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A Spiking Self-Organising Map Combining STDP,
Oscillations and Continuous Learning

Timothy Rumbell, Susan L. Denham and Thomas Wennekers

Abstract—The self-organising map (SOM) is a neural network
algorithm to create topographically ordered spatial represen-
tations of an input data set using unsupervised learning. The
SOM algorithm is inspired by the feature maps found in mam-
malian cortices but lacks some important functional properties
of its biological equivalents. Neurons have no direct access to
global information, transmit information through spikes and
may be using phasic coding of spike times within synchronised
oscillations, receive continuous input from the environment, do
not necessarily alter network properties such as learning rate
and lateral connectivity throughout training, and learn through
relative timing of action potentials across a synaptic connection.
In this paper, a network of integrate-and-fire neurons is presented
that incorporates solutions to each of these issues through
the neuron model and network structure. Results of simulated
experiments assessing map formation using artificial data as
well as the Iris and Wisconsin Breast Cancer data sets show
that this novel implementation maintains fundamental properties
of the conventional SOM, thereby representing a significant
step towards further understanding of the self-organisational
properties of the brain while providing an additional method
for implementing SOMs that can be utilised for future modelling
in software or special purpose spiking neuron hardware.

Index Terms—Artificial neural networks, Neural engineering,
Self organizing feature maps, Unsupervised learning.

I. INTRODUCTION

TOPOLOGICALLY ordered spatial representations of fea-
tures can be found in various sensory cortical areas [1],

[2], such as ocular dominance bands [3], [4] and orientation
maps [5], [6] in cat and primate primary visual cortex, a
tonotopic map in the auditory cortex in cats [7], a gustotopic
map in the primary taste cortex [8], an odor relationship
representation in the olfactory bulb [9], a whisker map in
the barrel cortex in rodents [10], [11], and a somatosensory
map in the somatosensory cortex of primates [12]. Through-
out development these cortical feature maps accrue several
distinctive properties, such as disruptions that reflect actual
discontinuities in the sensory periphery and disproportionate
representation of early-developing portions of the receptor
sheet [1]. The relationship between properties of the sensory
input is reflected in the relationship between physical areas of
cortex that are tuned to represent those properties [13], and the
physical substrate of representation is capable of reorganising
to a change in input properties [14], [15].
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The self-organising map (SOM) is a neural network al-
gorithm inspired by the organisational structure of feature
maps in the brain [16]. Throughout learning a SOM gradually
maps statistical correlations present in a set of data onto
a simple, low-dimensional, topological output representation.
The discovery of features and feature relations in a complex
space is also a goal of principal component analysis [17],
and the combination of winner-takes-all competition and a
neighbourhood function for learning allows generated rep-
resentations to be sparse, orthogonalised, and analogous to
the representations developed by clustering algorithms [18].
Learning in the SOM is unsupervised, making it useful in
a variety of situations and easily modified to suit a variety
of purposes (for a review of SOM applications, see [16], for
recent examples of SOM modifications, see [19], [20]).

However, the SOM algorithm in its conventional form
differs from the methods of learning and information coding
present in cortical feature maps in several functionally im-
portant ways: biological neurons do not have direct access to
global information, such as the distance of their weights from
the current input data point relative to all other neurons in
the layer, or the actual values of the current input data point,
towards which their weights should be moved; information is
transmitted in a sequence of post-synaptic potentials, often
synchronised within and between layers [21], with coding
of information in relative firing times contributing to rapid
hierarchical processing abilities [22]–[24]; input enters the
sensory periphery continuously, so must be converted from
this stream into spike sequences; learning can be ongoing [25],
without necessarily resorting to reductions in learning rate
and neighbourhood width at prescribed intervals throughout
training. The current work presents a series of modifications
to the original SOM that addresses these issues while retaining
functionality, thereby contributing towards understanding of
the self-organisational properties of the brain while providing a
SOM implementation that can be utilised for future modelling
in software or special purpose spiking neuron hardware.

Temporal coding can be incorporated into the SOM by
inserting spiking neurons in place of neurons that make
weight comparisons or communicate through time-continuous
gradual activity values. An influential model [26] consists
of two layers of integrate-and-fire neurons. The first layer
encodes input in the firing times of neurons in an array that
collectively represent a real value. The second layer represents
the SOM: the best matching unit is determined locally through
integration of the input spikes; the neighbourhood function
consists of local interactions through excitatory and inhibitory
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connections. The network self-organises in an unsupervised
manner according to a learning rule based on spike-timing,
but makes use of a global reference time to establish weight
adjustments. The reliance on globally available information
makes the rule unsuitable for the current purpose. Additionally,
the network is reset after each presentation of an input datum
as it is unable to handle continuously presented input without
this mechanism. Representative mappings of one- and two-
dimensional input data are reported as a result suggesting that
important functional properties of the SOM are present.

The network presented and analysed in sections II and III
implements the principles of the SOM algorithm in a network
of spiking neurons. Several features of the model are based in
part on the model detailed above [26]. This spiking SOM can
act as a base for future work, introducing additional biological
constraints to replicate properties of the cortex. It can be used
to help realise hardware and other technical applications of
the SOM algorithm that can benefit from the use of temporal
coding. Section II describes the model, explaining the com-
bination of mechanisms used, and the method of evaluating
output quality. Section III presents the results of testing the
model, including extensive parameter analyses, demonstration
of key features of the model and application to categorisation
tasks. Finally, section IV summarises the work, discussing the
current model in terms of its place within the field relative to
existing models and its limitations.

II. METHODS

The model described in this section is a two layer network
of integrate-and-fire neurons similar to the model proposed in
[26]. In both models, firing in the first layer encodes an actual
data point as a temporal sequence of spikes. Neurons in the
second layer respond as a result of this firing, and one of them
will win the competition, i.e., fire first. Further firing in the
second layer is influenced by lateral connections, representing
the neighbourhood. Neurons physically close to the winning
unit fire sooner due to stronger excitatory lateral influence, and
neurons further from the winning unit fire later due to weaker
excitatory or inhibitory lateral influence.

The current model differs from that of [26] by incor-
porating realistic post-synaptic potentials, spike-timing de-
pendent plasticity, inhibitory control of the input layer to
generate oscillatory behaviour (facilitating continuous input
presentation through temporal segmentation), while allowing
for continuous, on-going learning and stable neighbourhood
size. The mechanisms controlling each of these aspects of the
network will be detailed in this section. Parameters for the
equations introduced below are listed in table I, in section III.

Simulations were conducted using custom made C software.

A. Neuron Model

Leaky integrate-and-fire neurons were used for all neurons
in the network, modelled by (1):

τm
dV

dt
= I(t) − V + gη(t),

if V >= θ then spike and reset V = 0 (1)

Each neuron has a membrane potential V that increases by
integrating current input I(t), and ‘leaks’ towards a resting
potential of 0 when there is no input from its afferent synapses.
The membrane potential time constant, τm, is set to 1ms for
all neurons in the model, except uInh, in which τm =0.5ms.
A spike is generated when a neuron’s membrane potential
reaches a firing threshold θ, which varies by layer (see section
II-C). Neurons are also subject to a Gaussian white noise
process η, which is scaled by a factor g; g = 0 (i.e. no noise
injection) for the majority of testing, but the robustness of
network output to noise is tested by varying g in section III.

