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Abstract 

The influential COmpetition between Verbal and Implicit Systems (COVIS) model proposes 

that category learning is driven by two competing neural systems – an explicit, verbal, 

system, and a procedural-based, implicit, system. In the current fMRI study, participants 

learned either a conjunctive, rule-based, category structure that is believed to engage the 

explicit system, or an information-integration category structure that is thought to 

preferentially recruit the implicit system. The rule-based and information-integration category 

structures were matched for participant error rate, the number of relevant stimulus 

dimensions and category separation. Under these conditions, considerable overlap in brain 

activation, including the prefrontal cortex, basal ganglia, and the hippocampus, was found 

between the rule-based and information-integration category structures. Contrary to the 

predictions of COVIS, the medial temporal lobes and in particular the hippocampus, key 

regions for explicit memory, were found to be more active in the information-integration 

condition than in the rule-based condition. No regions were more activated in rule-based than 

information-integration category learning. The implications of these results for theories of 

category learning are discussed. 

 

 

 

 

 

 



  Kathryn L. Carpenter                                                                                  COVIS AND CATEGORY LEARNING                                                                                                
 

 3 

Category learning is an essential cognitive process necessary for daily functioning. Without 

the ability to categorize an object as a threat, for instance, our survival chances would be 

severely impeded. But how do we learn novel categories? For example, how does a student 

driver learn to categorize the symbols on the road? Poldrack and Foerde (2008) regard the 

concept of multiple memory systems as one of the most important contributions to 

neuroscience in the past quarter century, and one increasingly prominent line of research 

within this broader field is the idea that there are multiple systems of category learning 

(Ashby & Maddox, 2011). Perhaps the most influential multiple systems account is the dual-

process, neurobiologically inspired, COmpetition between Verbal and Implicit Systems 

(COVIS) model of category learning (Ashby, Alfonse-Reese, Turken & Waldron, 1998) 

which is the focus of the current study.  

 COVIS hypothesizes that there are two neurally and functionally dissociable category 

learning systems (Ashby et al. 1998). The explicit system requires considerable use of 

working memory and executive functioning to test the effectiveness of rules that are 

generated. This learning system, consequently, works best at learning rule-based (RB) 

category structures where the decision boundary separating the categories can be easily 

verbalized. The most common examples in the literature are unidimensional rules such as 

“short lines belong in category A; long lines belong in category B” (see Figure 1a), or 

conjunctive rules such as “short, upright, lines belong in category A; anything else belongs in 

category B” (see Figure 1b).   On the other hand, in the implicit, procedural-based, system, 

learning occurs by combining information from two or more unrelated stimulus dimensions 

predecisionally through reliance upon immediate feedback to create stimulus-response 

associations (Ashby et al. 1998). The implicit system is usually tested using information-

integration (II) categories (see Figure 1c) where the optimal decision boundary is typically 

considered difficult or impossible to verbalize.  
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 One notable aspect of COVIS that distinguishes it from other multiple system 

accounts of category learning (e.g., ATRIUM, Erickson & Kruschke, 1998; RULEX, 

Nosofsky, Palmeri, & McKinley, 1994) is the detailed neurobiological predictions that it 

makes regarding the brain regions that underlie the different learning systems. In the explicit 

system, rule generation and hypothesis testing requires working memory and executive 

functioning which takes place predominately in the prefrontal cortex (Ashby & Valentin, 

2005). The particular rule to use is selected via the anterior cingulate (Maddox & Ashby, 

2004), while the head of the caudate nucleus is responsible for mediating the switch to a 

different rule. Successful rules are stored in the medial temporal lobes (MTL) for future use 

(Ashby & Valentin, 2005). The MTL is also hypothesized to store representations of the 

decision boundaries used to separate the stimuli into categories (Nomura & Reber, 2008).  

In contrast, the implicit system procedurally acquires the stimulus-response 

associations necessary for learning II categories (Ashby et al., 1998). The body and tail of the 

caudate nucleus receive representations of the visual stimulus perceived (Ashby & Valentin, 

2005) and these cells project to the supplementary motor area via the globus pallidus and the 

thalamus (Maddox & Ashby, 2004). When feedback indicates a correct response has been 

made, the substantia nigra releases dopamine which strengthens the association of the 

stimulus to the correct response (Ashby & Valentin, 2005). The putamen has also recently 

been proposed by Waldschmidt and Ashby (2011) to play a key role in the implicit system, as 

it is assumed to provide information to the motor regions (but see Ell, Marchant, & Ivry, 

2011, who found that focal putamen lesions impaired RB but not II learning).  

These neurobiological underpinnings of COVIS have motivated a large number of 

predictions about how RB and II learning will be differentially affected by behavioral 

manipulations (for reviews see Ashby & Maddox, 2011; Maddox & Ashby, 2004). The 

numerous behavioral dissociations arising out of this work have contributed a great deal to 
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the influence of COVIS. For example, RB learning is impaired by the imposition of a 

concurrent working memory load while II learning is not, supporting the idea that working 

memory is more critical for RB than II learning (Waldron & Ashby, 2001; Zeithamova & 

Maddox, 2006). Similarly, II learning is disrupted by changing the appropriate response 

buttons while RB learning is not, in line with the prediction that II learning relies upon 

stimulus-response procedural associations (Ashby, Ell & Waldron, 2003). Furthermore, 

delaying feedback for a few seconds (Maddox, Ashby, & Bohil, 2003; Maddox & Ing, 2005), 

deferring feedback to the end of a block of 6 trials (Smith et al., 2014), providing the category 

label prior to making the response (Ashby, Maddox, & Bohil, 2002), and using stimuli which 

contain both auditory and visual information (Maddox, Ing, & Lauritzen, 2006) have all been 

claimed to impair II but not RB learning. Similarly, some studies have suggested that 

increasing the number of categories (Maddox, Filoteo, Hejl, & Ing, 2004) or reducing the 

time available to process the feedback (Maddox, Ashby, Ing, & Pickering, 2004) disrupts RB 

but not II learning.  

However, in recent years there have been a growing number of studies that cast doubt 

on COVIS's interpretation of these behavioral dissociations and posit that the results can be 

explained by a single, explicit, system (e.g., Nosofsky & Kruschke, 2002; Newell, Dunn, & 

Kalish, 2010, 2011; Newell et al.,2013; Stanton & Nosofsky, 2007, 2013). One such example 

is a study conducted by Lewandowsky, Yang, Newell, and Kalish (2012) who reconsidered 

the finding noted above that RB learning relies on working memory to a greater extent than II 

learning. Specifically, Lewandowsky et al. directly measured the working memory capacity 

of participants using a battery of both verbal and spatial tasks and used structural equation 

modeling to reveal a strong relationship between working memory capacity and both RB and 

II learning, consistent with their proposal that both tasks require the use of working memory. 

The behavioral evidence as it currently stands, therefore, provides equivocal support for 
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COVIS. An alternative approach to resolving this dispute is to focus directly on the 

neurobiological predictions of COVIS where it has been argued that single-system accounts 

cannot explain the evidence that separable neural systems are engaged during different types 

of category learning (Worthy, Markman & Maddox, 2013). 

This neurobiological evidence is currently surprisingly limited, however, as there has 

been a paucity of studies directly comparing the brain systems involved in RB and II category 

learning. Perhaps the most prominent study to examine this, though, was by Nomura et al. 

