

Physiological niche and geographical range in European diving beetles (Coleoptera: Dytiscidae)

Journal:	Biology Letters
Manuscript ID	RSBL-2016-0130.R2
Article Type:	Research
Date Submitted by the Author:	n/a
Complete List of Authors:	Cioffi, Rebekah; University of Plymouth, School of Biological Sciences Moody, A; University of Plymouth, School of Biological Sciences Millán, Andrés; Universidad de Murcia, Ecología e Hidrología Billington, Richard; University of Plymouth, School of Biological Sciences Bilton, David; University of Plymouth, School of Marine Science and Engineering
Subject:	Biochemistry < BIOLOGY, Ecology < BIOLOGY, Evolution < BIOLOGY
Categories:	Evolutionary Biology
Keywords:	Metabolism, Thermal tolerance, Biogeography, Macroecology/macrophysiology, Immunity, Niche breadth hypothesis
	·

2	Physiological niche and geographical range in European diving beetles (Coleoptera:
	Dytiscidae)
4	Rebekah Cioffi ^{1*} , A. John Moody ¹ , Andrés Millán ² , Richard A. Billington ¹ and David T Bilton ³
	¹ Evolution, Behaviour and Ecology Research Group, School of Biological Sciences, Plymouth University, UK
6	² Department of Ecology and Hydrology, University of Murcia, Spain
	³ Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, UK
10	*Corresponding author (rebekah.cioffi@plymouth.ac.uk)
12	Geographical ranges vary greatly in size and position, even within recent clades, but the factors driving this
	remain poorly understood. In aquatic beetles, thermal niche has been shown to be related to both the relative
14	range size and position of congeners but whether other physiological parameters play a role is unknown.
	Metabolic plasticity may be critical for species occupying more variable thermal environments and maintaining
16	this plasticity may trade-off against other physiological processes such as immunocompetence. Here we
	combine data on thermal physiology with measures of metabolic plasticity and immunocompetence to explore
18	these relationships in Deronectes (Dytiscidae). Whilst variation in latitudinal range extent and position was
	explained in part by thermal physiology, aspects of metabolic plasticity and immunocompetence also
20	appeared important. Northerly distributed, wide-ranging species apparently used different energy reserves
	under thermal stress than southern endemic congeners and differed in their antibacterial defences. This is the
22	first indication that these processes may be related to geographical range, and suggests parameters which may
	be worthy of exploration in other taxa.
24	
	Keywords: biogeography, macroecology/macrophysiology, thermal tolerance, immunity, metabolism, niche
26	breadth hypothesis.

28 Introduction

The geographical ranges of species vary enormously with many taxa being narrow-range endemics whilst

30 relatively few are widespread. Several ecological and evolutionary processes may drive range size variation, including interspecific differences in evolutionary age, dispersal ability and fundamental niche breadth [1]. The

- 32 niche breadth hypothesis predicts that species with broad fundamental niches have larger range sizes [2,3], with physiological traits which allow the exploitation of spatially and temporally variable environments
- 34 facilitating their expansion [4].
- 36 Previous work on diving beetles found that thermal physiology is strongly related to latitudinal range size and position [8]. Since thermal tolerance relies on an organism's ability to maintain cellular function under stress,
- 38 more thermally tolerant species may also be expected to show higher metabolic plasticity [9]. For example, in Antarctic fish it has been found that above their optimal temperature range, cellular processes switch from
- 40 mainly carbohydrate (glucose and glycogen) to lipid and finally protein metabolism [9]. Other studies on marine gastropods into the effects of sub-lethal elevations in temperature reveal the accumulation of 'end-
- 42 product' metabolites (lactate and succinate) whilst ATP concentrations remain stable, indicating an increased reliance on anaerobic metabolism with temperature, using carbohydrates as the energy source [10]. Plasticity
- 44 of such metabolic processes may be vital in widespread, more northerly distributed species, as organisms encounter increasingly variable climates with latitude [6].
- 46

An organisms' ability to mount an immune response to parasites and pathogens can also be seen as a key