All connections between neurons are modelled synapses
with weight wij , which transmit post-synaptic potentials
(PSPs) to the post-synaptic neuron when a spike is generated
in the pre-synaptic neuron. PSPs are modelled as α-functions,
using (2) and (3):

τr
ds1

dt
= (s− s1) (2)

τf
ds2

dt
= (s1 − s2) (3)

where s is a binary value representing instantaneous presence
or absence of a presynaptic spike, s1 is an internal state
variable, s2 is the α-function output, and τr and τf are time
constants for the rise and fall duration of the response. Time
constants are set independently for each layer (see table I), but
the ratio of τr:τf is always set at 1:5.

Input current to a neuron at time t, I(t), is calculated by

I(t) =
∑
j

wjs2j(t) (4)

where wj represents the connection weight (or synaptic effi-
cacy) between neuron j (presynaptic) and the current neuron
(postsynaptic), and s2j(t) represents the current α-function
output from neuron j.

B. Learning

The learning rule used in [26] makes use of some artificial
features. Neurons have access to a global time stamp, which
allows the gap between the firing time of the best matching
unit and the firing time of the current neuron to be calculated.
Also, the actual input value is compared with the current
synaptic weight to determine the weight change, meaning that
the synapse has knowledge of the input patterns. Replacing
this learning rule with a standard spike-timing dependent
plasticity (STDP) rule removes these issues, providing a basis
for learning that is more biologically plausible [27], and more
robust due to reliance only on local information to which each
neuron already has access.

STDP [28] provides a function for long-term potentia-
tion (LTP) or depression (LTD) of synapses based on the
time difference ∆t between a single pair of pre- and post-
synaptic spikes, in neurons i and j respectively, according to
wij → wij(t) + f(∆t). A linear multiplicative rule for LTD
and exponential multiplicative rule for LTP are used, according
to [29]:
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(a) Spiking SOM network structure

(b) PSP time courses for inhibitory circuit

Fig. 1. (a) Spiking SOM network structure: an actual input value I is encoded
into spikes times by nodes in layer u; the inhibitory unit causes oscillations,
allowing continuous input to be presented to u (see section II-C1 for details);
feedforward connections from u to v drive firing in v; early firing in v
determines the location of output activity in v through lateral (neighbourhood)
connections (see section II-C2 for details). (b) shows the time course of the
post-synaptic potential from both of the u to Inh synapses (inhibitory is
the lower dotted line, excitatory is the upper dotted line), together with the
combined effect on the membrane potential of Inhu (solid line)

f(∆t) =

{
exp−wijA+(1− 1

τ+
)∆t if ∆t > 0,

−wijA−(1− 1
τ−

)∆t if ∆t ≤ 0.
(5)

A+ and A− are both positive and determine the maximum
amount of synaptic strengthening and weakening that can oc-
cur, respectively. τ+ and τ− are time constants determining the
range of time in which synaptic strengthening and weakening
will occur, respectively. Weights are bounded between 0 and
wmax. The specific values these five variables are set to,
along with the motivation for differing forms of the rules for
LTD and LTP, are discussed in section III-B, which details an
extensive parameter search conducted to optimise learning.

C. Network Structure

The spiking SOM network structure is shown schematically
in Fig. 1. Conventional instantiations of the SOM receive
input (numerical values for each dimension in the input data
set) directly into the SOM neurons. In the spiking version
presented here these values (represented by node I) feed
into a bank of neurons within an intermediate input layer, u.
The actual input values are converted into a temporal spike
sequence within each bank through the use of an inhibitory
mechanism, described in section II-C1. This spike sequence
then drives the SOM layer, v, through all-to-all feedforward
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(a) Translation of tuning curves into activation levels
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(b) Translation of activation levels into spike times

Fig. 2. Generation of a temporal sequence from a value in an input dimension
and a bank of neurons tuned to points within that dimension. (a) shows the
generation of an activation value for each neuron (ui) from within the bank
of input neurons representing input dimension (In). An example input value,
at arrow I , of 0.55 is shown by the vertical dotted line. Activation values are
established by the vertical point at which this dotted line crosses the tuning
curve for a (ui) neuron. Example tuning curves are shown for neurons 2 and
8, tuned to values of 0.15 and 0.75 respectively. The vertical locations of
the horizontal lines from this curve then represent the activation levels. (b)
demonstrates the type of output firing sequence that results. The height of the
bars shown next to each ui represents the activation level generated from the
intersection of a given input value and the neuron’s tuning curve.

synaptic connections. All-to-all lateral synaptic connections in
v implement the neighbourhood function.

1) Input encoding within oscillations: Input to this model is
in the form of an m-dimensional vector of real numbers; each
dimension In of this vector needs to be encoded in the firing
of neurons in layer u. This can be achieved by representing
each In with a bank of neurons un from layer u. Each neuron
ui in that bank is tuned around a point from within the range
of values that In can take [30]. A Gaussian function is used
such that the closer the actual value In is to the tuned value
of ui, the higher the activation to ui, as shown in Fig. 2. The
use of integrate-and-fire neurons means that ui with higher
activation levels will reach threshold earlier and fire faster
than ui with low activation levels. This creates a unique yet
structured temporal pattern of spikes for each value of In.

Continuous stimulus presentation is an important feature in
constructing a versatile and general network, allowing network
operation to be ongoing, with no need for discretisation of
temporal aspects, such as automatic resetting of the network
state at each training step. Using the current method of input
encoding, continuous input presentation provides constant
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activation to layer u. This disrupts the temporal representation
of each input pattern: the first ui to fire will begin integrating
input again first after resetting, and fire sooner in the next
cycle of firing. This quickly desynchronises the input neurons
from one another, meaning that information is encoded in the
firing rates rather than the spike times.

This problem is remedied through an inhibitory neuron,
Inhu, which responds to firing in u with a slow inhibitory
PSP fed back to all neurons in u. The inhibition depresses
the membrane potential of all ui after firing, establishing an
approximate baseline for the effects of activation from I , cre-
ating a close to identical repetition of the temporal sequence.
Inhibition in response to excitation creates an oscillatory
behaviour, with a period of firing across the layer followed by
a period of inhibition ahead of the next spikes. The temporal
structure of spiking within each oscillation is maintained,
meaning that information is now encoded in spike times rather
than firing rates. Under the parameters in table I, inhibition in
layer u commences 10-15ms after the start of firing in the
layer, and the inhibitory PSP depresses membrane potentials
sufficiently to prevent firing for approximately 10ms, when
the temporal sequence begins again. This behaviour is shown
between 15 and 30ms in the upper chart in Fig. 3, which
shows the membrane potential time course for a sample ui.
This inhibitory effect could also be reached by a population
of spiking neurons, but is simplified to a single neuron here.
Furthermore, firing in v synchronises with oscillations in u, as
the feedforward connections between the layers drive activity
in v.
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Fig. 3. Time course of membrane potentials in examples of the neurons ui
(top), uInh (middle) and vi (bottom). Firing threshold is the top of the figure
in each case. A membrane potential reaching threshold generates a spike and
the membrane potential is reset, indicated by vertical lines in the figures.
Potentials in layer u neurons increase, generating spikes, at which time the
potential in uInh is depressed temporarily, due to the inhibitory connection
from each ui. The excitatory connections from each ui then result in an
increase in potential in uInh, which fires. This causes a temporary stagnation
of the membrane potential in ui, which would normally increase continuously
due to continuous exposure to the actual input. The membrane potentials of
neurons in layer v begin increasing after the onset of firing in u, some of
which will spike (shown here) if they have strong weights to the early firing
layer u neurons.

