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Abstract 22 

Agricultural soils are a major source of nitric oxide (NO) and nitrous oxide (N2O), which are 23 

produced and consumed by biotic and abiotic soil processes. The dominant sources of NO 24 

and N2O are microbial nitrification and denitrification. While N2O emissions have been 25 

attributed to both processes, depending on the environmental conditions such as substrate 26 

availability, pH and water filled pore space (WFPS), NO emissions are thought to 27 

predominantly derive from nitrification. Although attributing gaseous emissions to specific 28 

processes is still difficult, recent findings challenge the latter of those assumptions. Using 29 

the gas-flow-soil-core method, i.e soil cores incubated under a He/O2 atmosphere at 30 

constant surface gas flow, combined with 15N labelled isotopic techniques, the present 31 

study investigated the role of denitrification on NO, N2O and N2 emissions in a UK grassland 32 

soil under high soil moisture and an aerobic headspace atmosphere. With the application 33 

of KNO3 and glucose to support denitrification, denitrification was the source of N loss of 34 

between 0.61 and 0.67% of the added N via NO emissions, 1.60 to 1.68% via N2O and 0.03 35 

to 0.05% via N2 emissions. Overall, our study showed that denitrification has been 36 

overlooked as a source of NO emissions.  37 

 38 

1. Introduction 39 

Agricultural soils are the dominant source of nitrous oxide (N2O), a potent greenhouse gas 40 

and a major cause of ozone layer depletion (IPCC, 2007; Ravishankara et al., 2009). Other 41 

gaseous forms of nitrogen (N) are lost from agricultural soils, such as N2 which together 42 

with N2O represents less N available for crop growth. Soils also act as a significant source of 43 

nitric oxide (NO), which catalyses the formation of ground level ozone, affecting human 44 

health and vegetation (Crutzen, 1981), and contributes to the formation of acid rain and 45 
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the eutrophication of semi-natural ecosystems. Microbial denitrification is often the 46 

dominant process generating N2O, and as such, intense investigations (i.e. >1,000 47 

published studies) have led to a good understanding of the abiotic factors regulating N2O 48 

emissions via denitrification (Beaulieu et al., 2011). However, the role of this process on NO 49 

emissions remains largely unexplored, apart from a few studies (Wang et al., 2011; Wang 50 

et al., 2013), even though NO is an obligatory intermediate of N2O formation in 51 

denitrification (Wolf and Russow, 2000; Russow et al., 2009).  52 

Most experiments suggest that NO emitted from soils is mainly produced through 53 

nitrification (Skiba et al., 1997), whereas that produced from denitrification is further 54 

reduced to N2O before it escapes to the soil surface (Skiba et al., 1997). This is attributed to 55 

high soil water content (it has been shown that at a WFPS above 70%, N2O was produced 56 

solely by denitrification (Bateman and Baggs, 2005)), soil compaction and fine soil texture 57 

(sieved to <2 mm) creating low diffusivity for gases, which increases the residence time and 58 

the potential for further reduction when denitrification conditions dominate. Recent 59 

findings, however, challenge these assumptions. Using the gas-flow-soil-core technique, 60 

which has been proven to be a reliable tool for quantifying emissions from denitrification, 61 

Wang et al. (2013) observed significant NO fluxes from nitrate (NO3
-) amended soils. 62 

Attributing these emissions specifically to denitrification has remained elusive due to 63 

methodological constraints to elucidate the underlying microbial production and 64 

consumption processes. Previous efforts to identify these processes have mostly relied on 65 

acetylene inhibition and isotope labelling techniques (Baggs, 2008).   66 

Isotope analysis has emerged as a way to identify the source and thereby the processes 67 

from which N2O is being produced (Arah, 1997). It is also known that microorganisms 68 

discriminate against the heavier molecule (e.g  15N vs. 14N), preferring to use the lighter 69 
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molecule which requires less energy to break the bonds (Kendall and Caldwell, 1998). This 70 

should be considered when applying labelled substrate to investigate microbial processes.  71 

The aim of this study was to explore the potential role of denitrification as a significant 72 

source of NO emissions. We hypothesise that denitrification can be a major source of NO 73 

emissions in a UK grassland soil under high moisture content. This study uses the gas-flow-74 

soil-core technique (Cárdenas et al., 2003), further developed to include NO 75 

measurements, combined with isotopic analyses. A 15N labelled substrate as well as an 76 

unlabelled substrate at the same application ratio was used to determine whether there 77 

was an effect of the labelled N on the investigated processes at a 5 atom% enrichment. 78 