- 48 component of its physiological niche. Evolutionary ecology predicts that such responses are costly, necessitating trade-offs with other nutrient-demanding metabolic processes [11]. In addition, the metabolic
- 50 requirements of immunity and the indirect effects of mounting induced immune responses are likely to have life history consequences [11]. In insects, front-line defences include antimicrobial peptides (AMPs), targeting
- 52 mainly Gram-negative and Gram-positive bacteria but also fungi and viruses, and the phenoloxidase (PO) pathway, which produces melanin for cuticle pigmentation, sclerotisation, wound healing and encapsulation,
- and is an important part of an arthropod's armoury against parasite attack [11].
- 56 Despite the clear importance of metabolic plasticity in maintaining cellular processes under thermal stress and the potential trade-offs with immuncompetence, no work to date has explored whether either differ between
- 58 widespread and restricted species. Here we compare metabolic plasticity and immuncompetence across five closely-related species of European diving beetles (*Deronectes* Sharp; Coleoptera: Dytiscidae) which differ in

60 geographical range size and position, combining these data with thermal tolerance, dispersal ability and phylogenetic history, to explore their relative importance in shaping distribution.

62

Methods

- 64 Post-teneral adult *Deronectes* were collected during summer and early autumn 2013-2014, minimising age variation [12]. Individuals of each species were collected from as close as possible to their latitudinal range
- central point (LRCP) to avoid possible confounding effects of local adaptation in range edge populations [13].
 Specimens were transported to the laboratory and maintained in 5 L aquaria, containing aerated artificial pond
- 68 water (APW, pH 7.7, 15 °C) and submerged vegetation for 7 d [8]. Animals were kept at 20 individuals per aquarium, with a 12:12 LD regime and fed chironomid larvae [8].
- 70

After acclimation, individuals used for metabolic assays were ramped to five environmentally-relevant sub-

- 72 lethal temperatures (15, 20, 25, 30 and 35 °C, at a rate of 0.25 °C min⁻¹) and held at temperature for 24 h, before being frozen in liquid nitrogen. ATP, L-lactate, succinate, protein, glucose, glycogen and lipids were
- 74 measured in beetles held at each temperature (see supplementary material). Lowest values were subtracted from highest values to calculate plasticities. Immunocompetence was assessed by measuring external parasite
- 76 load, encapsulation ability, PO activity (rates of dopachrome production and consumption), and AMP defence against both Gram-positive and Gram-negative bacteria (see supplementary material). Acclimatory ability of
- 78 upper and lower thermal limits (Δ UTL and Δ LTL), absolute thermal tolerance range (TR), relative dispersal ability (DA) and body mass (BM) were obtained from [8]. Phylogenetic relationships between taxa follow [14].
- 80

To test for phylogenetic effects, the phylogram was compared against species traits using Phylogenetic

- 82 Generalised Least Squares regression models (PGLS; 'caper' package). Maximum likelihood estimations of Lambda, which measure the degree to which phylogeny predicts the pattern of covariance among species,
- 84 were not zero for all parameters indicating that phylogenetic correction was required [15]. Due to low degrees of freedom affecting the number of variables included in the regression models, the principal component (PC)
- scores from the first two PCs explaining most variation in mean immune (immPC1 and 2) and metabolic traits (metPC1 and 2) were used from principal component analysis (prcomp; 'stats' package). Absolute thermal
- tolerance range, Δ UTL, Δ LTL, DA and BM were also included as independent variables, and linear regressions

run on untransformed and phylogenetic independent contrasts (PIC; 'ape' package) to predict \log_{10}

- 90 transformed range extent and central position. In each analysis, models were constructed using all variable combinations and model selection was based on AIC and BIC values (AICcmodavg; 'AICcmodavg' package).
- 92 Permutation testing was also performed on the best model fits (Imorigin; 'ape' package). All analyses were run in R v. 3.5.