The inhibitory neuron receives input from each ui through
both an excitatory and an inhibitory synapse, as shown in
Fig. 1(a). The excitatory synapse has a relatively long time
constant, making it slow, and the inhibitory synapse has a

relatively short time constant, making it fast, as shown in
Fig. 1(b). The overall effect of the pair of connections on the
membrane potential of Inhu is an initial dip, followed by a
recovery into the positive region, shown in the middle chart of
Fig. 3. Combined with a resting potential fractionally below
the firing threshold, the effect is that the membrane potential
of Inhu will stay sub-threshold as long as there are spikes in
u within a reasonably short time of each other, and then reach
threshold when there is a sufficient gap in activity in u. As
a result, membrane potentials in ui are reset when there is a
large gap in firing, or when the pattern ends.

In summary, oscillations are induced in the layer through ex-
citatory followed by inhibitory firing, as in a classic excitatory-
inhibitory feedback loop [31]. Oscillations of this type allow
input neurons to be constantly excited and maintain a reliable
firing pattern for an input. In turn, this allows for a stimulus,
or input datum, to be continuously presented to the network,
resulting in a versatile and reliable input coding mechanism.

2) Neighbourhood function: Self-organisation in the spik-
ing SOM is produced through the use of a lateral interaction
profile (analogous to a neighbourhood function), and STDP
(see section II-B). Learning in the spiking SOM occurs when
an output node fires in response to the input sequence; in
particular, learning of the current input values is strongest
when an output neuron fires soon after the start of the
input sequence, causing greater strengthening of the afferent
synapses from nodes that better represent the actual input
values. Lateral synaptic connections in the output layer v send
excitatory signals to neurons that are within a certain distance
and inhibitory signals to more distant neurons. This lateral
profile encourages neurons within a spatial region to fire and
discourages neurons outside of that region from firing.

A suitable neighbourhood kernel, both in terms of capturing
qualitative properties of cortical structure and functional prop-
erties of the SOM network, is a ‘Mexican-hat’ function [32].
Keith-Magee [33] discussed a lateral connection initialisation
function for a SOM based on a Laplacian kernel

w̄ij = (1 + a)G(||i− j||, r)− aG(||i− j||, br) (6)

in which the lateral connection strength w̄ij between output
neurons at locations i and j in the grid is determined by (6),
where a represents the magnitude of the negative component
of the function, b determines the decay of the negative com-
ponent of the function, r determines the radius of the positive
component of the function, and the function G is a Gaussian
function of the distance between i and j.

The traditional SOM formulation includes a decaying neigh-
bourhood width over time to produce a more finely tuned
output mapping. An appropriate decay function for the width
(r) of this lateral connection kernel is established, through a
series of experiments [33], as a step function with a filter to
smooth the step function over time:

r(t) = X − X −X ′

1 + (
√

2− 1)((T/t)2n)
. (7)

where r(t) gives the value of r to use in (6) at training step
t in the simulation, X and X ′ are values of r at the start and
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end of training respectively, T represents the value of t that
the ‘step’ is centred around, and n is the order, or amount of
smoothing, of the ‘smoothed step’ function.

Compared with classic linear decay schemes and a non-
smoothed step decay, use of (7) results in an accurate output
mapping being reached more quickly [33]. Additionally, iden-
tical values for X and X ′ results in no neighbourhood decay,
facilitating a simple transition between regimes.

The current spiking SOM model uses (6) and (7) to establish
lateral synaptic weights. For a 10×10 grid of neurons in layer
v, parameter searching reveals that setting a, b, X and X ′ all to
3.0 provides a lateral connection profile capable of topological
map formation. Identical values for X and X ′ lead to a
constant r in (6); this was found to be capable of topological
map formation, demonstrated in section III below, although it
is possible that more accurate mappings can be obtained using
a larger X and smaller X ′ [33]. This decision was made to
ensure continuous learning in the output map, identified as
a goal of the current system. Decay of neighbourhood size
throughout training was utilised for results in sections III-F
and III-G, however, and in these cases the step function in 7
was used to modify the lateral weights.

Layer v

30ms0ms

Layer u

LTPLTP LTDLTD

Fig. 4. The mechanics of self-organisation in the spiking SOM. A spike
sequence in a bank of neurons in layer u represents the actual input value,
with early firing neurons being well tuned to the actual value, and late firing
neurons being poorly tuned to the actual value. The black arrow represents
all-to-all feedforward synaptic connections from u to v. At some point in
the firing of the pattern in u, a neuron in v fires, winning the competition
and becoming the best matching unit. Neighbouring neurons in v are caused
to fire within close temporal proximity. The gap between the LTP and LTD
boxes in layer u represents the time at which firing in v occurs relative to
the firing in u. Synapses from any neurons that have fired before that point
are strengthened (the LTP box) and synapses from any neurons that fire after
that point are weakened (the LTD box).

3) Self organisation: The inhibitory current generating an
oscillation, the temporal coding of each input dimension in
spike times, the neighbourhood function, and multiplicative
STDP all contribute to the self-organisation of the output
map. At the start of an oscillation the input neurons have
depressed membrane potentials due to inhibition from the
previous oscillation. Membrane potentials increase through
constant input current and early spikes within an oscillation
indicate neurons that represent the actual input well. Fig. 3
shows the relationship between these membrane potentials,

with a spike in a ui leading to temporary depression of the
membrane potential of the inhibitory neuron. The inhibitory
neuron then fires, temporarily preventing the increase of the
membrane potential of all ui. This first part of the input firing
pattern generates a spike in the output layer from the neuron
best matching the input firing. This is followed by the firing
of nearby output neurons due to lateral activity, all before
firing of neurons in the input layer that are relatively poor
representatives of the actual input. STDP causes the synaptic
connections from neurons in the early part of the input pattern
to be strengthened, and the later part of the input pattern to
be weakened, for output neurons within the neighbourhood of
the winning neuron. This is illustrated schematically in Fig. 4.

A multiplicative form of STDP helps to ensure that weights
reach a stable point roughly proportional to how often an
input neuron fires before an output neuron relative to how
often it fires after an output neuron. Output neurons will
respond for actual input values that are a distance away from
their preferred input value, due to lateral excitation. As such,
weights will be increased at synapses from input neurons that
normally fire after the output neuron in the output neuron’s
preferred input pattern. Weights will be decreased from input
neurons that normally fire before the output neuron in the
output neuron’s preferred input pattern. These changes are
weight dependent, so for a certain weight value a few instances
of depression balance with a greater number of instances
of excitation, and vice versa, creating stability. This stabil-
ity means that there can be precise differentiation between
winning output neurons; adjacent output neurons will prefer
similar input neurons, so stable weights between the maximum
and minimum are important in determining which of several
neurons with similar preferences reaches threshold first.