(2007). Participants completed either an RB or an II category learning task inside an MRI 

scanner. The RB category structure was an easy to verbalize unidimensional rule (e.g., Figure 

1a), while the II structure was based on that shown in Figure 1c. Nomura et al. considered 

their results to be in line with COVIS - dissociable neural activation was found, with the 

MTL more activated in RB compared with II learning, and the caudate body more activated 

in II than RB learning. Further evidence of separable systems was found in a reanalysis of 

Nomura et al.’s data which modeled participants' decision strategies (Nomura & Reber, 

2008). Participants using RB learning strategies showed greater right PFC activity than those 

using II strategies, and those utilizing II strategies had greater right occipital activation. 

More recently, Soto, Waldschmidt, Helie and Ashby (2013; see also Helie, 

Waldschmidt, & Ashby, 2010; Waldschmidt & Ashby, 2011) directly contrasted RB and II 

learning in a multi-voxel pattern analysis. While the study had multiple training sessions, the 

first scanning session (Training session 1 for the RB task and Training session 2, following 

600 training trials in Session 1, for the II task), prior to the development of automaticity, is 

most pertinent for the current issue. While there was common activation between RB and II 

learning (for example in the globus pallidus and the extrastriate visual cortex), there were 

some differences in activation. For instance, consistent with Nomura et al. (2007), the head of 

the caudate was activated more in RB learning, while activation in the caudate body/tail also 
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differed between the RB and II tasks. However, it is difficult to know whether these neural 

differences were due to the engagement of separate systems in RB and II learning or whether 

they are due to participants in the II condition having already received 600 training trials 

previous to the scanning session while participants in the RB condition had no prior training 

(brain activation alters over a relatively limited number of trials, e.g., Koenig et al., 2005; 

Milton & Pothos, 2011).  While this issue was not the sole focus of Soto et al.’s study it does, 

nevertheless, compromise any direct comparisons in brain activation between II and RB 

learning prior to automaticity developing. 

Milton and Pothos (2011) found a different pattern of results to Nomura et al. (2007), 

observing extensive overlap in activation between a Unidimensional RB structure and a 

Complex category structure assumed to have many of the properties of II categories (e.g., 

optimal decision bounds that were difficult to verbalize). In contrast to Nomura et al., neural 

differences between the II and RB conditions were minimal and restricted to greater 

activation in a small region of the left superior frontal lobe in the Complex condition relative 

to the RB condition. While intriguing, one should not draw too strong an inference about 

these findings with regard to COVIS due to the differences in the stimuli that Milton and 

Pothos used compared to those traditionally administered in COVIS research. For instance, 

there were only 18 unique stimuli, with dimensions that were commensurable (rectangle 

height and ellipse width) and a decision bound that was arguably easier to verbalize than the 

II structures typically employed (e.g., Figure 1c). Nevertheless, these findings indicate that 

further direct comparison of the neural correlates of RB and II category learning is needed.  

The aim of the present study, therefore, is to re-examine Nomura et al.'s (2007) 

conclusion that there is a differential pattern of brain activation for RB and II categories in 

line with the predictions of COVIS. The critical difference between the RB and II category 

structures is often assumed to be that the RB structure is easily verbalizable but the II 
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structure is not. While the RB and II category structures used by Nomura et al. (see Figures 

1a and 1c) differ convincingly in this factor, there are also non-essential differences between 

them that may potentially be driving the differences in activation.  For instance, the RB 

structure has only one relevant dimension while the II structure has two relevant dimensions 

which means that selective attention is required for the RB condition but not for the II 

condition (Nosofsky & Kruschke, 2002). This is a concern that has been acknowledged by 

some COVIS theorists (e.g., Nomura & Reber, 2008; Zeithamova & Maddox, 2006; Xie, 

Maddox, McGeary, & Chandrasekaran, 2015). On a different note, multi-dimensional 

categorizations are typically more complex and require greater cognitive resources than one-

dimensional categorizations (e.g., Milton, Longmore, & Wills, 2008; Wills, Inkster, & 

Milton, 2015). This could potentially be driving the more pronounced caudate body 

activation in the II than the RB condition, particularly given that the involvement of the basal 

ganglia is thought to be greater for more complex structures (e.g., Ell, Weinstein, & Ivry, 

2010; Filoteo, Maddox, Salmon & Song, 2005). As the II structure is often more difficult to 

learn than the RB structure (e.g., Ashby, Maddox, & Bohil, 2002, Maddox, Ashby, & Bohil, 

2003), Nomura et al. reduced the category separation (i.e., the mean distance between 

category items as plotted in stimulus space divided by the within-category variance along the 

direction of the comparison) in the RB condition relative to the II condition to minimize any 

performance differences between conditions (see also Lewandowsky et al. 2012 for a 

discussion of this issue). While this successfully matched learning rates, it effectively 

replaces one confound with another because the optimal decision bound is more difficult to 

perceptually discriminate in the RB than the II condition (Stanton & Nosofsky, 2007). This 

confound is potentially critical given that COVIS assumes that the MTL is responsible for 

storing the precise placement of the decision bound (Nomura & Reber, 2008). The greater 
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activation in the MTL for the RB condition compared to the II condition could, therefore, be 

due to this difference in category separation. 

In order to draw strong comparisons about brain activation in RB and II category 

learning, it is therefore necessary to control for these non-essential differences between the 

category structures. This has been achieved in previous COVIS related research (e.g., Filoteo 

et al., 2010; Zeithamova & Maddox, 2006) - but in no previous imaging study - by comparing 

the II category structure to a conjunctive, rule-based category structure (see Figure 1b).  The 

II and the conjunctive category structures both possess two relevant dimensions, have a 

similar error rate (Filoteo et al., 2010) and are closely matched for category separation.  

A study by Edmunds, Milton and Wills (2015) underscores the importance of 

controlling for these extraneous variables when comparing RB and II category learning. 

Edmunds et al. re-examined Ashby et al.’s (2002) finding that trial-by-trial feedback training 

leads to better categorization performance than observational training for an II structure but 

not for a unidimensional RB structure. Edmunds et al. argued that Ashby et al.'s dissociation 

could have been driven by one of the non-essential differences between these category 

structures highlighted above. In particular, Edmunds et al. posited that the increased difficulty 

of learning a multi-dimensional (II) classification compared to a unidimensional classification 

could have been causing the effect - feedback training may be of greater benefit than 

observational training more generally but this advantage increases as the problem difficulty 

rises. To investigate this, Edmunds et al. compared learning of conjunctive and II category 

structures under both observational and feedback training. Edmunds et al. confirmed that 

participants are better able to verbalize the conjunctive, RB, structure than the II structure. 

However, the dissociation predicted by COVIS failed to emerge. Instead, feedback learning 

was superior to observational learning for both category structures.  



  Kathryn L. Carpenter                                                                                  COVIS AND CATEGORY LEARNING                                                                                                
 

 10 

The importance of controlling important extraneous variables has also been 

highlighted in a recent fMRI study conducted by Nosofsky, Little and James (2012) who 

reconsidered the classic finding of Reber, Stark & Squire (1998) that old-new recognition of 

dot patterns evokes a different pattern of brain activation to categorization of dot patterns. 

Nosofsky et al. used the same stimuli across conditions (whereas in Reber et al. the stimuli 

differed) and more closely equated the task goals of recognition and categorization (normally 

recognition requires an exact match with the studied item while stimuli can be endorsed as a 

category member if they are merely similar to previous exemplars) by asking them to adopt a 

lax criterion for the recognition judgment - participants were told it was important not to miss 

any old items. Under these conditions, there was little evidence for dissociable systems and 

the results from both tasks could be accommodated by a single exemplar-based process.   