94

Results & Discussion

- 96 Previous studies of *Deronectes* [8,16] have pointed to the importance of physiology in shaping geographical range size and position. Studying a suite of metabolic and immunological parameters in both widespread and
- 98 restricted species, we show that whilst variation in latitudinal range extent and position is related to thermal physiology, metabolic plasticity and immunocompetence also appear to play a role. The best models for range
- 100 extent and central position contained a measure of metabolic plasticity or immunocompetence without phylogenetic correction, as did that for range extent using contrasts (Table 1), suggesting that a number of
- 102 immunological and metabolic markers are related to a species biogeography. For uncorrected data the best models for range extent and central position contained immPC2, metPC2 and DA or BM, respectively (Table 1;
- Fig 1). ImmPC2 was most strongly influenced by AMP production against *Escherichia coli* (clear zone number) and metPC2 by the change in lipid concentration with temperature (Table S2, Fig S1). Model 2 (DA, Δ LTL and
- 106 TR) explained only 2% less variation in range extent than model 1 (Table 1). After phylogenetic correction the models explaining most variation in LRE and LRCP included immPC1 and ΔUTL, and TR and BM, respectively
- 108 (Table 1, Fig S1). Significant loadings for immPC1 corresponded to the presence of AMPs against *Arthrobacter globiformis* (number of clear zones Table S2).

110

Physiological trade-offs in thermal adaptation can restrict the biogeography of aquatic ectotherms, with lipid

- 112 catabolism central to cold adaptation at high latitudes [9]. Our data suggest that more northerly distributed, wide-ranging species may use different energy reserves under thermal stress than their southerly endemic
- 114 counterparts (Fig 1). Maximum likelihood estimates suggest that more northerly-distributed, widespread species undergo more marked changes in lipid concentrations under thermal stress (Table 2). Organisms are
- 116 known to accumulate lipids during cold-acclimation as lipids are a more efficient energy store than others, such as glycogen [17]. However the fat body in insects, which controls the synthesis and utilisation of glycogen

and lipids, is not only important in energy storage but also for metabolic activity, embryogenesis, flight and immune defence, producing AMPs [17].

120

124

Table 1. Model selection to estimate factors influencing latitudinal range extent and central position in

122 Deronectes showing the best supported models reported for each dependent variable (ΔAIC<1).

Model	К	AIC	ΔΑΙΟ	AIC weight	BIC
Latitudinal range extent					
1. immPC2 + metPC2 + DA	5	-21.18	0.00	0.48	-23.13
2. DA + ΔLTL + TR 📃	5	-21.09	0.08	0.46	-23.04
3. DA + BM	4	-1.14	0.00	0.87	-2.70
4. ΔUTL	3	6.56	0.00	0.52	5.39
Latitudinal range central position					
5. immPC2 + metPC2 + BM	5	-79.98	0.00	0.99	-81.93
6. TR + BM	4	-34.39	0.00	0.98	-35.95
7. TR	3	-15.03	0.00	0.44	-16.20
Latitudinal range extent (independe	ent conti	rasts)			
8. immPC1 + ΔUTL	3	-14.85	0.00	0.56	-16.69
9. BM	2	-3.88	0.00	0.36	-5.10
Latitudinal range central position (i	ndepend	dent contrast:	s)		
10.TR + BM	3	-35.39	0.00	0.94	-37.23
11. metPC1	2	-23.47	0.00	0.54	-24.70

In each case absolute thermal tolerance range (TR), acclimatory ability of upper and lower thermal tolerance (ΔUTL & ΔLTL), body mass (BM), dispersal ability (DA), immPC1, immPC2, metPC1 and metPC2 were included as independent variables (for principal component loadings see Table S2). Latitudinal range position is the latitude of the range centre. K = number of parameters; AIC = Akaike's Information Criteria set at 95% confidence; ΔAIC < 2 reported; AIC weight represents the likelihood of the model given the data; BIC = Bayesian Information Criteria, which unlike AIC takes into account n and K. Best fitting models highlighted in bold.