D. Quality of map formation metric

The ability of a SOM to map an input data set can be
assessed by checking the topographic mapping error of the
output map given the input data. For a map with no mapping
error, the relative distance between any pair of data in the input
space is the same as the relative distance between the locations
activated by that pair of input data in the output map. Metric
Multidimensional Scaling (MDS) can be used to assess this,
according to

EMDS =

N∑
i=1

∑
j<i

(F (i, j)−G(M(i),M(j)))2 (8)

where N is the number of input patterns, F (i, j) represents
the actual dissimilarity of the pair of input patterns i and j
(measured as Euclidean distance), and G(M(i),M(j)) repre-
sents the dissimilarity between the locations in the output map
representing patterns i and j (measured as Euclidean distance),
where M(i) and M(j) are the locations of the winning nodes
in layer v for input patterns i and j respectively [34]. The
value of EMDS represents how well the final network mapping
preserves the topology of the input data set. The most accurate
mapping achieved is one in which relative distances between
patterns in the input space are reflected exactly by relative

5

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2013.2283140

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



distances between neurons representing those patterns in the
output space, resulting in a minimum EMDS value of 0. The
least accurate mapping seen in practice is one in which all
input patterns result in activation of the same location in
the output map; the EMDS value for this situation will vary
depending on the distribution of input patterns. This test is
used in [26] to analyse their spiking SOM, with final EMDS

values of under 20% of the starting value being reported.
Values in section III are reported using mean values for
EMDS , with the final summed EMDS divided by the total
number of pairs of input patterns compared, to give a value
that can be compared regardless of the number of patterns in
the input space.

Alternate methods for analysing the quality of output map-
ping produced by a SOM are available (see [34]–[36] for
reviews). MDS has been selected as an analytical tool ahead
of other techniques for two primary reasons. First, it meets
two criteria proposed by Polani [37] that are required for a
SOM analysis tool: it should provide evidence of the self-
organising process during training (shown through a reduction
in error value); and it should measure the embedding of
the set of neurons into the data manifold (the error value
measures how well changes in the input space are mapped by
changes in the output space). Second, given that it represents
an appropriate SOM analysis tool, it is important that results
described here are generalisable for potential comparison with
other spiking neuron network implementations. Other spiking
neuron networks may not be specifically designed as SOM
implementations, and specific SOM analysis metrics would
lose their relevance when comparing the topographic mapping
capabilities of one spiking neuron network with another.

III. RESULTS

This section covers the results of testing conducted to
confirm the behaviour of the spiking SOM. A measure of
the quality of map formation is introduced in section II-D,
to be used to interpret the rest of the testing results. The
parameters used during testing are described in section III-A,
and a parameter search on the variables involved in (5) is
described in section III-B, to determine the range of values
that result in good map formation. Section III-C demonstrates
the robustness of learning under the chosen parameters in
the presence of noise. The spiking SOM has been tested in
common scenarios used to test the conventional SOM: the
response of the spiking SOM to evenly distributed, randomly
selected, two-dimensional input data is analysed in section
III-D. Finally, the results of categorisation tests carried out
with the spiking SOM are reported in sections III-E, III-F and
III-G.

A. Network parameters

The testing conducted in sections III-B and III-D made use
of standardised parameters for the network, shown in table I.
In summary, each dimension n in the input I was associated
with a bank un of 10 neurons in layer u. The value of n was
set to 2 for two-dimensional input. The preferential values of
the neurons in each un were equally spaced between 0.05 and
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Fig. 5. Parameter search results for A+ to A− values: normalised final
EMDS values averaged from 30 trials are presented, for ranges of A+ and
A− values at low resolution (a) and at high resolution (b)

0.95. Gaussian tuning curves around these preferential points
were used for calculation of the activation values, with distance
calculations including circular wrapping from 1 to 0.

Layer v, the SOM layer, was initialised with 100 neurons,
arranged in a 10×10 grid through the lateral connection
weights. Feedforward connections were initialised from all
layer u neurons to all layer v neurons with a randomised
weight between 0.4 and 0.6 of the maximum synaptic weight
wu to vmax . The radius r (in (6) was set to 3.0, and the distance
between neurons in the layer were calculated with toroidal
structure. Values of τ+ and τ− in (5) were set to 11ms and
10ms respectively. This width of learning window approxi-
mately matches the temporal width of a network oscillation,
leading to negligible influence on learning of spikes from
within neighbouring oscillations.

At the start of each training step an input value was

6

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2013.2283140

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



determined by selecting randomly from 10 values for each
dimension, equally spaced between 0.05 and 0.95, making a
total of 100 input patterns from within the two-dimensional
input space. A training step lasted through 5 oscillations of
the network (approximately 125ms) before the input pattern
was changed. The network was allowed to learn for 4000
training steps. Quality of map formation was assessed using
mean EMDS for each pair of input patterns. Given that for the
two-dimensional case both the input and output space wrap
toroidally, this situation results in a maximum mean EMDS

value of 1
6 .

The maximum connection strength values for synapses with
presynaptic neurons in layer u are varied for the categorisation
tests conducted in sections III-F and III-G. These datasets
contain four and nine input dimensions, resulting in 40 and
90 neurons in u, respectively. As such, the value of wu to vmax is
scaled down to 1.5 in section III-F, and 0.7 in section III-G,
and the wu to Inh umax values to 0.4 in section III-G.

B. Learning parameter analysis

Parameter testing was conducted to establish suitable values
for the maximum and minimum weight change parameters,
A+ and A− from (5). A test of a parameter set consisted
of 30 randomly initialised maps, trained using the method
described in section III-A involving random selection from 100
input patterns evenly spaced across the 2D surface. An average
normalised EMDS value taken at the end of training used
to gauge the quality of maps formed with those parameters.
Coarse- and fine-grained searches were conducted, the results
of which are shown in Fig. 5(a) and 5(b) respectively.

The fine-grained search results establish that, for a range
of A+ values up to 0.01, and A− values up to 0.02, a ratio
between 1:2.5 and 1:3.5 of A+ to A− will result in good
map formation. The coarse-grained search result establishes
that there is little performance degradation up to A+ values
of 0.045 and A− values of 0.11, meaning that large weight
changes relative to the maximum weight can still result in map
formation. Only 500 training steps were used in the coarse-
grained simulation results; the high learning rates involved
result in a fluctuating error value after this point, rather than
increased convergence of error values.

Fig. 6 shows the progression of EMDS values through-
out training for important locations in the parameter space.
Fig. 6(a) shows the mapping error attained for multiple trials
for an A+ to A− ratio of 1:3.5, a ratio that reliably results in
good map formation. Fig. 6(b) shows the degradation of map
quality for an A+ to A− ratio of 1:20. Depression dominates,
and weights are gradually lowered until activity in u no longer
evokes any spikes in v. If no neurons win the competition for
any input pattern, there is no distance between winning nodes
for any input pattern, so a maximum error value is reached.
This outcome is characteristic of all A+ to A− ratio smaller
than 1:6. Progression of error values throughout training for
the opposite situation, a dominance of potentiation, is shown in
Fig. 6(c), with an A+ to A− of 4:1. In this regime, there is too
little depression of weights for connections from input neurons
representing less preferred input patterns, eventually resulting
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(b) Dominance of depression
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(c) Dominance of potentiation

Fig. 6. Time course of EMDS values for 3 points in the parameter space,
representing: (a) normal learning (A+ = 0.002, A− = 0.007); (b) dominance
of depression (A+ = 0.0005, A− = 0.01); and (c) dominance of potentiation
(A+ = 0.02, A− = 0.005);

in one output region of the map dominating for all input
patterns. Wild fluctuations are seen in the error value; this is
caused by slightly different neurons, still close to the dominant
region, winning the competition for different input patterns. A
brief change in winning neuron can result in a temporary large
variation in error value. This outcome is characteristic of all
A+ to A− ratio greater than 1:1.