Additionally to adding potassium nitrate (KNO3) as N source, glucose was added to supply a 79 

readily available C source and thereby promote denitrification. During denitrification C is 80 

used as electron donor and C availability is one factor controlling denitrification rates and 81 

compared to other C-compounds, denitrification tends to be most stimulated after 82 

addition of ethanol or glucose (Morley and Baggs, 2010).   83 

 84 

2. Materials and Methods 85 

2.1. Soil preparation 86 

A clayey pelostagnogley soil of the Hallsworth series (Clayden and Hollis, 1984) (44% clay, 87 

40% silt, 15% sand (w/w), Table 1) was collected on the 4th of November 2013 from a 88 

typical grassland in SW England, located at Rothamsted Research, North Wyke, Devon, UK 89 

(50°46’10’’N, 3° 54’05’’W). Spade-squares (20 x 20 cm to a depth of 15 cm) of soil were 90 

taken from 12 locations along a ‘W’ line across a field of 600 m2 size. After sampling, the 91 

soil was air dried to ~30% H2O (dry basis), roots and plant residue were removed and the 92 
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soil sieved to <2 mm and stored at 4°C for 5 days before packing into cores and starting the 93 

incubation. 94 

<Table 1: initial soil characteristics> 95 

 96 

2.2. Experimental setup 97 

The incubation was carried out using the DENItrification System (DENIS), a specialized gas-98 

flow-soil-core incubation system (Cárdenas et al., 2003). Twelve cores were packed with 99 

soil to a bulk density of 0.8 g cm-3 and a height of 75 mm into stainless steel vessels of 140 100 

mm diameter. To ensure denitrification conditions, the soil moisture was adjusted to 85% 101 

WFPS, taking the later amendment into account. This WFPS was similar to those used in 102 

previous studies to promote denitrification processes (Meijide et al., 2010; Bergstermann 103 

et al., 2011). In order to measure N2 fluxes the native atmosphere was removed by flushing 104 

the soil cores from the bottom with a mixture of He:O2 (80:20) at 30 ml min-1 for 14 hours 105 

Flow rates were then decreased to 12 ml min-1 and the flow re-directed over the surface of 106 

the soil core for three days before amendment application to measure baseline emissions. 107 

O2 was kept in the gas mixture at atmospheric levels as the objective was to investigate 108 

denitrification achieved by high WFPS instead of  forcing anaerobic conditions by 109 

preventing any O2 diffusion. 110 

The following treatments were applied to four replicate vessels: (a) labelled (15N-labelled 111 

KNO3 at 5 atom% and glucose); (b) unlabelled (KNO3 and glucose); (c) control (water only). 112 

The labelled and unlabelled treatments contained nitrogen at a rate equivalent to 75 kg N 113 

ha-1 (i.e. 121.5 mg N kg-1 dry soil) and C as glucose at 400 kg C ha-1 (i.e. 648 mg C kg-1 dry 114 

soil), which is similar to previous studies (Meijide et al., 2010; Bergstermann et al., 2011). 115 

The amendment for each core was dissolved in 50 ml distilled water, and the controls also 116 
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received 50 ml distilled water each. The vessels were kept at 20°C during the whole 117 

incubation period, which lasted for 10 days after amendment application. 118 

 119 

2.3. Gas analyses and data manipulation 120 

Gas samples were taken every two hours  for each vessel. Fluxes of N2O and CO2 were 121 

quantified using a Perkin Elmer Clarus 500 gas chromatograph (Perkin Elmer Instruments, 122 

Beaconsfield, UK) equipped with an electron capture detector (ECD) for N2O, and with a 123 

flame ionization detector (FID) and a methanizer for CO2. N2 emissions were measured by 124 

gas chromatography with a helium ionisation detector (VICI AG International, Schenkon, 125 

Switzerland) (Cárdenas et al., 2003), while NO concentrations were determined by 126 

chemiluminescence (Sievers NOA280i, GE Instruments, Colorado, USA). All gas 127 

concentrations were corrected for the surface area and flow rate going through the vessel 128 

(measured daily). Fluxes were calculated on a kg N or C ha-1 day-1 basis.  129 

 130 

2.4. Isotopic analyses of N2O  131 

Gas sampling times for 15N analysis were pre-determined based on data from previous 132 

experiments (data not shown). Samples were taken just before (0 hours) and 4 hours after 133 

amendment application, then every 24 hours for the first week, followed by a final sample 134 

at day 10. This sampling strategy was decided on from previous experimental results to 135 

cover changes in isotopic signature before amendment application, as well as during the 136 

NO and N2O peaks (4-5 h and 3-4 d, respectively), and after emissions returned to 137 

background levels. Samples were taken from the outlet line of each vessel using 12 ml 138 

exetainers (Labco) which had previously been flushed with He and evacuated. 15N 139 
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enrichment of N2O was measured using a TG2 trace gas analyser (Europa Scientific, now 140 