Another notable aspect of Nomura et al.'s (2007) study is their use of incorrect trials 

as the baseline comparison to correct responses. While this is a convenient baseline to use 

and has been employed in other categorization research (e.g., Milton & Pothos, 2011) it may 

not be the most effective due to difficulties in interpreting what is driving the incorrect 

response. First, participants may have been using the correct general strategy but had not 

identified the relevant dimension/precise category structure; for example, participants used a 

rule-based strategy but categorized by orientation rather than line length. Second, participants 

might have used the appropriate dimension but placed the decision bound in the incorrect 

place. Third, and less commonly, participants may have classified correctly but pressed the 

wrong button. Fourth, participants may have been guessing or not fully engaged on the trial 

and fifth, participants could have used a completely different strategy to what was 

appropriate. It is likely that the errors are a combination of these (and potentially other) 

mistakes but it is not possible at the individual trial level to determine the source of the error. 

The first three of these error types appear particularly problematic as they would result in 
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similar activation to correct trials meaning that this is unlikely to be a sensitive baseline.  

Furthermore, comparing correct and incorrect trials is likely to be confounded with degree of 

learning as there will be more incorrect trials early in training than later in training.  This is 

particularly an issue when wishing to make inferences across the whole of training as is 

typically the case. While we present the key analyses with this "incorrect" baseline to aid 

comparison of our results with Nomura et al.'s, an "odd-or-even" task will be our principal 

baseline. This type of control is increasingly being used in imaging studies of categorization 

(e.g., Davis, Love & Preston, 2012a, 2012b; Davis, Xue, Love, Preston & Poldrack, 2014) 

and while it may superficially seem similar to a RB task (albeit one that is highly automated 

and engages limited neural resources, Stark & Squire, 2001) its main advantage is that it is 

well-established that it does not recruit the MTL or indeed the frontal lobes (Stark & Squire, 

2001), the pivotal regions of COVIS's rule-based system. Equally, activation in the striatum, 

the key site of COVIS's implicit system, is also readily identified with an odd-or-even 

baseline task (Zink et al., 2006). This baseline should, therefore, provide a clear measure of 

the regions engaged in both RB and II categorization without the involvement of key regions 

being obscured by their activation in the baseline task as well. 

According to how COVIS is often conceptualized (e.g., Nomura et al., 2007), one 

might predict greater activation in the caudate head, the anterior cingulate, prefrontal cortex, 

and the MTL (and in particular the hippocampus) for learning a conjunctive RB structure 

compared to learning an II structure (Ashby & Valentin, 2005). In contrast, greater activation 

should be found in the body/tail of the caudate, the putamen and the substantia nigra for the II 

condition compared to the RB condition (Ashby & Valentin, 2005). Conversely, if Nomura et 

al.'s (2007) results were driven by one of the non-essential differences between the RB and II 

structures outlined above then, when these variables have been better controlled, one might 

expect that these neural differences would disappear leaving an extensive overlap of 
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activation. Further, given that the II structure is harder to verbalize than the RB structure and 

yet categorization accuracy is the same (Filoteo et al., 2010), greater activation might be 

expected in the prefrontal cortex for the II compared to the RB condition to reflect the greater 

processing demands of finding and applying a less easy to verbalize rule. Alternatively, or 

perhaps additionally, there may be greater activation in the MTL in the II condition than the 

RB condition if the lower levels of verbalizability lead to an increase in memory demands to 

store exceptions in decision space to the rule that is utilized (Davis et al., 2012a).    
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Method  

Participants and Design 

45 right-handed University of Exeter students (26 female, 19 male) with normal or 

corrected vision completed the experiment for £5 remuneration. Participants were randomly 

allocated to one of two between-subject conditions (RB and II). One participant from the RB 

condition was excluded for failing to reach 50% (chance) accuracy in the final run (although 

the inclusion of this participant does not alter any of the conclusions of this study), leaving 22 

participants in each condition. Participants gave informed consent according to procedures 

approved by the University of Exeter's School of Psychology Ethics Committee. 

 

Stimuli  

The stimuli (see Figure 2) were a subset of the two-dimensional II stimuli and 

conjunctive stimuli (where short, upright lines belong in category A, and the rest in category 

B) employed by Filoteo et al. (2010). In the original data set there were 600 stimuli in both 

conditions; in the present imaging study, 320 of these stimuli were randomly selected (160 

stimuli in each category) for each category structure. This number of stimuli was the same as 

used by Nomura et al. (2007). Each stimulus was a black line varying on two dimensions: 

length and orientation. As in Filoteo et al. (2010), there was 5% overlap between the 

categories so that the maximum accuracy attainable was 95%.  

 

fMRI imaging 
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 A 1.5-T Phillips Gyroscan magnet, equipped with a Sense coil, was used to collect 

images from each participant in one scanning session. A T2*-weighted echo planar sequence 

(TR = 3000ms, TE = 45ms, flip angle = 90°, 36 transverse slices, 3.5 x 2.5 x 2.5mm) was 

used. Upon entering the scanner, the participant's head was secured in place with foam 

pillows inside the coil to prevent excessive head movement. Participants completed four runs, 

each containing 205 scans. Five “dummy scans” were completed before every run prior to 

presentation of the first trial. After the functional scans, standard volumetric anatomical MRI 

was completed using a 3-D T1-weighted pulse sequence (TR = 25ms, TE = 4.1ms, flip angle 

= 30°, 160 axial slices, 1.6 x 0.9 x 0.9mm). 

 

Procedure 

In each scanning run, participants performed two interleaved tasks - the category 

learning task and an “odd-or-even” baseline task. Each run began with 15 odd-or-even trials, 

followed by two blocks of 40 categorization trials. Each run then concluded with another 

block of 15 odd-or-even trials. After each block there was a blank screen of 8000ms during 

which time participants were asked to rest. In total, there were 320 category learning trials, 

presented in a random order, and 120 odd-or-even trials. The stimuli were presented on a 

back-projection screen positioned at the foot end of the MRI scanner and viewed via a mirror 

mounted on a head coil. Responses were measured using a fiber-optic button box held in the 

participants’ left and right hands. E-Prime (Psychological Software Tools, 2002) was used for 

the presentation and timing of stimuli and collection of response data.  

 In the category learning task, participants were informed that they had to learn into 

which of two categories a series of stimuli belonged.  The trial-by-trial procedure for the RB 

and II conditions was identical. Each trial began with a blank screen lasting a variable 
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interval between 500ms and 4000ms, followed immediately by a black fixation cross 

presented in the center of the screen for 250ms. A stimulus then appeared in the middle of the 

screen for 2000ms during which time participants were required to respond by pressing the 

far right button on the button box with their right hand if they thought the item belonged to 

category A or the far left button with their left hand if they thought the item was a member of 

category B. Feedback ("Correct" or "Incorrect") was then displayed for 500ms. If participants 

did not respond in time the message "Time out!!!" appeared on the screen for 500ms instead. 

The next trial then immediately began.  