For the following simulations, an A+ value of 0.0016 and
an A− value of 0.0055 will be used. These values are situated
within the acceptable ratio of these parameters, and represent
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TABLE I
NETWORK PARAMETERS FOR ALL SIMULATIONS DESCRIBED IN SECTION III

(A) Neuronal parameters, used in (1) and (4)

∆t τu,vm τInh u
m Vrest θu θInh u θv g

0.1ms 1ms 0.5ms 0.0 0.5 0.01 1.0 0.0

(B) Synaptic parameters, used in (2) and (3) for different synapse types

u to v u to Inh u (exc.) u to Inh u (inh.) Inh u to u v to v
τr τf τr τf τr τf τr τf τr τf

0.2ms 1.0ms 0.4ms 2.0ms 0.2ms 1.0ms 1.0ms 5.0ms 0.1ms 0.5ms

(C) Maximum magnitudes of synaptic connection strength

wu to v
max w

u to Inh u (exc.)
max w

u to Inh u (inh.)
max wInh u to u

max wv to v
max

2.2 1.0 1.0 100.0 1.0

(D) Neighbourhood parameters, used in (6) and (7), for layer v

a b X X′

3.0 3.0 3.0 3.0

(E) Learning parameters, used in (5)

A+ A− τ+ τ−

0.0016 0.0055 11ms 10ms

a low learning rate compared to the maximum acceptable rate.

C. Robustness to noise
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Fig. 7. Average EMDS value after training plotted against the value of
variable g, magnitude of noise in the neuron model. Error bars represent 1
standard deviation. Accuracy of the output mapping stays high until noise
levels reach a critical point around 0.5, with accuracy of the final mapping
ending up close to the maximum error value as g reaches 1.

The noise scaling factor g was tested for 11 values between
0.0 and 1.0, with the same value used for both layers u and
v, to analyse the robustness of the SOM formation to variable
spike times. These values of g resulted in spike time variations
in the input pattern of up to around 3ms. Other network
parameters, input data set and input pattern selection remained
as described in III-A and used in III-B. Fig. 7 shows average
EMDS values for training with variation in g. The average
values of EMDS ranged from 0.008 to 0.020 for values of g
up to 0.5, and between 0.090 and 0.146 for g from 0.6 to 0.9,
showing that noise in the neuron model does not prevent the
learning mechanism from picking up the statistical correlations
present in the input data until a value of g greater than 0.5.

Fig. 8. Final u (y-axis) to v (x-axis) synaptic weights after training with
2-dimensional data (light represents a strong connection and dark represents
a weak connection; the top half of the graphic is the bank of input neurons
encoding the first dimension and the bottom half is the bank encoding the
second dimension; and each ten steps along the x-axis represents a row of
output neurons, then the next ten represent the next adjacent row, and so on):
the connections to the output layer vary in one dimension across an individual
row (with consistency throughout the map), and vary in the other dimension
across the rows, encoding the current input as a location in the output map in
an organised way. A change in one input dimension (the bottom 10 rows) as
one moves through each row of the ouput layer (each block of 10 columns),
and a change in the second dimension (the top 10 rows) as one moves down
through rows in the output layer (changes between each block of 10 columns
in the figure) can be seen. For a given output neuron (one column), a gradual
decrease in weights either side of a central point in each input dimension is
visible.

D. 2D input

A test often applied to SOM algorithms is to present random
samples from a range [0,1] in two dimensions as input to the
network, and test the ability of the output to organise itself
into a formation capable of representing this input data.

An average final normalised EMDS value of 0.00554 was
achieved, over 64 trials (standard deviation 0.00483). The final
weight matrix for the feedforward connections from input to
output neurons is shown in Fig. 8; neurons in one row of
the output layer are strongly connected to a specific range of
input neurons in one dimension, while varying their connection
strength to input neurons in the other dimension uniformly
across the row (with the inverse pattern seen within and
between columns). Fig. 9 displays the output layer neurons
as circles, with nearest neighbour connections indicated by
connecting lines, positioned in the input space according to
the input value to which they respond most quickly (i.e., are
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(a) (b) (c) (d)

Fig. 9. Representation of u-v feedforward weights in the 2-dimensional input space, where black dots represent output layer neurons and black lines represent
nearest neighbour synaptic connections (input and output dimensions are toroidal, but nearest neighbour edges to opposite sides of the input space are omitted
for clarity of the figure). (a) shows the random starting distribution; after 200 training steps (b) the nodes begin to align to the input data; (c) and (d) show
the trained map after 2800 and 3600 training steps respectively - learning is ongoing, so stochastic fluctuations in the distribution of recent input patterns are
reflected by minor modulations in the map weights.

best tuned to); this preferential tuning is initially random, and
throughout training organises to mirror the inputs received.
It is worth noting that Fig. 9(c) and Fig. 9(d) both show the
network state after a good mapping has been achieved, but the
position of the neurons is quite variable; this is because the
network is learning at the same rate throughout training in this
example, and will morph slightly depending on the distribution
of the most recent input data.

The spiking SOM is also capable of generating a map
representation skewed to fit the input distribution. To test
this the map was trained using six distributions of two-
dimensional input data. In each distribution the likelihood
of either dimension being drawn from the range [0,0.5] was
altered to a value in the range of [0,0.5] at increments of
0.1. A likelihood of 0.5 represents an even distribution across
the two-dimensional space, and a likelihood of 0 represents
a distribution entirely in the quadrant of the two-dimensional
space between 0.5 and 1.0 in both dimensions. Within each
half of each dimension, the distribution is even across the
range. The representation of the output nodes in the input
space is shown in Fig. 10, as in Fig. 9. In Fig. 10(a) - Fig. 10(d)
the input distribution can effectively be split into quadrants of
likelihood. At any training step the input pattern is least likely
to be selected from the lower-left quadrant (between 0 and 0.5
in both dimensions), most likely to be selected from the upper-
right quadrant (between 0.5 and 1 in both dimensions), with
each of the remaining quadrants at an intermediate likelihood
(between 0 and 0.5 in only one dimension). Discontinuities can
be seen in the map representation in Fig. 10(d); these are at the
boundaries of the toroidal space, and are actually adjacent such
that the extended sections on the top are interlocked with the
gaps at the bottom. Fig. 11 demonstrates that map formation on
average results in good representations of input distributions
by the proportion of nodes in the final output mapping that
represent a quadrant of the input space.