Sercon, Crewe, UK) and Gilson autosampler, interfaced to a Sercon 20-22 isotope ratio 141 

mass spectrometer (IRMS). Solutions of 6.6 and 2.9 atom% ammonium sulphate 142 

((NH4)2SO4) were prepared and used to generate 6.6 and 2.9 atom% N2O (Laughlin et al., 143 

1997) which were used as  reference and  quality control standards. 144 

The process leading to the formation of the measured N2O, i.e. whether it is produced by 145 

nitrification or denitrification, was determined by calculating how much of the N2O was 146 

derived from NO3
- as the parent molecule. When 15N labelled NO3

- is added, it is assumed 147 

that it completely mixes with the native soil NO3
- pool to form a single uniformly labelled 148 

NO3
- pool. The 15N content of the N2O was calculated from either 45R or 46R, with 45R being 149 

the ratio of the ion currents (I) for mass 45 /44 (45R = 45I/44I) and 46R for mass 46/44 (46R = 150 

46I/44I). If the 15N contents of the measured N2O calculated from either 45R or 46R are equal, 151 

then the distribution of the 15N atoms in the N2O molecules is random, and therefore the 152 

N2O originated from a single uniformly labelled NO3
- pool (Stevens et al., 1997; Stevens and 153 

Laughlin, 1998). When the NO3
- pool is labelled and the N2O concentration is greater than 154 

the IRMS method detection limit (2 ppm), calculations of the fraction of N2O derived from 155 

the denitrifying pool (d׳D) were performed. The sources of N2O were then apportioned into 156 

d'D and the fraction derived from the nitrifying pool (d'N = (1 - d'D)) and calculated as 157 

described in Arah (1997). In Arah’s equation N2O d׳D is the fraction of the emitted N2O 158 

which is derived from the 15N labelled, denitrifying NO3
- pool. A N2O d׳D value of unity 159 

(1.00) indicates that 100% of the N2O emitted derived from the NO3
- pool. 160 

To determine the source of the measured N2O, i.e. how much of it was derived from the 161 

amendment (N2O_Namend) rather than the native soil N, the following equation was used for 162 

the labelled treatments (Senbayram et al., 2009): 163 
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𝑁2𝑂_𝑁𝑎𝑚𝑒𝑛𝑑 =  𝑁2𝑂_𝑁𝑡𝑜𝑡𝑎𝑙 (
N𝑎𝑡%𝑒𝑥𝑠𝑎𝑚𝑝𝑙𝑒 

15

N𝑎𝑡%𝑒𝑥𝑓𝑒𝑟𝑡 
15 )     (1) 164 

where N2O_Ntotal = total emissions of N2O from the soil; 15Nat%exsample = 15N atom% excess 165 

of the emitted N2O (15N atom% of the measured sample minus the mean natural 15N 166 

abundance of background N2O obtained in our experiment (0.366 atom %)); 15Nat%exfert = 167 

15N atom% excess of the applied amendment solution. 168 

 169 

2.5. Soil analyses 170 

Soil samples were taken at the beginning and end of the incubation to determine the initial 171 

and final moisture contents and the NH4
+ and total oxidised N (TON: NO3

- + NO2
-) 172 

concentrations. Nitrite (NO2
-) is generally thought to accumulate very rarely in nature, and 173 

it has been shown that NO2
- is rapidly mineralised in soil (Paul and Clark, 1989; Burns et al., 174 

1995, 1996). It is therefore assumed that NO2
- concentrations in the soil samples are 175 

negligible, and TON is nearly exclusively made up of NO3
-. For the final soil analyses, each 176 

core was divided in half to separate the top section from the bottom section. WFPS was 177 

calculated from soil moisture contents by drying a subsample (50 g) at 105°C overnight. 178 

Soil NH4
+-N and TON were analysed by automated colorimetry from 2M KCl soil extracts 179 

using a Skalar SANPLUS Analyser (Skalar Analytical B.V., Breda, Netherlands) (Searle, 1984). 180 

15N abundance of NO3
- and NH4

+ was measured by quadrupole mass spectrometer (GAM 181 

200, InProcess, Bremen, Germany) (as described by Stange et al. (2007) at the Thünen 182 

Institute of Climate Smart Agriculture (Brauschweig, Germany)). Briefly, NO3
- was reduced 183 

to NO by Vanadium chloride (V(III)Cl3) and NH4
+ was oxidized to N2 by Hypobromite 184 

(NaOBr). NO and N2 were the gases measured.  185 

 186 
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2.6. Statistical analysis 187 