 The odd-or-even task was closely modeled on that used by Stark and Squire (2001; 

see also Davis et al., 2012a) and had a similar trial-by-trial structure to the category learning 

task. Each trial began with a blank screen lasting between 500-4000ms, followed by a black 

fixation cross for 250ms. A randomly generated number from one to nine then appeared in 

the middle of the screen for 2000ms during which time participants had to press the left-most 

button if the number was even or the right-most button if it was odd. Following this, feedback 

("Correct" or "Incorrect") was presented for 500ms or if participants did not respond in time a 

message saying "Time out!!" appeared during this interval. 

 

fMRI Data Analysis 

Data analysis was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm). 

Functional images were corrected for acquisition order, realigned to the mean image, and 

resliced to correct for motion artifacts. The realigned images were coregistered with the 

structural T1 volume and the structural volumes were spatially normalized. The spatial 

transformation was applied to the T2* volumes which were spatially smoothed using a 
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Gaussian Kernel of 8mm full-width half maximum. Data were high-pass filtered (128s) to 

account for low frequency drifts.  

Random effects whole-brain analyses were completed using the general linear model 

with a combined statistical threshold of p<.001 (uncorrected) and a voxel threshold of 27 

contiguous voxels, which together produce an overall corrected threshold of p<.05, according 

to AlphaSim, as implemented in the REST toolbox (Version 1.8; Song et al., 2011).  Correct 

trials, incorrect trials, and timeouts were all included as separate regressors in the model. A 

canonical hemodynamic response function (HRF) together with temporal and dispersion 

derivatives was used to model the blood oxygen level-dependent response and the six head 

movement parameters were included as covariates. Our analyses focused on comparing 

correct categorization trials (for the RB and II groups separately) to the odd-or-even baseline 

task (although for the  principal analyses we also compare correct categorization trials to 

incorrect trials). In addition, to measure common activation between the RB - baseline 

contrast and the II - baseline contrast, a conjunction analysis was performed. The contrasts 

were combined using a logical ‘and’ function through the minimum statistic to the 

conjunction null hypothesis (MS/CN; Nichols et al., 2005) technique implemented in SPM8. 

Both these contrasts were again conducted with a combined threshold of p<.001 

(uncorrected) and a cluster threshold of 27; note that this approach is highly conservative 

because it reveals only those regions significantly activated for both the RB (p<.05, 

corrected) and the II (p<.05, corrected) conditions.  Normalized MNI space coordinates were 

transformed to Talairach space (http://imaging.mrccbu.cam.ac.uk/imaging/MniTalairach) to 

establish activation sites as per the atlas of Talairach and Tournoux (1988).  
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Results 

Behavioral Analysis 

The mean categorization accuracy across all runs for both the RB and II conditions is 

displayed in Figure 3. A 4 x 2 mixed-design analysis of variance (ANOVA) was conducted; 

the within-subjects factor was Run (4 levels) and the between-subjects factor was 

Categorization task (RB/II). There was a highly significant effect of Run, F(3,126)=12.47, 

p<.001, η2
p = .229, indicating that performance improved with practice. There was, however, 

no significant difference between the II and RB conditions in accuracy F(1,42)=.14, p=.708, 

η2
p = .003, BF = 1.04, and no significant interaction between Run and Categorization task (II 

or RB), F(3,126)=1.71, p=.169, η2
p .= .039, BF = 2.001.  

 

Imaging Analysis - ‘Odd or Even?’ Baseline Measure 

All blocks analysis 

Whole-brain activation across all runs of the category learning task was first analysed for 

participants in the RB and II conditions separately. Correct RB categorizations led to an 

extensive pattern of activation (Figure 4a) including diverse areas of the frontal cortex 

(including BA’s 6, 8, 10, 45, 46, 47), the anterior cingulate, posterior cingulate, the MTL, the 

bilateral caudate head/body, the putamen, the bilateral inferior and superior parietal lobes, the 

right superior temporal gyrus, bilateral inferior temporal gyrus and the bilateral occipital 

lobes. II category learning also activated these same brain regions (Figure 4b).  

 We also examined whether there were any changes in activation across time for both 

RB and II learning. To assess this, we directly compared activation in the first half of the 
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experiment (runs 1 and 2) to in the second half (runs 3 and 4) for the RB and II conditions 

separately. No brain regions were more activated in the first half of training compared with 

the second half of training in either condition. No brain areas were activated more in the 

second half of training than the first half in the RB condition either. However, in the II 

condition several regions including the right parahippocampal gyrus (BA 30; see Table I) 

were activated more in runs 3 and 4 than in runs 1 and 2.  

 The striking overlap in activation between the tasks was confirmed in a conjunction 

analysis, looking at common activation across the correct RB - odd-or-even contrast and the 

correct II - odd-or-even contrast (both with thresholds of p<.001 and 27 contiguous voxels; 

Figure 4c). Areas activated included key regions of both COVIS's explicit and implicit 

systems. Regions linked to the explicit system that were recruited were the MTL, the bilateral 

caudate head,  diverse bilateral areas of the prefrontal cortex (including BA's 6, 8, 10, 46, and 

47) and the bilateral anterior cingulate (right BA 25, left BA 33). Areas implicated in the 

implicit system that were engaged included the bilateral caudate body and the bilateral 

putamen. When contrasting incorrect trials to the odd-or-even task, a similar, if 

somewhat less extensive, pattern of activation was found including the right caudate body, 

right putamen and bilateral caudate head (Supplementary Figure 1).  

Next, we directly contrasted activation in the RB and II conditions to examine 

whether there was evidence for the neural dissociations observed by Nomura et al. (2007). No 

regions were more active in the RB condition than the II condition (calculated by subtracting 

correct RB trials - the odd-or-even trials from correct II trials - the odd-or-even trials). 

However, diverse regions were more active in the II condition than the RB condition 

(calculated by subtracting correct II trials - the odd-or-even trials from correct RB trials - the 

odd-or-even trials; see Table II, Figure 5a). Critically, this included extensive activation in 

the left MTL (hippocampus/ posterior parahippocampal gyrus; 131 voxels; see Figure 5b for 
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areas of the MTL engaged, with non-MTL regions masked). The results of these analyses are 

contrary to the predictions of COVIS, where the MTL is thought to be more critical for RB 

rather than II learning (e.g., Ashby & Valentin, 2005; Nomura et al., 2007). 

However, in spite of the generally greater activation in the II condition than the RB 

condition, no regions associated with COVIS's implicit system were identified in this 

analysis. Of course, it is possible that, even though we had almost double the number of 

participants that Nomura et al. (2007) used (they had 13 in their II condition and 12 in their 

RB condition), this activation might have been present but below our a priori statistical 

thresholds. To provide greater sensitivity we, therefore, conducted a region of interest (ROI) 

analysis using the WFU Pickatlas (Maldjian, Laurienti, Burdette, & Kraft, 2003) comprising 

the caudate body, the putamen, and the substantia nigra with the more liberal thresholds of 

p<.005 and 10 contiguous voxels (the same thresholds we have used in previous ROI 

analyses we have conducted, c.f., Milton et al., 2011; Milton, Butler, Benattayallah, & 

Zeman, 2012). We again found no evidence for greater activation in the II condition than the 

RB condition in these regions.  To further confirm this conclusion we examined the relative 

percent signal change of correct RB and II responding in the caudate body based on the  peak 

right (x = 17, y = -11, z = 28) and left (x = -20, y = -14, z = 29) caudate body activations 

reported by Nomura et al. (2007). These percent signal change values were obtained using the 

Anatomy toolbox (Eickhoff et al., 2007, Version 2.2). Using independent samples t-tests, we 

found no difference between conditions for either the right caudate body, t(42)=1.05, p=.300, 

d= .32,  BF=.84, or for the left caudate body, t(42)=1.00, p=.323, d= .3, BF=.912.  