Another feature of the mapping shown by some SOM
algorithms that attempt continuous learning is the ability of
the network to reconfigure to a new input distribution midway
through training, after a mapping has been established to an
existing input distribution. This was tested by training the

network using only 75% of the input data space, leaving out
the quarter of the input space square covered by values of
greater than 0.5 in both dimensions. This reduced data set
was used for 2000 training steps, then the full range of input
data, including the previously omitted quarter, was used for a
further 2000 training steps.

The evolution of the topographic error (Fig. 12) shows that
the network adjusts to the initial input range as normal, but
settles at a slightly higher EMDS value, most likely due to the
discrepancy between shape of input space and shape of lateral
connections in the output layer. The extra data is introduced
half way through training, resulting in a spike in EMDS value,
as the output mapping is no longer suitable for the input data,
and the error is then reduced to a lower value as the output
map reorganises to the new data. The mapping of the output
nodes in the input space is shown in Fig. 13. The output
nodes map to the original input space during the first half
of training, and reorganise in the second half such that the
final mapping is qualitatively identical to that seen in Fig. 9.
The final weight matrix for the feedforward synapses is also
qualitatively identical to the one obtained when training using
the full data range from the start (Fig. 8). This simulation
demonstrates that the map has learnt to represent the initial
input distribution, but when a new distribution is presented
the map is capable of adjusting appropriately.

E. Categorisation

SOMs can cluster input patterns, creating a specific spatial
location that is activated by incoming members of a specific
category. If there are category divisions in the input data, nodes
in the output layer will respond more reliably to one category
of input than to others. A trained SOM can therefore be used as
a categorisation tool by assigning each output node a category
to represent based on whether that node fires reliably for one
particular category. The capacity of the spiking SOM to be
used as a categoriser in this way has been tested through
training with two datasets commonly used for assessing the
categorisation ability of a system. This capacity is demon-
strated to provide evidence that organisation to datasets that
contain relatively distinct categories within a high-dimensional
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(a) (b) (c) (d)

Fig. 10. Representation of u-v feedforward weights in the 2-dimensional input space, where black dots represent output layer neurons and black lines represent
nearest neighbour synaptic connections (input and output dimensions are toroidal, but nearest neighbour edges to opposite sides of the input space are omitted
for clarity of the figure; neurons on the map border are alternating from one side of the figure to the other because the toroidal nature of the input space
means that input values of 0 and 1 are essentially identical, and the row or column that the neurons are a part of is lined up along the 0-1 divide, with some
neurons placed just on one side and some just on the other). (a), (b), (c), (d) show the final mapping for input distributions in which the probability in both
dimensions of an input value being between 0 and 0.5 is 0.1, 0.2, 0.3 and 0.4 respectively.
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each quadrant of the input space, plotted against the likelihood of an input
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Fig. 12. Typical evolution of average EMDS value for 2-dimensional input:
the error in the output map reduces up to the halfway point in training, at
which point the input distribution is expanded; the error in the map jumps
up as the error measure is now relative to the new distribution; the error then
decreases again as the map adjusts to the new distribution.

space is possible using this network, alongside representations
of less discrete input data.

In the examples in sections III-F and III-G five-way cross
validation is performed: a dataset is split into 5 chunks and the
network is initialised and trained 5 times, using a different set
of 4 chunks as training data and 1 chunk as testing data each
time, so that in total all data points are used for testing once.
Each training phase lasted for 4000 training steps with random
selection of input pattern after each 5 oscillations of the
network, as described in section III-A. At the end of a training
phase the output nodes were designated as representing a
category based on the input category to which they responded
most frequently during training. The testing patterns were then
presented to the trained network one at a time, and the output
activity recorded. Lateral connections were still used in this
testing phase, so multiple neurons in the output layer fired
for each testing pattern, in an area with width determined
by the lateral connection profile at the end of the training
phase. The testing pattern was categorised by the network
as belonging to the category to which the highest number of
output neurons firing in response to that input pattern had been
designated as representing. If more of the output neurons firing
in response to a testing pattern had been designated with that
pattern’s category during the training phase than any other
single category, then the pattern was considered to have been
correctly classified.

F. Iris dataset

The first dataset used to test the categorisation performance
of the spiking SOM was the Iris dataset [38]. This dataset is of
sizes of flowers of the Iris plant; it consists of three categories
each with 50 members, and each data point has 4 values, petal
length, petal width, sepal length and sepal width. One of these
categories “Iris Setosa Canadensis”, is fairly distinct from the
other two, “Iris Virginica” and “Iris Versicolor”.

For the current purpose, the values for each dimension were
normalised in the range [0-1], and the spiking SOM model
was initialised as in section III-D but with 40 input neurons,
making one bank of 10 for each dimension. This increase
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(a) (b) (c) (d)

Fig. 13. Representation of u-v feedforward weights in the 2-dimensional input space (arranged as per Fig. 9): (a) shows the random starting distribution;
after 8000 training steps with the partial input data (b) the nodes are aligned to the input data space, leaving a gap in the input space from which no training
examples have yet been received; (c) shows the expansion of the map to the newly increased range of input data after 800 training steps with the full input
distribution; and (d) shows the trained map after 2000 training steps with the full data range - the map has adjusted to the new input data.

TABLE II
CATEGORISATION ACCURACY (%) OF SPIKING NEURON AND

NON-SPIKING NEURON ALGORITHMS FOR THE IRIS DATASET. THE
CURRENT APPROACH IS SHOWN AS SPIKING SOM WITH

NEIGHBOURHOOD REDUCTION (NR) AND SPIKING SOM WITHOUT NR.

Non-spiking % acc. Spiking % acc.

k-Means [30] 88.6 RBF [30] 92.6
SOM [30] 85.33 SpikeProp [39] 96.1
Matlab BP [40] 95.5 SWAT [40] 95.3
Matlab LM [40] 95.7 RBF [41] 89
TEST [42] 91.7 SNNBako [43] 83.4

Spiking SOM with NR 90.9
Spiking SOM without NR 87.8

in number of input neurons meant that the feedforward con-
nection strength from layer u to layer v had to be reduced;
the value of wutovmax was scaled down to 1.5. Remaining
parameters remained identical, with the exception of the X
and X ′ values in (7), controlling the evolution of the width
of the neighbourhood function. For continuous learning these
values are identical, meaning no change in lateral connection
strengths over time. The standard neighbourhood parameters
were used as one condition in the categorisation performance
tests (X=3.0 and X ′=3.0). However, output map quality can
potentially be improved by starting with a large neighbourhood
and reducing it throughout training. This approach can obtain
a globally ordered topology initially, and refine details later
on. This regime was used as a second condition in the
categorisation tests, with X set to 4.0 and X ′ to 2.5. These
values are in numbers of neurons, so for a 10×10 map a radius
of greater than 4.0 is the majority of the map.

Categorisation accuracy, averaged over 9 trials, was 87.8%
(standard deviation = 1.3%) in the without-neighbourhood-
reduction condition, and 90.9% (standard deviation = 1.7%)
in the with-neighbourhood-reduction condition. Table II shows
these results in comparison with the results achieved for other
categorisation algorithms using this dataset. The spiking SOM
categorises better than Matlab implementations of the k-Means
and SOM algorithms [30] (although parameters used and the
extent of parameter searching conducted to achieve these

TABLE III
CATEGORISATION ACCURACY (%) OF SPIKING NEURON AND

NON-SPIKING NEURON ALGORITHMS FOR THE WBC DATASET.