Statistical analysis was performed using GenStat 16th edition (VSN International Ltd). Prior 188 

to the statistical tests all data were analyzed to proof their normal distribution 189 

(Kolmogorov-Smirnov test) and equality of variance (Levene test). Cumulative emissions of 190 

NO, N2O, N2 and CO2 were calculated from the area under the curve after linear 191 

interpolation between sampling points. Differences in total emissions for each gas 192 

measured between treatments as well as differences in soil characteristics between 193 

treatments and between top and bottom of soil cores were assessed by ANOVA at P < 0.05. 194 

Where treatment effects proved to be significant, Fisher’s Least Significant Test (LSD) was 195 

used as post hoc test to ascertain differences among treatment levels.  196 

 197 

3. Results  198 

3.1. Gas emissions 199 

CO2 fluxes showed constant emissions of 10 kg C ha-1 d-1 before and after the CO2 peak (day 200 

0-6) in all vessels. N2 emissions increased at the moment the amendment was applied, but 201 

decreased immediatelly after until day 3.5 when they reached background levels, before 202 

increasing again. In order to show CO2 and N2 emissions attributed to amendment 203 

application only, the fluxes were adjusted by subtracting background emissions. There 204 

were no significant differences in fluxes, or cumulative emissions for any of the measured 205 

gases between the labelled and unlabelled treatments (Table 2). Both treatments, 206 

however, were significantly higher than the control for all gaseous emissions measured, 207 

except for N2.  208 

Nitric oxide emissions peaked 14 hours after amendment application (Fig. 1), with 209 

maximum average fluxes of 0.58 and 0.70 kg N ha-1 d-1, for the labelled and unlabelled 210 
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treatment, respectively. Fluxes decreased afterwards resulting in values below 0.1 kg N ha-1 211 

d-1 30 hours after amendment application. Fluxes then decreased further to below 0.05 kg 212 

N ha-1 d-1, before showing a linear increase over 5 days to values of around 0.1 kg N ha-1 d-1 213 

until the end of the experiment. Losses of N via NO emissions represented 0.61 and 0.67% 214 

of the N added. The control treatment showed negligible fluxes of NO over the whole 215 

experimental period.   216 

Similar to NO, emissions of N2O increased immediately after amendment application. After 217 

14 hours, N2O showed a first maximum of 0.24 and 0.17 kg N ha-1 d-1 for the labelled and 218 

unlabelled treatment, respectively (Fig. 1). In both treatments fluxes decreased over the 219 

following 12 h by 0.02 kg N ha-1 d-1 before increasing again to a maximum of 0.45 and 0.44 220 

kg N ha-1 d-1, 3.3 and 3.8 days after amendment application, respectively. Total losses of 221 

N2O represented 1.60 and 1.68% of the N applied for the labelled and unlabelled 222 

treatment, respectively. Again the control treatment maintained significantly lower fluxes 223 

than the fertilized treatments over the whole experimental period. 224 

Gaseous nitrogen (N2) fluxes (Fig. 1) were very similar in all treatments, and showed a 225 

decrease during the first 3.5 days of the experiment. After this initial phase, fluxes 226 

increased again to maxima of 0.09, 0.08 and 0.05 kg N ha-1 d-1 for the unlabelled, labelled 227 

and control treatment, respectively. Though not statistically different (p=0.078), both of 228 

the amended treatments showed higher fluxes (maximum of 0.08 kg N ha-1 d-1) than the 229 

control (maximum of 0.05 kg N ha-1 d-1), before decreasing again to the level they had 230 

reached 3.5 days after amendment application. Total N2-N losses attributed to the 231 

amendment were 0.05% and 0.03% of the N applied, for the labelled and unlabelled 232 

treatment, respectively.  233 
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Cumulative emissions over the course of the experiment (Table 2) show that about 2.5 234 

times more N was lost via N2O emissions than NO emissions, and total N losses via NO and 235 

N2O were over 40 times higher in the amended treatments than in the control. 236 

Carbon dioxide fluxes (Fig. 1) increased immediately after amendment application, 237 

reaching values of 27.3 kg C ha-1 d-1  for both labelled and unlabelled treatments 1.5 days 238 

after amendment application, and 1.5 kg C ha-1 d-1 for the control 2 days after amendment 239 

application. By day 4, CO2 fluxes had decreased to values of 6 kg C ha-1 d-1 for both fertiliser 240 

amended treatments, with further decreases to background levels. The control only 241 

showed slightly elevated fluxes that decreased back to background levels by day 3. Above 242 

background losses of CO2 represented 22.0 and 23.2% of C added with the amendment for 243 

the labelled and unlabelled treatments. 244 

<Figure 1: Gaseous emissions over the course of the incubation> 245 

<Figure 2: Evolution of gaseous emissions> 246 

Figure 2 shows the average of the fluxes of all measured gases emitted from the fertiliser 247 

amended treatments (mean of labelled and unlabelled). Emissions of NO, N2O and CO2 248 

increased within the first 2 hours after amendment application. As expected from the 249 

mechanistic pathway for denitrification, NO is the first gas to peak followed by N2O, and 250 

finally N2. The sequence of emissions and processes can be described in 3 phases. Phase I 251 