   

Analysis of runs 3 and 4 only 
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COVIS can potentially explain this pattern of findings by assuming that for the II condition 

as well as the RB condition the verbal system dominates initially and participants in the II 

group only switch to the implicit system once there has been sufficient time for the RB 

system to be proven ineffective (e.g., Filoteo et al., 2010).  Including the initial trials in the 

analysis could therefore be obscuring the neural differences that emerge later in learning. To 

investigate this possibility, we analyzed runs 3 and 4 alone which, according to the results of 

previous studies (e.g., Filoteo et al., 2010), should provide a sufficient number of trials for 

participants to switch to the implicit system in the II condition.   

 A conjunction analysis, using the same thresholds as before, again revealed extensive 

activation overlap between the RB and II conditions. This included the bilateral putamen, the 

bilateral caudate body as well as the bilateral caudate head, the prefrontal cortex and the right 

MTL (Supplementary Figure 2). No regions were again more activated in the RB condition 

than the II condition. However, as before, a number of regions were more activated in the II 

condition than the RB condition (Supplementary Table I; Figure 6a); most prominent 

amongst these was activation in the bilateral hippocampus/posterior parahippocampal gyrus 

(left: 207 voxels; right: 44 voxels, Figure 6b). However, as before, in spite of this generally 

elevated activation in the II condition compared to the RB condition, there was no evidence 

for activation of regions linked to COVIS's implicit system. We again conducted a follow-up 

ROI analysis comprising the caudate body, the putamen and the substantia nigra with a 

threshold of p <.005 and a voxel threshold of 10 but no regions were activated in this 

analysis. 

Model based analysis 

The predictions made by COVIS are, of course, dependent on the assumption that 

more participants in the RB condition are using the explicit system than are participants in the 
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II condition and that a greater number of participants in the II condition are using the implicit 

system than are participants in the RB condition. If participants in the II condition persist 

with the verbal system throughout (or alternatively if participants in the RB condition as well 

as the II condition use the implicit system) then this might explain why our results appear 

inconsistent with the predictions of COVIS. It is harder, though, from a COVIS perspective 

to explain why participants in the II condition engaged the MTL, a critical region of the 

explicit system (Ashby & Valentin, 2005; Nomura & Reber, 2008), more than participants in 

the RB condition unless one assumes that the II category structure was more effective than 

the RB structure at engaging the explicit system. While this may seem unlikely, it can be 

tested using model-based analysis based on General Recognition Theory (GRT; Ashby & 

Gott, 1988) as is commonly carried out in COVIS related studies (e.g., Ashby et al., 2002; 

Filoteo et al., 2010; Nomura & Reber, 2008).  

 For each participant, the GRT analysis determines the decision boundary (from a set 

of pre-defined alternatives) that provides the best account of that participant’s responses. 

Each participant is then assigned a strategy type (e.g. ‘conjunctive’) on the basis of the best-

fitting model.  

 The unidimensional models assume that the participant determines a criterion along 

either the orientation or length dimension. As an example, for length, this corresponds to a 

rule such as: ‘Assign to Category A if the stimulus is long, or Category B if short’. The 

unidimensional models have two parameters: the value of the criterion and the variance of 

internal (criterial and perceptual) noise. 

 The conjunctive model assumes that the participants make two judgments, one for 

each stimulus dimension, and then combine these to make a judgment about category 

membership. The conjunctive rule in the current analysis was: ‘Assign the stimulus to 
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Category A if it is short and upright, otherwise assign to Category B’. The conjunctive model 

has three parameters: the two criterion values and internal noise.  

 The General Linear Classifier (GLC) model assumes that the decision boundary can 

be described by a straight line that can vary in gradient and intercept. The unidimensional 

models are therefore special cases of the GLC model. The GLC model has three parameters: 

the intercept and slope of the decision bound, plus internal noise.  

 The random model assumes that participants are responding randomly; it has no 

parameters. 

For each participant, the best fit of each of these models was calculated, and the best-

fitting model selected using Akaike’s information criterion (Akaike, 1974). The results from 

this analysis, which was performed using the grt package in the R environment (Matsuki, 

2014), are reported in Table III. Within the COVIS framework, the unidimensional and 

conjunctive models are considered to represent explicit, rule-based strategies, while the GLC 

represents an implicit, information-integration strategy.  

 The results, displayed in Table III, are generally consistent with previous work 

indicating that more participants used a conjunctive strategy in the RB condition than in the II 

condition and that more participants in the II condition used a GLC strategy than in the RB 

condition. This is the pattern expected and obtained in previous COVIS studies (e.g., Ashby 

et al., 2002); therefore, the modeling analyses seem to rule out the possibility (at least within 

the COVIS framework) that our results were driven by participants not using the intended 

strategy for their condition. However, the GRT modeling results, as usual, indicate that not all 

participants are adopting the expected strategy, so we took those participants in the RB 

condition whose responses were best fit by a conjunctive strategy (12 participants) and 

compared their brain activation to those participants in the II condition whose responses were 
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best fit by the optimal GLC model (13 participants). Note, the selection of a subset of 

participants on the basis of their GRT modeling results has seldom previously been carried 

out in COVIS related studies, perhaps because there are limits to the accuracy of these 

modeling results (see Donkin et al., 2015; Edmunds et al., 2015, for a discussion) so this 

analysis should be taken with some caution. Nevertheless, given the nature of our results, 

these supplementary analyses appear valuable. 

 A conjunction analysis, using, as before, thresholds of p<.001 and 27 contiguous 

voxels, again revealed an extensive overlap of activation between the RB and II conditions in 

similar regions to those found in the whole-group analyses (Figure 7a). Regions activated 

included the left MTL, bilateral caudate head, as well as the bilateral caudate body and right 

putamen. As in the all-participant analyses, no areas were more active in the RB than in the II 

condition. No regions were activated more in the II than the RB condition either and, in 

particular, the prominent MTL activation in the all-participant analyses did not emerge. One 

potential reason for this is simply that the smaller number of participants in this model-based 

analysis reduced our ability to detect this activation. We therefore conducted a post-hoc ROI 

analysis of the MTL (using the WFU Pickatlas; Maldjian et al., 2003) with a threshold of 

p<.05 (uncorrected) and a cluster threshold of 79 (which combined produce a corrected 

threshold of p<.05 according to AlphaSim). This revealed activation in the same left 

hippocampus/ parahippocampal gyrus region (cluster size: 115; Figure 7b) as previously 

identified. 

 We again found no activation in regions linked to COVIS's implicit system in the II - 

RB analysis. We therefore conducted another post-hoc ROI analysis comprising the caudate 

body, substantia nigra and the putamen in the same manner as for the MTL ROI analysis with 

cluster thresholds of p<.05 (uncorrected) and 41 contiguous voxels (which corresponded to 

p<.05, corrected according to AlphaSim). This also did not produce any significant 
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activation. An additional ROI analysis with these regions using alternative thresholds of 

p<.005 and 10 voxels also yielded no activation.  Finally, we repeated these modeling 

analyses with runs 3 and 4 alone. These produced the same pattern of results as the all-run 

analyses - there was considerable common activation (see Supplementary Table II) with no 

regions more activated in the RB compared with the II condition (RB – II). There was, 

though, as in the corresponding all-participants analysis, evidence of left MTL activation in a 

post-hoc ROI analysis of the II - RB contrast with thresholds of p<.05 and 79 contiguous 

voxels (cluster size: 157, peak voxel: x = -12, y =  -41, z = 4), and no evidence for COVIS's 

implicit system in either the whole-brain or ROI analyses.  