Non-spiking % acc. Spiking % acc.

Matlab BP [40] 96.3 SpikeProp [39] 97
Matlab LM [40] 96.7 SWAT [40] 95.3

SNNBako [43] 89.5
Spiking SOM with NR 96
Spiking SOM without NR 97

results are unclear), the FPGA implemented classification
network of [43], and the spiking neuron RBF network of [41].

Categorisation performance is slightly worse than several
other networks: the spiking RBF model of [30], the SpikeProp
model of [39], the SWAT model of [40], the TEST algorithm
[42], and Matlab implementations of the backpropagation and
Levenberg-Marquardt training algorithms [40]; it is worth
noting, however, that these are designed specifically for data
classification purposes, and do not feature the topographical
ordering properties of the SOM model.

G. Wisconsin Breast Cancer dataset

The second dataset used for categorisation testing was the
Wisconsin Breast Cancer dataset (WBCD), consisting of 683
samples from 2 categories (444 benign and 239 malignant
tumours), with 9 measures of features of cytology. Each of the
9 measures is a discrete value from 1-10, converted into a value
in the range 0:1 for the current purpose, and represented using
a bank of 10 input neurons, meaning that layer u consisted of
90 neurons. As such the value of wutovmax is scaled down to
0.7, the value of wutoInhumax to 0.4, and the X and X ′ values
were adjusted to 3.5 in the without-neighbourhood-reduction
condition, to account for only having 2 categories occupying
the 10×10 output map; all other parameters remained identical
to those used in section III-F.

Categorisation accuracy, averaged over 8 trials, was 96.4%
(standard deviation = 0.4%) in the without-neighbourhood
reduction condition and 97.0% (standard deviation = 0.1%)
in the with-neighbourhood reduction condition. Again, these
results are compared with the categorisation accuracy of other
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algorithms using this dataset, shown in table III. The spiking
SOM again outperforms the FPGA categorisation algorithm
implementation of [43], and achieves a very similar level of
accuracy to models that have been designed specifically for
clustering and categorisation operations.

IV. DISCUSSION

The spiking neuron SOM model implemented here has
been demonstrated to produce qualitatively and quantitatively
similar output to the traditional SOM algorithm. This im-
plementation combines continuously presented input, regular
oscillatory firing, phase coding of input values, α-function
PSPs, leaky integrate-and-fire neurons, and STDP. The current
model exhibits good categorisation performance for generic
datasets without resorting to additional fine-tuning of param-
eters. Furthermore, it can function similarly to the traditional
SOM algorithm without necessarily decaying learning rate or
neighbourhood size throughout training. This section contains
a set of comparisons of the current model with related existing
approaches (section IV-A), and a discussion of some novel
aspects of the mechanisms used, and limitations of those
within the current model (IV-B).

A. Related approaches

The current model improves on the spiking SOM model of
[26], described in section I, in several significant ways. The
incorporation of continuous input and oscillatory firing means
that the current network does not need resetting. The change to
STDP for learning and introduction of α-function PSPs both
contribute to an improvement in the biological plausibility and
performance of the model. Additionally, testing has established
the robustness of the new approach to changes in the learning
parameters, noise, and input data.

Other SOM-like networks have been implemented using
spiking neurons. In [44] a two layer SOM structure similar
to [26] made up of ‘MacGregor’ neurons [45] is used to test
a pair of Hebbian learning rules, one with learning based on
strength of PSPs and the other based on temporal correlations.
It is demonstrated that, with an appropriate lateral connection
neighbourhood, either of these learning approaches can result
in output space segregation that is related to properties of
the input space. However, properties of the conventional
SOM such as smooth mapping of input to output space and
categorisation are not demonstrated. Additionally, this model
does not process continuous input, encode specific input values
in temporal sequences, or utilise oscillatory behaviour.

In [46] a three-layer feedforward network of integrate-
and-fire neurons with a STDP-like long-term potentiation
window is used to produce a self-organised map of orientation
preference, given appropriate receptive field shape and input
properties. This map does not feature lateral connections or
direct competition between neurons, instead relying on those
receptive fields and input properties for the self-organisation
to occur. As such, it is likely that an organised output map
will only result from a limited range of inputs. The current
approach can produce an output map based on organisation

to input data with any properties, due to the use of lateral
connections for competition.

The LISSOM model has been modified to incorporate spik-
ing neuron properties in [47], with Hebbian learning dependent
on average activity rather than spike timing. This learning
method is less biologically relevant than the STDP used in
the current model, and using a network structure based on the
visual system means that the map is not necessarily capable of
mapping a wide variety of input data as in the current model
and the conventional SOM.

In other recent work a pair of self-organising models
have been presented that learn spatio-motor [48] and visual
[49] representations using leaky integrate-and-fire neurons and
STDP. Again, these models do not tackle the general problem
addressed by the current model, but they are based on a
shared core model which can be compared with the current
method. This underlying model features Gaussian tuning of
responsiveness to input properties, but using a firing-rate
rather than spike-timing encoding. This leads to a slightly
different role for STDP, in that it picks average pre- and
postsynaptic combinations out of noisier activity, as opposed
to being a method for storing phase-of-firing relationships in
the current model. The visual representation model [49] has
separate STDP rules for excitatory and inhibitory synapses
in the ‘map’ layer. The inhibitory plasticity is found to be
crucial for emergence of the representations, while preventing
recurrent excitation from increasing firing rates. The current
model avoids this through control of the relationship between
maximum synaptic strength and number of neurons, but this
method warrants investigation for automatic control of these
properties in SOMs of different scales.

Each of these models suggest ways in which spiking neuron
models can facilitate self-organisational network properties,
but none of them represents a solution that incorporates the
ideas of temporal coding of input data through relative phases
of spikes within oscillations, continuous presentation of input
data points to the network, and learning via STDP simulta-
neously. In addition, none of these models present a network
structure possessing self-organisational and classification prop-
erties comparable with the traditional SOM algorithm.

B. Mechanisms, limitations and future directions

The inhibitory mechanism introduced to produce oscilla-
tory firing with phase-of-firing coding from a continuously
presented input activity level (see section II-C1) is a versatile
and useful neural function in its own right. A drawback is that
it is necessary to pre-determine the required size of a gap in
the input pattern that will allow the inhibitory neuron to fire
and the length and magnitude of the inhibition, which controls
the rate of oscillation, by setting PSP values in (2) and (3).
These values do not require rigorous fine-tuning provided the
range of input activity levels across the pool of input neurons
is relatively low, such that all neurons in the pattern will fire
within a restricted time period, followed by a gap before the
neuron with the strongest input will fire again. Additionally, it
is also necessary to predetermine the strength of feedforward
connections between the layers when the number of input
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neurons changes. Currently there is no general method for
deriving maximum weight values for different network scenar-
ios, and the development of such a method would represent
an important step towards a generalised spiking SOM.