(day 0-1): NO peak and a first small N2O peak; Phase II (day 1-4): main N2O peak, maximum 252 

CO2; Phase III (day 4-10): N2 peak, NO small gradual increase. 253 

<Table 2: Cumulative emissions> 254 

 255 

3.2. Isotopic results  256 
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The 15N enrichment of the measured N2O was equal whether it was calculated from 45R or 257 

46R, proving that N2O originated from a single uniformly labelled NO3
- pool (homogenuously 258 

mixed labelled amendment with native soil NO3
-). The N2O d׳D values obtained from Arah’s 259 

equation, were not significantly different from unity (data not shown); therefore the 260 

source of the N2O was the uniformly mixed 15N labelled NO3
- pool. 261 

The emitted N2O of the labelled treatment was analysed for 15N enrichment, and results 262 

showed that up to day 5, around 85% of the emitted N2O was derived from the 263 

amendment and 15% originated from the native soil NO3
-.  264 

 265 

3.3. Soil chemistry 266 

Total oxidised nitrogen (TON) (which is assumed to be nearly exclusively made up of NO3
-) 267 

was significantly higher in the top half than in the bottom half of the cores, and while there 268 

was no significant difference between the labelled and unlabelled treatments, both had 269 

significantly higher concentrations of TON and NH4
+-N than the control (Table 3). The initial 270 

soil TON content was about an eigth of the added N (15.1 vs 121.5 mg N kg dry soil-1). At 271 

the end of the incubation the amended treatments showed a 16 to 19 fold increase in TON 272 

while the TON in the control increased 6 to 7 fold. The 15N enrichment of TON was 273 

significantly higher in the top (3.5803 ± 0.0496 atom%) than in the bottom (3.0708 ± 274 

0.0536 atom%) half of the cores in the labelled treatment. 275 

The soil NH4
+-N concentrations were lower than TON concentrations at the end of the 276 

incubation in all treatments, with slightly higher values in the bottom sections of the cores. 277 

By the end of the incubation, NH4
+ concentrations had increased from 9.2 mg N kg-1 dry soil 278 

to around 13.2 and 15.0 mg N kg-1 at the top and bottom of the core respectively. The 279 

enrichment of NH4
+-N  in the top (0.4624 ± 0.0164 atom%)  was significantly different to 280 
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the bottom (0.3941 ± 0.0130 atom%) and to natural abundance, but the enrichment of the 281 

NH4
+-N at the bottom (though elevated) was not significantly higher than natural 282 

abundance.     283 

Soil moisture was 85% WFPS at the start of the incubation and was maintained for the 284 

whole core at a similar level for all treatments throughout the experiment (top of cores 285 

81.27 ± 1.319%, bottom of cores 88.90 ± 1.145). By the end of the experiment the WFPS 286 

was significantly higher at the bottom of the core than the top with ~5% of the water 287 

having been redistributed from the top to the bottom of the core. 288 

<Table 3: Final soil data> 289 

 290 

4. Discussion 291 

4.1. N2O emissions 292 

Stable isotope ratios are determined by the isotope ratios of the precursor materials and 293 

the preferential use of lighter isotopes by microorganisms (Holland and Turekian, 2010; Hu 294 

et al., 2015). Results showed that using 5 atom% enriched KNO3 had no influence on the 295 

use of the native vs. enriched N-pool, providing confidence that the isotope analysis used 296 

in this study was a good tool to further investigate the source process of the gaseous 297 

emissions. 298 

Data from the 15N-labelled treatment indicate that 85% of N2O was derived from the 299 

exogenously applied NO3
-, whereas only 15% was produced from the native soil NO3

- pool 300 

and/or NO3
- formed by mineralisation. This source apportioning was maintained until day 301 

5, after which N2O emissions were negligible, and were similar to the initial apportioning of 302 

the soil NO3
-, with the native soil NO3

- making up 11.1% of the total NO3
-, while the 303 
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amendment represented 88.9%. This similarity suggests that the amendment NO3
- was 304 

homogenuously mixed with the native soil NO3
-. The amount of N2O derived from the 305 

native soil NO3 from the fertilizer amended treatments (0.18 kg N ha-1) was higher than 306 

that emitted from the control (<0.01 kg N ha-1, Fig. 2) also suggesting that the amendment 307 