126

Figure 1. Biplots for the most significant variables predicting latitudinal range extent and position. Codes:

- 128 Deronectes bicostatus (BIC), D. depressicollis (DEP), D. hispanicus (HIS), D. moestus (MOE) and D. latus (LAT).
- 130 In terms of immunity, maximum likelihood estimates suggest that more southerly, range-restricted species have stronger antibacterial activity against Gram-positive and Gram-negative bacteria than their more wide-
- 132 ranging counterparts (Table 2; Fig 1; Fig S1). Lower-latitude freshwaters may support a greater number of bacterial taxa [18], meaning that southerly, range-restricted species may require more, diverse AMPs.
- 134 Alternately it could be that high latitude species exhibit seasonal immunocompetence, with lower immunity in summer and higher in winter than their southerly range-restricted counterparts [19], or that faster growth in

- 136 higher latitude species compromises adult immunocompetence [20]. The higher AMP levels in range-restricted southerly species may trade-off against other immune functions, such as melanin production (measured as PO
- 138 activity), which increased with latitude [21].
- 140Table 2. Summary statistics for the best models predicting log10-transformed latitudinal range extent and
central position on untransformed data and phylogenetic independent contrasts including Maximum
- 142 Likelihood Estimates (MLE) for untransformed data. Model numbers refer to those in Table 1.

Source	MLE	SE	<i>t</i> -value	<i>p</i> -value	DF	F-statistic	Adjusted R ²	<i>p</i> -value
Latitudinal range e	<i>xtent</i> (mod	del 1)						
immPC2	-1.020	0.028	-36.57	0.017	4	599.9	0.998	0.030
metPC2	-1.000	0.027	-36.40	0.018				
DA	14.452	0.514	28.12	0.023				
Latitudinal range c	entral posi	ition (mode	el 5)					
immPC2	-0.034	<0.001	-1244.8	<0.001	4	1065000	0.999	< 0.001
metPC2	-0.055	< 0.001	-1720.2	<0.001				
BM	0.006	<0.001	288.3	<0.001				
Source		C	oefficient	<i>p</i> -value	DF	F-statistic	Adjusted R ²	<i>p</i> -value
Latitudinal range extent (independent contrasts) (model 8)								
immPC1			0.067	0.029	4	78.4	0.975	0.020
ΔUTL			0.401	0.010				
Latitudinal range central position (independent contrasts) (model 10)								
TR	,	. ,	0.029	0.004	4	122.6	0.984	0.023
BM			0.024	0.023				

- 144 Despite the inclusion of additional variables representing metabolic plasticity and immunocompetence, thermal physiology was still clearly related to biogeography in our analyses (Table 1). Indeed the second best
- 146 model predicting range extent on untransformed data and the best model for range extent and central position using contrasts both include measures of thermal tolerance, supporting the findings of [8]. Our study
- 148 demonstrates, however, that in addition to temperature, other aspects of an organism's physiological niche may be related to its geographical range, including the plasticity of metabolic pathways and antimicrobial
- 150 defences. Although widespread species have broader thermal tolerances to cope with more variable climates, they also appear to have different energetic strategies and immune trade-offs to endemic species.

152

As species distributions respond to climate change, it is vital we understand the mechanisms shaping

- 154 geographical ranges. It is suggested that further studies of the parameters measured here, on a range of arthropod groups, would improve understanding of the drivers of relative range size and position. In all cases,
- 156 investigations should be conducted within a phylogenetically controlled framework and in a manner which controls for other possible drivers, such as relative dispersal ability. Future work should also incorporate these
- 158 traits into predictive models, to aid the development of more accurate adaptation and mitigation strategies for conservation.
- 160

Data accessibility

162 The datasets supporting this article have been uploaded in supplementary material.

164 Competing interests

We have no competing interests.

166

Ethical approval

168 Ethical approval was not required.

170 Authors' contributions

DTB, AJM and RAB conceived the study, RC, DTB, AJM and RAB designed it, RC conducted laboratory assays,

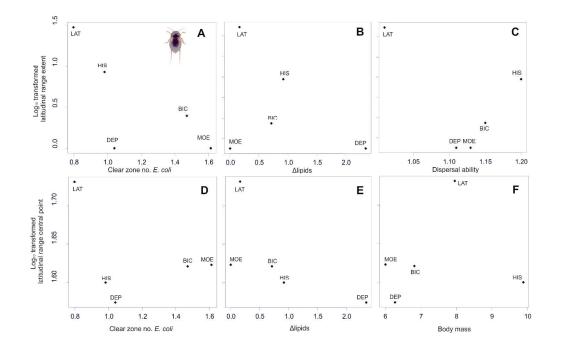
analyses and drafted the manuscript, AM and DTB co-ordinated fieldwork; all authors contributed to and approved the final draft, and agree to be held accountable for the content therein

174

Acknowledgements

- 176 We thank Alexandra Cieslak, Matt Emery, Garth Foster, Javier Fresneda, Simone Guareschi, Marie Palmer, Ignacio Ribera, Steven Routledge, Felix Picazo, Mike Thom, Andy Foggo and Will Vevers for their assistance and
- 178 support.