Crucial future research will revolve around establishing
more precisely the extent of the qualities of self-organisation
that the spiking SOM possesses. It is currently unclear exactly
how well the network can reorganise to shifting, non-stationary
inputs, either varying distributions of a continuous multi-
dimensional space, or in the form of correct incorporation
and classification of additional input categories introduced
after the network has been allowed to learn for some time.
It can be speculated that the network will respond well to
these challenges, a claim supported by the impressive ability
of the network to accurately model input distributions and
to adjust to one change in input data during training, results
demonstrated in section III-D. A more detailed comparison of
the capabilities of the current network with the capabilities
of the conventional SOM would also require the introduction
of analytical techniques that can assess more features of
the mapping than the topographic representation. Measures
such as quantisation error can assess whether a minimum
distance from input patterns to their respective output layer
representatives is achieved, and integrated measures, such as
CQoCO, incorporate the extent to which nodes map regions
from outside of the desired input space and the twistedness of
the representation as it untangles throughout training into the
quality of mapping metric [36].

Additional future research could also improve on the bi-
ological plausibility of the network structure and connection
profile by basing these on knowledge of cortical areas. The
current model is not based on a specific brain region, but
the all-to-all connectivity used between layers is not seen in
cortex, so represents a deviation from the way in which cortical
functions are generated. As introduced in section IV-A, other
work on self-organisation with spiking neurons has focused on
generating maps using specific brain regions as inspiration. A
synthesis of those approaches with the current one could lead
to biologically plausible models with increased functionality
and versatility in the future.

The use of phase-of-firing coding and an STDP learning
rule has some limitations in the current context. Synaptic
connections from neurons involved in the input pattern are
weakened if the neuron fires late within the temporal sequence
(i.e., after firing in the output layer). However, a neuron with
much lower input activity would not fire at all for the current
input; with STDP learning, synaptic connections from such
neurons to the input layer are not weakened. This problem
is not relevant if the input neurons that have connections to
an output map represent a narrow domain of actual input
stimuli, in which case any stimulus from the associated domain
presented to that bank of input neurons would generate some
relatively high activity level (and therefore firing) for the entire
bank of neurons. Also, if output neurons have connections
from input neurons that never fire in correlation with the
dominant banks of input neurons connected to an output
neuron, there is a chance that spontaneous activity would
gradually weaken the connection, although the current model

does not support this.
A second problem with the use of phase coded input

is that hierarchical layers of these SOMs are not possible.
Output representation is spatial, within a relatively narrow
temporal window. The same learning rule will not work if
the SOM output is taken as input to a downstream SOM
layer. Spreading the firing in the SOM layer into a temporal
code (for example by adjusting synaptic time constants) would
cause the self-organisation to fail, as neighbouring neurons in
the output layer need to fire in close temporal proximity to
ensure their weights are adjusted towards the same point. Of
course, multiple independent SOMs could be set up with a
temporal sequence between the SOMs, which could become
input to a downstream SOM layer, creating a multi-modal
association/integration of spatially coded features.

This type of spiking neuron network has the potential to
be used to explore the connectivity and learning mechanisms
involved in formation of networks analogous to cortical maps
that display topological organisational structures, in artificial
intelligence mechanisms that perform tasks like clustering, cat-
egorisation and concept formation in a biologically plausible
manner, and in the development of spiking neuron hardware
that physically represents neurons and networks in digital or
analogue circuits.

REFERENCES

[1] J. H. Kaas and K. C. Catania, “How do features of sensory representa-
tions develop?,” BioEssays, vol. 24, pp. 334–343, 2002.

[2] B. A. Wandell, “The neurobiological basis of seeing words,” Annals of
the New York Academy of Sciences, vol. 1224, pp. 63–80, 2011.

[3] V. A. Casagrande and J. H. Kaas, “The afferent, intrinsic, and efferent
connections of primary visual vortex in primates,” Cerebral Cortex,
vol. 10, pp. 201–259, 1994.

[4] J. C. Horton and D. R. Hocking, “Anatomical demonstration of ocular
dominance columns in striate cortex of the squirrel monkey,” The
Journal of Neuroscience, vol. 16, no. 17, pp. 5510–5122, 1996.

[5] G. G. Blasdel and G. Salama, “Voltage-sensitive dyes reveal a modular
organization in monkey striate cortex,” Nature, vol. 321, pp. 579–585,
1986.

[6] D. H. Hubel, T. N. Wiesel, and M. P. Stryker, “Anatomical demon-
stration of orientation columns in macaque monkey,” The Journal of
Comparative Neurology, vol. 177, pp. 361–380, 1978.

[7] M. M. Merzenich, P. L. Knight, and G. L. Roth, “Representation
of cochlea within primary auditory cortex in the cat,” Journal of
Neurophysiology, vol. 38, no. 2, pp. 231–249, 1975.

[8] X. Chen, M. Gabitto, Y. Peng, N. J. P. Ryba, and C. S. Zuker, “A
gustotopic map of taste qualities in the mammalian brain,” Science,
vol. 333, pp. 1262–1266, 2011.

[9] F. Wang, A. Nemes, M. Mendelsohn, and R. Axel, “Odorant receptors
govern the formation of a precise topographic map,” Cell, vol. 93,
pp. 47–60, 1998.

[10] T. A. Woolsey, C. Welker, and R. H. Schwartz, “Comparative anatomical
studies of the SmL face cortex with special reference to the occurrence
of “barrels” in layer IV,” Journal of Comparative Neurology, vol. 164,
pp. 79–94, 1975.

[11] K. Fox, Barrel Cortex. Cambridge University Press, 2008.
[12] R. M. Friedman, L. M. Chen, and A. W. Roe, “Modality maps within

primate somatosensory cortex,” Proceedings of the National Academy
of Sciences, vol. 101, no. 34, pp. 12724–12729, 2004.

[13] D. E. Feldman and M. Brecht, “Map plasticity in somatosensory cortex,”
Science, vol. 310, pp. 810–815, 2005.

[14] M. M. Merzenich, J. H. Kaas, J. Wall, R. J. Nelson, M. Sur, and
D. Felleman, “Topographic reorganization of somatosensory cortical
areas 3b and 1 in adult monkeys following restricted deafferentation,”
Neuroscience, vol. 8, pp. 33–55, 1983.

[15] M. B. Calford, “Dynamic representational plasticity in sensory cortex,”
Neuroscience, vol. 111, no. 4, pp. 709–738, 2002.

13

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TNNLS.2013.2283140

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



[16] T. Kohonen, Self-Organizing Maps. Berlin Heidelberg New York:
Springer-Verlag, third ed., 2001.

[17] J. Hertz, A. S. Krogh, and R. G. Palmer, Introduction to the Theory of
Neural Computation. Perseus Publishing, first ed., 1991.

[18] E. T. Rolls and G. Deco, Computational Neuroscience of Vision. Oxford
University Press, 2002.

[19] N. Manukyan, M. J. Eppstein, and D. M. Rizzo, “Data-driven clus-
ter reinforcement and visualization in sparsely-matched self-organizing
maps,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 5, pp. 846–852, 2012.

[20] C.-C. Hsu and S.-H. Lin, “Visualized analysis of mixed numeric and
categorical data via extended self-organizing map,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 23, pp. 72–86, Jan.
2012.

[21] P. Maldonado, C. Babul, W. Singer, E. Rodriguez, D. Berger, and
S. Grün, “Synchronization of neuronal responses in primary visual
cortex of monkeys viewing natural images,” Journal of Neurophysiology,
vol. 100, pp. 1523–1532, 2008.
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