(KNO3 and C) and the native soil NO3
- had mixed, becoming available to the microbial 308 

community. 309 

The equation of Arah (1997) was used to determine the process leading to the formation of 310 

the measured N2O for data collected during the first 5 days after amendment application; 311 

after this period, N2O concentrations were too low to calculate d’D values. The determined 312 

d’D values for those first 5 days indicate that close to 100% of the emitted N2O derived 313 

from denitrification of the NO3
- pool.  314 

Arah’s equation assumes that nitrification and denitrification are the only source processes 315 

occurring. Our results, however, suggest that it is possible that some of the N2O might have 316 

derived from dissimilatory nitrate reduction to ammonium (DNRA). In DNRA, NO3
-  is 317 

reduced to NH4
+ under similar conditions as denitrification (Fazzolari et al., 1998) and is 318 

promoted at C:N ratios (glucose-C:NO3
-) higher than 4 (Smith, 1982; Fazzolari et al., 1998). 319 

The increase in soil NH4
+ in the N treatments and the increase in 15N enrichment by 320 

0.092atom% indicates that some of the added NO3
- was transformed to NH4

+. Although it 321 

has been argued that N2O is produced by DNRA via NO2
- reduction (Schmidt et al., 2011), 322 

the contribution of DNRA to N2O production is still uncertain (Baggs, 2011). The C:N ratio 323 

following amendment in the current study was 5.3,  and the formation of NH4
+ from NO3

- 324 

indicates  the possibility that some of the N2O was produced through DNRA.  325 

 326 

4.2. NO emissions 327 
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Nitric oxide is an obligate intermediate of N2O production through denitrification (e.g. Ye et 328 

al. (1994)). However, if soil moisture content is high (WFPS > 80%), emission of NO is 329 

generally considered to be non-detectable due to slow diffusion of NO from denitrifier-cells 330 

to the soil atmosphere, and later to air (Russow et al., 2009), during which it is further 331 

reduced to N2O. Based on this assumption, most studies indicate that emitted NO is mainly 332 

produced from hydroxylamine (NH2OH) during nitrification by ammonium oxidisers, which 333 

occurs at low soil moisture levels (Skiba et al., 1997). The control treatment did not show 334 

any NO emissions. As both, control and N amended treatments, had similar initial soil NH4
+ 335 

contents (9-13 mg N kg-1), treatments should have had similar NO fluxes if nitrification of 336 

NH4
+ had been the only source of NO under our experimental conditions. As this is not the 337 

case it can be assumed that nitrification did not contribute to initial NO emissions.  338 

The increase observed with KNO3 application in phase I (Fig. 2) indicates that NO came 339 

from denitrification in our experiment. Several studies have measured NO fluxes under 340 

anoxic/denitrifying conditions in the field or laboratory and have found increased NO 341 

emissions after fertilisation or irrigation (e.g. Liu et al., 2010a; Liu et al., 2010b; Bakken et 342 

al., 2012). However, to date only our study and those of Russow et al. (2009) and Wang et 343 

al. (2011; 2013) have shown that significant NO emissions can be directly promoted by 344 

denitrification in soils. Those previous studies confirmed NO as a free intermediate product 345 

of denitrification, however, those findings  were derived from experiments performed 346 

under O2 depleted atmospheres. The soil in our study had a high WFPS to create anaerobic 347 

conditions, and therefore promote denitrification within the soil, the atmosphere above 348 

the soil surface, however, was kept aerobic. To the best of our knowledge our study is the 349 

first one showing high NO emissions derived from denitrification processes under an 350 

aerobic atmosphere. 351 
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During phase III (Fig. 2) of the experiment, NO emissions started to gradually increase 352 

again. A possible explanation for this is that around day 5, at the point of the N2 maximum, 353 

the soil O2 would have been depleted to its lowest levels, with rapid reduction of N2O to N2 354 

as a result of anaerobic respiration. The CO2 fluxes were back to background levels showing 355 

aerobic respiration was back to pre-amendment application levels. The recovery of NO 356 

after this point, and the lack of N2O emissions suggest that the soil might be recovering 357 

some aerobicity due to diffusion of the atmospheric oxygen from the headspace, and that 358 

nitrification could have been the source of those later NO fluxes (day 5.5 to 10). The soil 359 

NO3
- increased during the incubation by about 125-130 mg N kg-1 dry soil (equivalent to 360 

~10 mg N kg-1 dry soil d-1). This rate is similar to rates measured previously for the same soil 361 