180 Funding


RC is funded by a Plymouth University PhD Scholarship.

182						
	References					
184	1.	Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press				
	2.	Gaston KJ, Spicer JI (2001) The relationship between range size and niche breadth: a test using five				
186		species of <i>Gammarus</i> (Amphipoda). Global Ecol. Biogeog. 10 :179–188				
	3.	Brown JH (1984) On the relationship between abundance and distribution of species. The American				
188		Naturalist 124 : 255–279.				
	4.	Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals.				
190		Nature Clim. Change 2:686–690				
	5.	Stevens GC (1989) The latitudinal gradient in geographical range: how so many species coexist in the				
192		tropics. Am. Nat. 133 :240–256				
	6.	Addo-Bediako A, Chown SL, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. Proc.				
194		Roy. Soc. B 267 :739–745				
	7.	Sunday JM, Bates AE, Dulvy NK (2011) Global analysis of thermal tolerance and latitude in ectotherms.				
196		Proc. Roy. Soc. B 278 :1823–1830				
	8.	Calosi P, Bilton DT, Spicer JI, Votier SC, Atfield A (2010) What determines a species' geographical range?				
198		Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera:				
		Dytiscidae). J. Anim. Ecol. 79 :194–204				
200	9.	Pörtner HO (2002) Physiological basis of temperature-dependent biogeography: trade-offs in muscle				
		design and performance in polar ectotherms. J. Exp. Biol. 205 :2217–2230				
202	10.	Melatunan S, Calosi P, Rundle SD, Moody AJ, Widdicombe S (2011) Exposure to elevated temperature				
		and pCO ₂ reduces respiration rate and energy status in the periwinkle <i>Littorina littorea</i> . Physio. Biochem.				
204		Zool. 84 :583–594				
	11.	Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Ann. Rev. Entomol. 50:529–				
206		551				
	12.	Bowler K, Terblanche JS (2008) Insect thermal tolerance: what is the role of ontogeny, ageing and				
208		senescence? Biol. Rev. 83:339–355				
	13.	Kirkpatrick M, Barton NH (1997) Evolution of a species' range. Am. Nat. 150 :1–23				

210	14.	García-Sánchez D, Ribera I (2015) Reconstructing Mediterranean crossroads with a genus of freshwater
		Coleoptera (Deronectes, family Dytiscidae). J. Biog. In press.
212	15.	Pagel M (1998) Inferring evolutionary processes from phylogenies. Zoologica Scripta 26 :331–348
	16.	Calosi P, Bilton DT, Spicer JI (2008) Thermal tolerance, acclimatory capacity and vulnerability to global
214		climate change. Biol. Lett. 4: 99-102
	17.	Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Ann. Rev.Entomol.
216		55:207
	18.	Lear G, Washington V, Neale M, Case B, Buckley H, Lewis G (2013) The biogeography of stream bacteria.
218		Global Ecol. Biogeog. 22:544–554
	19.	Fedorka KM, Copeland EK, Winterhalter WE (2013) Seasonality influences cuticle melanization and
220		immune defense in a cricket: support for a temperature-dependent immune investment hypothesis in
		insects. J. Exp. Biol. 216 :4005-4010
222	20.	DeBlock M, Stoks R (2008) Short-term larval food stress and associated compensatory growth reduce
		adult immune function in a damselfly. Ecol. Entomol. 33 : 796-801

224 21. Kutch IC, Sevgili H, Wittman T, Fedorka KM (2014) Thermoregulatory strategy may shape immune investment in *Drosophila melanogaster*. J. Exp. Biol. **217**:3664–3669

0,1

320x204mm (300 x 300 DPI)

0

321x411mm (300 x 300 DPI)