 

Correct – Incorrect trials 

To complement the analyses just described we also ran the principal ones using incorrect 

trials as the baseline. For the all-blocks analysis, consistent with previous work (e.g., Cincotta 

& Seger, 2007; Filoteo et al., 2005), we found that the left caudate head was more active on 

correct trials than incorrect trials (with thresholds of p<.001 and 27 contiguous voxels) for 

both the RB (peak voxel: x = -16, y =  20, z = 5) and II (peak voxel: x = -8, y = 13, z = -6) 

groups. We again identified, using the same conjunction analysis approach as before, large 

overlap of activation between the II and RB conditions including bilateral putamen, left 

caudate body, right MTL and frontal lobe (including BA 8, 9, 10 and 11) (Table IV). We did 

not, however, detect any differences between II and RB learning. A similar pattern emerged 

when considering all blocks in the modeling analysis with activation overlap in the 

conjunction analysis, but no differences detected between II and RB learning. 

 Looking at blocks 3 and 4 alone, there was again common activation in the frontal, 

parietal and temporal lobes (Supplementary Table III) and no differences between RB and II 
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learning in whole-brain analyses. However, in a similar ROI MTL analysis to before 

(thresholds p=.05 and 79 contiguous voxels, corresponding to p<.05, corrected), we observed 

greater activation in the II condition than the RB condition in two right 

hippocampus/parahippocampal gyrus regions (cluster size 215, peak coordinate: x =  24, y = -

7, z = -13; cluster size 180, peak coordinate: x = 34, y = -34, z = -12; Supplementary Figure 

3), with the posterior cluster being in the same area as observed in the corresponding odd-or-

even comparison. There was, though, again no evidence for activation in regions associated 

with COVIS's implicit system even when the analogous ROI analyses to those previously 

conducted were performed. This same pattern emerged when considering blocks 3 and 4 

alone in the modeling analysis. 
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Discussion 

 Previous work has found that there is differential brain activity in the learning of RB 

and II categories with the MTL preferentially recruited for RB compared to II learning while 

the caudate body is engaged more for II than RB learning (Nomura et al., 2007). However, 

we found no evidence for this pattern of dissociable neural activation. In particular, our most 

noteworthy finding was that the hippocampus/posterior parahippocampal gyrus was 

significantly more activated in the II condition than the RB condition. In addition, there was a 

striking overlap of activation between RB and II category learning emphasizing the extensive 

common neural processes that are engaged in learning both category structures. Common 

activation included regions thought to be engaged both in the explicit system such as the 

prefrontal cortex (including BA's 8, 10, 46, and 47), the anterior cingulate, the caudate head, 

and the MTL, and regions implicated in the implicit system including the posterior caudate, 

the putamen, and the substantia nigra. This pattern persisted, and indeed became more 

pronounced, when the second half of training was analyzed alone. We also observed the same 

basic findings when including only those participants who had used the intended strategy as 

indicated by GRT modeling analyses. 

 The striking overlap in activation between RB and II learning is consistent with the 

idea that RB and II category learning require similar neural processes. Of course, some of this 

activation is likely to be related to processes not specific to the act of categorization itself but 

common functions shared by the tasks such as stimulus processing, response selection, 

feedback monitoring, uncertainty and attentional demands to name a few possibilities. 

 A somewhat related way of looking at this common activation is that the behavioral 

dissociations in past work (e.g., Ashby & Maddox, 2011, but see also Newell et al., 2011) 

may reflect true differences in the learning system engaged in RB and II categorization but 
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that the functions of these systems share similar neural pathways. For example, Duncan 

(2010) proposed that there is a multiple-demand brain network, comprising regions of the 

prefrontal and parietal cortex, that is responsible for integrating and coordinating the 

processing of task specific brain areas through dividing the task goal into sub-tasks, 

generating the rules to achieve each sub-goal and transferring information from one task to 

another. If such a system organized the specific separable processes needed for learning in 

the RB or II condition then neural activation overlap (such as in the frontal lobes) between 

these tasks would be apparent as seen in the present study. 

 Nevertheless, what is particularly striking about our results and a challenge to COVIS, 

as it is currently formalized, is that we found extensive regions of the hippocampus/posterior 

parahippocampal gyrus were activated more in the II condition than the RB condition when 

COVIS appears to make the reverse prediction that there should be less activation in the II 

condition than the RB condition in this region.  

One important question, therefore, is why we observed a markedly different pattern of 

results from Nomura et al. (2007)? It appears unlikely that this is due primarily to our choice 

of the odd-or-even task as our primary baseline measure because the same basic pattern of 

results was observed when we used incorrect trials as the baseline (albeit less pronounced, 

perhaps for the reasons outlined in the introduction). It, therefore, appears more likely that it 

is the choice of the RB category structure employed with which to compare the II structure 

that is driving the qualitatively different pattern of results between studies. Nomura et al. used 

a unidimensional category structure while we used a conjunctive structure.  

Although both conjunctive and unidimensional structures effectively manipulate the 

relative verbalizability of the optimal decision bound (Edmunds et al., 2015), the advantage 

of using the conjunctive structure is that it controls for extraneous differences that are present 

between the unidimensional and the II structure that have been shown in previous work to 
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have an important impact on categorization (e.g., Edmunds et al., 2015; Stanton & Nosofsky, 

2007; Wills et al., 2013). Specifically, the unidimensional structure has only one relevant 

dimension but the II structure has two relevant dimensions. This means that selective 

attention is necessary in the RB condition but would be detrimental in the II condition 

(Nosofsky & Kruschke, 2002). In addition, multidimensional categorizations are typically 

more complex and require greater levels of cognitive resources than unidimensional 

categorizations (Milton et al., 2008; Pothos & Close, 2008; Wills et al., 2013, 2015). This is 

likely to lead to greater activation more generally in the II condition than the RB condition 

and perhaps particularly in the basal ganglia which has been argued to be involved in the 

learning of more complex category structures (e.g., Ell et al., 2010; Filoteo et al., 2005a).  

Related to this, because unidimensional classifications are generally easier to learn 

than multidimensional classifications (e.g., Ashby, Maddox, & Bohil, 2002; Maddox, Ashby, 

& Bohil, 2003), Nomura et al. reduced the category separation of the unidimensional 

structure compared to the II structure. While this enabled error rates to be successfully 

matched between conditions, this manipulation effectively replaced one confound with 

another (Stanton & Nosofsky, 2007). The MTL is assumed to be critical for storing the 

precise location of the decision bound (Nomura & Reber, 2008) and it seems plausible that 

this would be more demanding in Nomura et al.’s unidimensional structure, where the 

decision boundary is more difficult to perceptually discriminate than the II structure which 

could have been driving the differential activation in this region.  