(unplublished data). This increase shows that mineralisation and nitrification occurred at 362 

some point in the incubation and that the later increase in NO could have been the result 363 

of these processes.  364 

 365 

4.3. N2 emissions 366 

One indication of NO3
- reduction by denitrification is the emission of N2. The high N2 367 

concentrations in our experiment directly after amendment application were most likely 368 

due to dissolved N2 contained in the amendment solution being released into the vessel 369 

and flushed out over the first few days, reducing the N2 concentrations back to background 370 

levels before the actual N2 peak appeared after day 3.5. When N2O was depleted in the 371 

fertilizer treatments, N2 increased slightly (Fig. 2), but concentrations were very low and 372 

not significantly different from the control, indicating that the addition of water stimulated 373 

production of N2 in all treatments. Although there is scarce information regarding fluxes of 374 

N2 in agricultural soils in response to the application of C and N sources, the appearance of 375 
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the N2 peak has also been observed 3-4 days after application of amendments in previous 376 

experiments (Cardenas et al., 2007; Meijide et al., 2010; Bergstermann et al., 2011).  377 

The relatively low N2 emissions in comparison to high NO and N2O emissions can be 378 

explained by the physiology and metabolism of the denitrifying bacteria and the high soil 379 

NO3
- levels remaining at the end of the incubation. Energy yields from denitrification 380 

reactions lessen in order of their appearance, with the reduction of of NO3
- via NO2

- to NO 381 

being more energetically favourable than the reduction of NO to N2O and of N2O to N2 382 

(Koike and Hattori, 1975).  383 

 384 

4.4. Denitrification as the source process of emissions summarised 385 

The aim of this study was to investigate gaseous emissions from denitrification under an 386 

atmosphere that still contained natural amounts of oxygen. To induce low oxygen 387 

conditions in the soil, while the above atmosphere was kept at normal O2 levels, the soil 388 

cores had been set to a high WFPS and NO3
- and a labile C source had been applied in 389 

excess. 390 

The apex of the peaks of the measured gases appear in the order that would be expected 391 

from the denitrification pathway, i.e. NO3
- is transformed to NO, which is then transformed 392 

into N2O and finally N2. In our study NO was produced in the hours following NO3
- 393 

application (Fig.2, Phase I). These emissions start at the same time as those of N2O, but 394 

decline more rapidly (i.e. 2 vs 5 days after amendment application). The next gas to peak in 395 

its emissions is N2O (Fig.2, Phase II) followed by a small increase in N2 (Fig.2, Phase III). 396 

Overall, the results of this study indicate that denitrification played the most significant 397 

role in gaseous emissions. Total denitrification (sum of NO, N2O and N2) is normally 398 

affected by soil abiotic properties such as WFPS, NO3
- and available C. A high soil WFPS 399 
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reduces O2 diffusion to the pore space (Parton et al., 2001) which, in combination with 400 

KNO3 and C addition, promotes denitrifying conditions. The availability of C not only 401 

supports the activity of denitrifiers per se, but also has the indirect effect of causing soil 402 

microsite anaerobiosis, due to an increased respiratory demand for O2. The high amount of 403 

NO3
-, which acts as an electron acceptor for denitrifiers, favoures the production of 404 

gaseous N-oxides over other reduced forms such as N2. Additionally, even though the 405 

synergistic activities of microbial communities in soil can lead to complete denitrification of 406 

NO3
- to N2, the earlier steps in the denitrification process are energetically more favourable 407 

often resulting in N2O consequently becoming the final denitrification product, especially if 408 

NO3
- is not limiting (Saggar et al., 2013). 409 

 410 

5. Conclusions 411 

This study shows that denitrification can be a major source of NO from soils at high water 412 

content and under the presence of an easily available C source. Until now, most studies 413 

indicated that NO produced in soils during denitrification was consumed by denitrifiers 414 

forming N2O or N2. To the best of our knowledge, this study, on a UK grassland soil, is the 415 

first showing high NO emissions derived from denitrification processes in a soil under high 416 

WFPS (creating anaerobic soil conditions and promoting denitrification), but with aerobic 417 

conditions above the soil surface. Our findings have several implications for an array of 418 

research fields. For example, in simulation studies using process-based models, the 419 

contribution of denitrification to NO emissions has been overlooked and needs to be taken 420 

into account. Our results also show that NO was mainly produced when an external source 421 

of NO3
- was added to soils. N2O fluxes, which appeared when NO fluxes had diminished, 422 

were also affected by amendments. Complete denitrification from exogenous NO3
- to N2 423 
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did not occur, and consequently the N2O:N2 ratio increased with amendment addition. 424 

