude ecoethologique
 427 des comportements reproducteur et sociaux des Labridae mediterraneens des genres
 428 Symphodus (Rafinesque 1810) et Coris (Lacepede 1802). Cah. Ethol. Appl. 5, 1–208.
- 429 27. Warner RR, Lejeune P. 1985 Sex change limited by parental care: a test using four
 430 Mediterranean labrid fishes, genus *Symphodus. Mar. Biol.* 87, 89–99.
- 431 28. Sinopoli M, Cattano C, Chemello R, Timpanaro A, Timpanaro V, Gristina M. 2015 Nest building
 432 in a Mediterranean wrasse (*Symphodus ocellatus*): are the algae used randomly chosen or
 433 actively selected? *Mar. Ecol.* 36(4), 942–949.
- 434 29. Alonzo SH. 2008 Female mate choice copying affects sexual selection in wild populations of the
 435 ocellated wrasse. *Anim. Behav.* **75**(5), 1715–1723.
- 436 30. Alonzo SH, Warner RR. 2000 Dynamic games and field experiments examining intra- and inter437 sexual conflict: explaining counter-intuitive mating behavior in a Mediterranean wrasse,
 438 Symphodus ocellatus. Behav. Ecol. 11(1), 56–70.
- 439 31. Zuur AF, Ieno EN, Elphick CS. 2010 A protocol for data exploration to avoid common statistical
 440 problems. *Methods Ecol. Evol.* 1, 3–14.
- 32. R Core Team. 2016 R: A language and environment for statistical computing. R Foundation for
 Statistical Computing, Vienna, Austria. URL <u>http://www.R-project.org/</u>.
- 33. Warton DI, Hui FKC. 2011 The arcsine is asinine: the analysis of proportions in ecology. *Ecology*92(1), 3–10
- 34. Bates D, Maechler M, Bolker B, Walker S. 2015 Fitting Linear Mixed-Effects Models Using Ime4.
 J. Stat. Softw. 67(1), 1–48.
- 447 35. Cornwall CE, Hurd, CL. 2016 Experimental design in ocean acidification research: problems and
 448 solutions. *ICES J. Mar. Sci.* **73**(3), 572–581.
- 36. Alonzo SH. 2004 Uncertainty in territory quality affects the benefits of usurpation in a
 Mediterranean wrasse. *Behav. Ecol.* 15(2), 278–285.
- 451 37. Jutfelt F, Bresolin de Souza K, Vuylsteke A, Sturve J. 2013 Behavioural disturbances in a
 452 temperate fish exposed to sustained high-CO₂ levels. *PLoS ONE* 8(6), e65825.
- 38. Chivers DP, McCormick MI, Nilsson GE, Munday PL, Watson SA, Meekan MG, Mitchell MD,
 Corkill KC, Ferrari MC. 2014 Impaired learning of predators and lower prey survival under
 elevated CO₂: a consequence of neurotransmitter interference. *Glob. Change Biol.* 20(2), 515–
 522.

457 458 459	 Chung W-S, Marshall NJ, Watson S-A, Munday PL, Nilsson GE. 2014 Ocean acidification slows retinal function in a damselfish through interference with GABA_A receptors. J. Exp. Biol. 217, 323–326.
460 461	40. Havenhand JN, Schlegel P. 2009 Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster <i>Crassostrea gigas</i> . <i>Biogeosciences</i> 6 , 3009–3015.
462 463	 Caldwell GS, Fitzer S, Gillespie CS, Pickavance G, Turnbull E, Bentley MG. 2011 Ocean acidification takes sperm back in time. <i>Invert. Reprod. Dev.</i> 55, 217–221.
464 465	 Frommel AY, Stiebens V, Clemmesen C, Havenhand J. 2010 Effect of ocean acidification on marine fish sperm (Baltic cod: <i>Gadus morhua</i>). <i>Biogeosciences</i> 7, 5859–5872.
466	
467	Ethics.
468	All experiments were carried out in accordance with institutional and national (law 116/1992)
469	guidelines concerning the use of animals in research.
470	
471	Data accessibility.
472	All data and supplementary material are deposited in Dryad digital repository
473	(doi:10.5061/dryad.3vk01).
474	
475	Author's contributions.
476	MM, CC, and JMH-S conceived the project; MM, CC, DS, MG, and MS collected the data; RRM
477	performed the carbonate chemistry analyses; MM, CC, SHA, AF and KAS analysed the data; MM
478	and CC wrote the initial draft of the manuscript; all authors contributed to the final version. The
479	order of authors from 3 to 9 was determined alphabetically.
480	
481	Competing financial interests.
482	The authors declare no competing financial interests.
483	
484	Funding.
485	This work was funded by "Osservatorio Regionale della Biodiversità Siciliana" project
486	(R4D14+P5R3IAM2) and contributed to the EU 'Mediterranean Sea Acidification under a changing
487	climate' project (MedSeA; grant agreement 265103).
488	
489	Acknowledgements.

- 490 We thank Giuseppe Bruno and Gabriele Turco for helping in the field, Maria Vassallo for helping
- 491 with laboratory analyses, and Dr Pietro Rizzo (CNR-IAMC) for otolith analyses.

Figure captions

- **Figure 1.** A dominant male ocellated wrasse ready to spawn with the female
- 497 in a nest off Vulcano Island.

- **Figure 2.** Mating behaviours of dominant males at the sites with different CO₂ levels. (a) Average
- 500 time spent (%) by the dominant male in courting females and (b) average number of dominant
- 501 male nest defence (chasing) events 10 min⁻¹. In both cases there are no differences between High

 \quad CO_2 vs Ambient nesting sites. Error bars \pm 1 Standard Error.

- **Figure 3.** Number of dominant male spawns (pair spawns) and sneak spawns at High and Ambient 505 CO₂ nests. Means with different letters (a, b) were significantly different in the pair-wise planned
- 506 contrasts (see also Table 1). Error bars \pm 1 Standard Error.

Table 1. Summary of statistical analysis of nest composition and success, reproductive output, mating behaviour and spawning of ocellated wrasse (see methods for test details)

	df	t	Р
Satellites	1,31	0.820	0.418
Sneakers	1,31	1.568	0.125
Females	1,31	0.885	0.488
Sneakers	1.31	0.771	0.445
Females	1,31	0.778	0.441
	df	F	
.)			p
-	-		0.002
-)
Satellite abse	ent (<i>t= 4.10</i>)7, P< 0.001)	
	df	W	р
	1,8	11	0.841
	1,398	21066	0.352
	df	F	р
			0.187
S	1,15	0.479	0.499
		•	<u>р</u>
			0.459
			p
Dair /t- 2 202	•		0.004
•			
CO ₂ conditions (i.e ntary Tables for fu	., High CO2 Ill analyses	vs Ambient and for inte	r-
	Sneakers Females Sneakers Females) Satellite pres Satellite abse Satellite abse	Satellites 1,31 Sneakers 1,31 Females 1,31 Sneakers 1,31 Sneakers 1,31 Females 1,31 females 1,31 females 1,31 females 1,31 females 1,31 females 1,31 females 1,28 Satellite present (t = 4.10 df 1,28 ff 1,29 ff	Satellites 1,31 0.820 Sneakers 1,31 1.568 Females 1,31 0.885 Sneakers 1,31 0.771 Females 1,31 0.771 Females 1,31 0.778 df F 1,28 12.041 Satellite present (t= 1.259, P= 0.218 Satellite absent (t= 4.107, P<0.001)

Significant results are in bold.