While it may be possible to question our interpretation of these differences, our 

general point - that controlling between category structures for extraneous factors that have 

been shown to have a strong influence on categorization allows stronger inferences to be 

drawn - appears relatively uncontroversial. One might, of course, respond to this by arguing 

that behavioral dissociations predicted by COVIS have also emerged when using the same 
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category structures as we employed in the present study (e.g., Filoteo et al., 2010; 

Zeithamova & Maddox, 2006).  However, these behavioral dissociations have already come 

under detailed critique (e.g., Newell et al., 2013; Newell et al., 2010); in this regard, our 

results extend these concerns to previous imaging data. While COVIS has undeniably had a 

positive impact on the field of categorization by motivating new lines of research and is 

groundbreaking in terms of the precise neurobiological predictions it makes, our results 

indicate that it may be in need of revision to accommodate the greater level of MTL 

activation in II categorization compared to RB categorization that we observed. 

Another notable feature of our results is the extensive MTL activation found in the 

RB and, in particular, the II condition. The precise role that the MTL plays in category 

learning has been contentious. Some research implicates this region in RB or explicit learning 

alone (e.g., Nomura et al., 2007; Poldrack et al., 2001), other research shows that the MTL 

can also be found during II-like learning (Milton & Pothos, 2011; Cincotta & Seger, 2007), 

yet further research shows the hippocampus decreases in activation after initial category 

learning (Seger and Cincotta, 2006), while other studies found no activation at all (e.g., Seger 

& Cincotta, 2002; Lopez-Paniagua & Seger, 2011; Milton et al., 2009; Tracy et al., 2003). 

While these discrepancies may, of course, relate to the very different categorization tasks 

used, another possible reason is the choice of the baseline task. It is well established that a 

resting baseline (such as viewing a fixation cross or a blank screen) leads to activation of the 

default network which is known to engage the MTL (Buckner et al., 2008). It is, therefore, 

possible that the frequent choice of a resting baseline in categorization studies (e.g., Milton et 

al., 2009; Seger & Cincotta, 2002, 2005; Tracy et al., 2003) may have led to an 

underestimation of the involvement of the MTL in some past category learning studies.  

Having said this, several theories have been proposed with regards the function of the 

MTL in category learning. For example, Seger et al. (2011) suggested that the anterior 
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hippocampus is necessary for encoding the relationship between a stimulus and a particular 

response (see also Chua et al., 2007) while the posterior hippocampus is required for the 

retrieval of the context in which a stimulus has previously been encountered (e.g., retrieving 

the stimulus-response mapping). Similar to this, Love and Gureckis (2007) emphasized that 

the MTL (and specifically the hippocampus) is particularly important for forming abstract 

codes (known as clusters) which represent stimulus configurations (Davis, Love & Preston, 

2012a, Staresina & Davachi, 2009). New stimuli that are similar to previously seen 

configurations will be 'captured' by a pre-existing cluster, but if a stimulus is sufficiently 

novel, the MTL creates a new cluster for it (Love & Gureckis, 2007). Inspired by this 

account, Davis et al. (2012a; for a related study see also Davis et al., 2012b) conducted an 

experiment in which the stimuli (schematic beetles) could typically be classified by a single-

property rule but in which there were a few stimuli that were exceptions to that rule. Davis et 

al. (2012a) found that the MTL was  more activated for these exception stimuli than the rule 

consistent items, and hypothesised that this was due to it being involved in the creation of 

new clusters to represent the exceptions. Our results seem entirely consistent with these 

views. Specifically, the MTL activation observed in both the II and RB conditions may 

reflect that both category structures require the formation of clusters and perhaps in particular 

the need to encode and retrieve the category label with which a stimulus was associated. The 

greater MTL activation we observed in the II condition than the RB condition may reflect 

that the II structure is likely to evoke a greater number of exceptions to the applied rule, 

requiring the creation of additional clusters. The greater posterior parahippocampal gyrus 

activation in the second half of training compared to in the first half of training would also be 

consistent with the idea that the number of clusters increases as exceptions to any rule 

employed increase.  
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Our results are consistent with the growing body of evidence that the basal ganglia 

plays an important role in category learning (for a review see Seger, 2008). Previous work 

has found that the caudate head is important for the processing of positive feedback (Seger & 

Cincotta, 2002; Cincotta & Seger, 2007; Filoteo et al., 2005).  Our finding of activation in the 

head of the caudate for both RB and II category learning during correct categorization trials 

compared with incorrect trials further underscores the important role this region has in the 

processing of positive feedback (Cincotta & Seger, 2007; Filoteo et al., 2005b; Seger & 

Cincotta, 2002). The body and tail of the caudate, as well as being linked to COVIS's implicit 

system, have been shown to activate more for good learners than poor learners in a rule 

learning task (Seger & Cincotta, 2006). Additionally, Lopez-Paniagua and Seger (2011) 

linked the body and tail of the caudate to stimulus-response processing. Similarly, the 

activation in the putamen we observed for RB and II learning may reflect motor planning 

demands (Cincotta & Seger, 2007). While there are clearly differences in the procedures used 

in these studies and ours, it is plausible that these regions serve the same role in RB and II 

learning. If this is the case then our results would also be consistent with Nosofsky and 

Stanton’s (2005) claim that RB categorization as well as II categorization has a procedural 

component.    

We also found greater activation in the medial prefrontal cortex for correct compared 

to incorrect responses in both the RB and II conditions. This finding is analogous to the 

results of Schnyer et al. (2009) who found that patients with ventromedial prefrontal cortex 

(VMPFC) lesions had impaired learning for both RB and II tasks compared to controls. 

Schnyer et al.  suggested that the VMPFC is responsible for feedback processing in both RB 

and II learning and is involved in the selection and maintenance of the optimal learning 

strategies. Our imaging results therefore provide converging support for this previous 

neuropsychological evidence. 
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While fMRI provides excellent spatial resolution, it is well known to have limited 

temporal resolution. One consequence of this is that our study, like Nomura et al.'s (2007), 

and virtually all extant imaging studies of categorization cannot determine whether the 

activation identified is driven during the response or feedback processing stages. While the 

greater activation in the MTL for the II than the RB condition appears unexpected from 

COVIS's perspective regardless of when it occurs in the category learning process it would, 

nonetheless, be valuable in follow-up studies to understand at what stage in the process this 

difference is occurring. One possibility might be to have a subset of trials where no feedback 

is provided to examine the relative activation of feedback vs no feedback trials. Another 

option would be to include an extra variable ITI after the response has been made to identify 

activation differences between the response and feedback stages (see Lopez-Paniagua & 

Seger, 2011, for an example of where this has been done). Both approaches have challenges - 

for instance, in no feedback trials participants may self-generate internal feedback, 

particularly when they have acquired a strong understanding of the category structure. 

Equally, one consequence of adding an extra ITI is that it would increase the delay between 

making a response and receiving feedback which has been suggested to disrupt learning in 

COVIS’s implicit system (Maddox, Ashby & Bohil, 2003; Maddox & Ing, 2005). 

Nevertheless, exploring this issue appears a fruitful area for future research. 

Another limitation of fMRI is that it is not possible to establish whether all of the 

diverse areas activated are necessary for the learning of the II and RB structures. For 

example, it is possible that the activation in the MTL was not essential for the category 

learning that occurred. While this is plausible, it is still difficult though to explain from this 

perspective why the MTL activates more for the II condition than the RB condition; in 

contrast, this difference is readily compatible with the idea that II learning requires greater 

memory demands to compensate for the absence of an easily verbalizable rule. Nevertheless, 
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to test our explanation for this result, it would be valuable in future to investigate patients 

with MTL lesions to see if they, as we would predict from our theory, perform worse in 

acquiring II categories than RB categories. A further prediction derivable from our 

hypothesis is that people should have enhanced memory for instances after II category 

learning than after RB learning. As far as we are aware, the former hypothesis has not yet 

been investigated; however, the latter hypothesis is the subject of ongoing behavioral work in 

our lab.  