Further research combining molecular tools with isotopic analyses is needed to expand the 425 

findings of our study. 426 
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Figure 1: Gaseous emissions over the course of the incubation  553 

(1 kg ha-1 d-1 = 4.17x10-4 mg cm-2 h-1) 554 

Phase I: NO peak and N2O shows first peak. Phase II: NO emissions decrease. Main N2O 555 

peak, high CO2 concentrations decrease. Phase III: NO emissions steadily increase again; 556 

CO2 and N2O emissions decrease to background levels.   557 
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Figure 2: Evolution of gaseous emissions of NO, N2O, N2 and CO2 from the amended 559 

treatments; N2 flux from the amended treatment is multiplied by ten, to improve visibility 560 

on the graph. CO2 and N2 emissions are baseline corrected to show amendment effects 561 

only. (1 kg ha-1 d-1 = 4.17x10-4 mg cm-2 h-1) 562 
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Table 1. Soil characteristics (before amendment application).  

Mean ± standard error (n = 3). 

Parameter Amount 

pH water [1:2.5]  5.6  ± 0.27 

Available Magnesium (mg kg-1 dry soil) 100.4  ± 4.81 

Available Phosphorus (mg kg-1 dry soil)      10.4  ± 1.10 

Available Potassium (mg kg-1 dry soil)      97.5   ± 12.83 

Available Sulphate (mg kg-1 dry soil) 51.7   ± 0.62 

Total N (% w/w) 0.5   ± 0.01 

Total Oxidised N (mg kg-1 dry soil) 15.1  ± 0.07 

Ammonium N (mg kg-1 dry soil) 9.2 ± 0.09 

Organic Matter (% w/w) 11.7  ± 0.29 

 567 

 568 

Table 2. Cumulative emissions of NO, N2O, N2 as kg N ha-1 and CO2 as kg C ha-1 over the 

time of the respective peaks. N2 and CO2 emissions are baseline subtracted. Different letters 

indicate a significant difference between treatments for each measured gas (n = 4, p < 0.05). 

Gas  
Labelled      

 (15N-KNO3+C) 

Unlabelled       

(KNO3+C) 
Control 

NO     0.46 ± 0.02 A   0.50 ± 0.02  A 0.03 ± 0.03 B 

N2O   1.20 ± 0.28 A   1.26 ± 0.08 A 0.01 ± 0.01 B 

N2   0.30 ± 0.03 A   0.33 ± 0.07 A  0.14 ± 0.06 A 

CO2 87.89 ± 3.73 A 92.68 ± 2.68 A 5.50 ± 3.39 B 

 569 

Table 3. Total Oxidized N (TON) and ammonium (NH4
+) at the end of the experiment. Different 

letters indicate significant differences between treatments for each layer [Top (A/B) or Bottom (X/Y)]; 

* indicates significant differences between the Top and Bottom layer within a single treatment (TON 

and NH4
+: n = 4, p < 0.05, p < 0.05). 

Parameter Layer 
Labelled      

 (15N-KNO3+C) 

Unlabelled       

(KNO3+C) 
Control 

TON 

(mg N kg-1 dry soil) 

Top 271.8 ± 17.32 *A 292.6 ± 17.09 *A 90.5 ± 3.61 *B 

Bottom 246.0 ± 21.37 *X 239.5 ± 14.85 *X 108.3 ± 5.22 *Y 

NH4
+ 

(mg N kg-1 dry soil) 

Top 13.4 ± 1.66 *A 13.0 ± 1.25 *A 8.5 ± 0.55 *B 

Bottom 15.2 ± 2.42 *X 14.9 ± 2.11 *X 9.5 ± 0.77 *Y 

 570 

  571 
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Table 4. Total Oxidized N (TON) and ammonium (NH4
+) at the end of the experiment. Different 

letters indicate significant differences between treatments for each layer [Top (A/B) or Bottom (X/Y)]; 

* indicates significant differences between the Top and Bottom layer within a single treatment (TON 

and NH4
+: n = 4, p < 0.05, p < 0.05). 

Parameter Layer 
Labelled      

 (15N-KNO3+C) 

Unlabelled       

(KNO3+C) 
Control 

TON 

(mg N kg-1 dry soil) 

Top 271.8 ± 17.32 *A 292.6 ± 17.09 *A 90.5 ± 3.61 *B 

Bottom 246.0 ± 21.37 *X 239.5 ± 14.85 *X 108.3 ± 5.22 *Y 

NH4
+ 

(mg N kg-1 dry soil) 

Top 13.4 ± 1.66 *A 13.0 ± 1.25 *A 8.5 ± 0.55 *B 

Bottom 15.2 ± 2.42 *X 14.9 ± 2.11 *X 9.5 ± 0.77 *Y 
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