Finally, there is a temptation to consider our data in the context of whether it is more 

supportive of single-system or dual-system accounts. For instance, the extensive overlap of 

activation between the RB and II conditions is consistent with the idea that these category 

structures are learned by the same neural system. According to this view, the greater 

activation in the II condition relative to the RB condition may just reflect that participants in 

the II condition, who were learning a more difficult to verbalize decision boundary, had to 

recruit greater neural resources to reach the same level of performance. Of course, an 

alternative way of explaining our results is in terms of a dual-process model such as 

ATRIUM (Erickson & Kruschke, 1998). In ATRIUM, one system is rule-based and is 

conceptually similar to COVIS’s verbal system. The other system is also assumed to be 

explicit but is exemplar-based and is responsible for learning when rules are not easily 

applicable. One possibility, therefore, is that participants were utilizing a sub-optimal rule but 

were supplementing this with an exemplar-based process for the items in a region of decision 

space which did not fit into the rules that they were utilizing. The results of Davis et al. 

(2012a), who found that the MTL was more engaged for exception items than those stimuli 

which followed a simple rule, would be consistent with this explanation. While our results 

could, therefore, be conceptualized in either of these ways, we would generally concur with 

the view of Davis et al. (2012a) who note that given that the criteria for establishing truly 
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qualitatively separable systems are often underspecified, a more profitable way of viewing 

category learning may be to link brain function to particular processes required. For instance, 

the prefrontal cortex may be involved in hypothesis generation and rule selection, the caudate 

head in feedback processing, the caudate body and tail for stimulus-response associations, 

and the MTL in storing decision bounds and/or memory for particular exemplars. In this 

latter example, as discussed previously, the MTL may be an important region for category 

learning in general but its role could have a greater emphasis in II learning where there are 

less verbalizable rules than in RB learning which may encourage more specific storage of 

exemplars (Nosofsky et al., 2012) to supplement any rules that are applied.  
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Conclusion 

The present study aimed to build on the limited amount of research that has directly 

compared the neural regions involved in RB and II category learning. We found that when we 

controlled for category separation, number of relevant dimensions, and error rates, extensive 

neural overlap in the learning of RB and II categories emerged and there was no evidence for 

the pattern of results predicted by COVIS. In particular, we found increased activation in the 

MTL, long considered critical for explicit memory (e.g., Scoville & Milner, 1957; Squire, 

Stark & Clark, 2004), for the II condition, which is assumed by COVIS to preferentially 

recruit the implicit system, compared to the RB condition.  Our findings, therefore, extend 

our understanding of the neural processes that underlie RB and II learning and pose a 

challenge for COVIS as it is currently instantiated. 
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Footnotes 

1 Bayes Factor analysis requires an estimate of the mean expected difference under the 

experimental hypothesis; we estimated this from Filoteo et al's (2010) study, which used the 

same stimuli and category structures, using plot digitizer 

(https://sourceforge.net/projects/plotdigitizer/). Following Dienes (2011), the expected 

difference was modeled as a two-tailed normal distribution with a standard deviation equal to 

half the mean. By convention, a Bayes factor of over three is interpreted as providing 

substantial evidence for the experimental hypothesis (Jeffreys, 1961), while a Bayes factor 

below a third provides substantial evidence for the null (Dienes, 2011). A value in between a 

third and three is indeterminate, providing no clear evidence either for the null or the 

experimental hypothesis. 

 

2 The percent signal change in the right caudate body for the RB and II conditions in Nomura 

et al.’s (2007) study (shown in their Figure 4d) was used to calculate the prior (these values 

were estimated using plot digitizer https://sourceforge.net/projects/plotdigitizer/). The 

expected difference was modeled as a two-tailed normal distribution with a standard 

deviation equal to half the mean (Dienes, 2011).  
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Figure Legends 

Figure 1. Examples of unidimensional, conjunction, and information-integration category 

structures. Each open circle represents one member of category A; each filled square 

represents one member of category B. Figure adapted from Wills et al. (2013) and 

Zeithamova and Maddox (2006). 

 

Figure 2. The category structures used for the present study (a) The conjunctive rule-based 

condition; (b) The information-integration condition. Solid lines indicate the decision 

boundary separating category A (unfilled circles) and category B (filled squares).  

 

Figure 3. Mean performance across runs in the RB and II conditions. Error bars show 

standard error. 

 

Figure 4.  Whole brain analyses on all runs of the study for: (a) areas of activation in the RB 

condition; (b) areas of activation in the II condition (c) a conjunction analysis showing areas 

commonly activated in the RB and II conditions. All analyses are thresholded at p<.001 and 

27 contiguous voxels. The coordinates indicate the origin for the image displayed. Lighter 

colors indicate higher z-scores. 

 

Figure 5. Analyses of areas activated in all runs of the study (a) Whole-brain analysis of 

areas more active in the II condition compared with the RB condition; (b) Regions of the 

MTL more active in the II condition compared with the RB condition; non-MTL regions 
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were masked in this analysis but the thresholds remained p<.001 and 27 contiguous voxels. 

The coordinates indicate the origin for the image displayed. Lighter colors indicate higher z-

scores. 

 

Figure 6. Analysis of blocks 3 and 4 for: (a) Areas more activated in the II condition than the 

RB condition. (b) Regions of the MTL more active in the II condition compared with the RB 

condition; non-MTL regions were masked in this analysis but the thresholds remained at 

p<.001 and 27 contiguous voxels. The coordinates indicate the origin for the image 

displayed. Lighter colors indicate higher z-scores. 

 

Figure 7. Analysis of participants who were shown by the modeling analysis to use the 

optimal learning strategy overall for all runs of the study: (a) Areas commonly activated in 

the RB condition and the II condition (with thresholds of p<.001 and 27 contiguous voxels); 

(b) A ROI analysis of areas of the MTL more activated in the II condition compared with the 

RB condition (with thresholds of p<.05 and 79 contiguous voxels). The right most image 

represents the brain from the bottom. The coordinates indicate the origin for the image 

displayed. Lighter colors indicate higher z-scores. 
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Supplementary Figure Legends 

Supplementary Figure 1. Whole brain analysis of all runs comparing incorrect trials to the 

‘odd or even’ baseline, showing areas of common activation in the II and RB conditions 

thresholded at p<.001 and 27 contiguous voxels. The coordinates indicate the origin for the 

image displayed. Lighter colors indicate higher z-scores. 

 

Supplementary Figure 2. Analysis of areas commonly activated in both the RB and II 

conditions in runs 3 and 4 of the study only thresholded at p<.001 and 27 contiguous voxels. 

The coordinates indicate the origin for the image displayed. Lighter colors indicate higher z-

scores. 

 

Supplementary Figure 3. Analysis of correct trials contrasted against incorrect trials across all 

participants showing a ROI analysis of MTL activation greater in the II compared with the 

RB condition in runs 3 and 4 (thresholded at p<.05 and 79 contiguous voxels). Non-MTL 

regions are masked. The coordinates indicate the origin for the image displayed. Lighter 

colors indicate higher z-scores. 

 


