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Abstract

The use of molecular techniques in insect ecology has expanded rapidly, allowing ever
morechallengingquestions tobeaddressed.Comparedto their abovegroundequivalents,
root herbivoremolecular ecology has received less attention, despite essentially the same
ecological questions being of importance in both the above- and belowground ecosys-
tems. Studies so far have concentrated on economically important taxa, using mitochon-
drial and nuclear DNA sequencing and a variety of markers to investigate the species
identity and relationships, population dynamics and dispersal, distribution, feeding behav-
iour and interactionswith other organisms. Although this has proved useful for elucidating
these aspects of their ecology, there remains a need to focus on the functioning of root
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herbivores in the soil ecosystem. Application of new and emerging technologies devel-
oped for aboveground systems will increasingly be applied to those belowground, all-
owing a focus on root herbivore biology and ecology in the context of ecosystem
processes and systems ecology. For the foreseeable future, however, the use of molecular
techniques is likely to remain dominated by the need to address pragmatic research ques-
tions about specific taxa, notably pests.

1. INTRODUCTION

A rise in the number and accessibility of DNA techniques and their

application to entomology has led to investigation of, among other aspects,

the genetic diversity, phylogeography and species identity and taxonomic

relationships of a wide range of invertebrates. Numerous published studies

have used molecular markers in tandem with data obtained in the field or

laboratory to answer ecological questions, focusing on both applied (e.g. pest

management and conservation biology) and theoretical aspects of the ecol-

ogy of various species, but the vast majority of these are on aboveground

insect herbivores, which are generally conspicuous, accessible and easy to

manipulate both in the field and the laboratory using well-described

methods. For example, only 10 of the 249 articles on insect herbivores pub-

lished in the journals Molecular Ecology and Molecular Ecology Resources (for-

merly Molecular Ecology Notes) are on root-feeding taxa. This bias towards

the study of aboveground herbivores has been noted (e.g. Blossey and

Hunt-Joshi, 2003; Hunter, 2001) and the distribution, abundance, activities

and effects of many important belowground species remain

underresearched. This reflects a general situation where we know far more

about above- than belowground herbivory. A large proportion of the studies

that have been carried out on root antagonists focus on nematodes, for

which researchers have adopted molecular approaches similar to those used

in soil microbiology (e.g. Powers et al., 2011; Waite et al., 2003) to inves-

tigate their biology and ecology partially because their microscopic size and

morphologically cryptic nature makes this particularly difficult. Many other

taxa have been overlooked, yet molecular genetic methods have the poten-

tial to overcome some of the difficulties associated with the study of root

herbivores and allow the investigation of areas of their ecology for which

we currently lack a detailed understanding. This has become increasingly

recognised by researchers in this field over the last decade and some
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important advances have been made, but further opportunities remain, par-

ticularly as new methods are developed.

Most molecular genetic techniques revolve around the extraction of

DNA from the organism of interest followed by polymerase chain reaction

(PCR) to amplify DNA, allowing it to be subsequently manipulated and

characterised (Freeland, 2005). Using primers, either universal or species-

specific, to target different regions of DNA allows a large degree of flexibility

in the questions that can be asked. Mitochondrial DNA (mtDNA) is often

used because of its high mutation rate, ease of manipulation and lack of

recombination and is therefore useful for investigating diversity within

and between populations, for example, for indirectly inferring dispersal from

gene flow and determining evolutionary relationships. Molecular markers

are used extensively in ecology to quantify levels of genetic variation.

Allozymes (enzyme polymorphisms) determined using isoelectric focus-

ing/isoenzyme electrophoresis (separation of proteins using gel electropho-

resis) and monoclonal antibodies are two of the first protein-based

techniques used in ecological research. Restriction fragment length poly-

morphisms (RFLPs), based on variation in DNA sequences rather than pro-

teins, and PCR–RFLP, a variation on this targeting specific regions of

DNA, are now less common but can still be useful for certain applications.

Microsatellites are often used in population genetic studies. These are

stretches of DNA that consist of tandem repeats of 1–6 bp, and their use

is based on allele size differences between individuals, caused by mutations

arising during slippage in replication (Freeland, 2005). Other markers

include randomly amplified polymorphic DNA (RAPD; Welsh and

McClelland, 1990;Williams et al., 1990), for which PCR is used to generate

fragments using a randomly selected 10-bp primer (Ritland and Ritland,

2000) and amplified fragment length polymorphisms (AFLPs), which use

restriction digest of genomic DNA followed by amplification of a subset

of fragments (Vos et al., 1995). These techniques do not require prior

sequence knowledge and so development time can be short (though see

Section 3.2), but RAPDs are no longer commonly used for population

genetics because of lack of reproducibility and therefore reliability

(Freeland, 2005). For many of the previously mentioned methods, the

DNA sequence that is being targeted is not known, but DNA sequences

obtained through Sanger sequencing (a widely used DNA sequencing

method) can be used directly to quantify genetic variation via base-pair dif-

ferences between individuals. Related to this, single-nucleotide polymor-

phisms are single-base-pair positions in a sequence that are variable
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between individuals and provide another way of determining sequence var-

iation at multiple loci. Quantitative polymerase chain reaction (qPCR) can

be used to determine the amount of DNA present in a sample, whereby a

molecular tag is incorporated into the PCR.When the tag binds to DNA, it

fluoresces and this is recorded at each cycle as a fluorometric reading, which

is proportional to the amount of DNA present. More recently, next-

generation sequencing (NGS) approaches, which allow massively parallel,

or deep, sequencing of DNA fragments, have allowed whole genomes or

communities to be sequenced in a time- and cost-effective manner, paving

the way for larger-scale studies and opening up new opportunities for the

study of certain aspects of insect ecology.

The use of these markers depends upon both the question under study

and practicality (time and resources) and as such a variety of methods have

been used in different disciplines within root herbivore ecology (Table 5.1).

This chapter aims to describe and summarise the applications of these tech-

niques, drawing on studies already undertaken and providing suggestions for

the focus of future work.

2. SPECIES INTERACTIONS

The nature of the soil environment, and the size of the organisms

within it, makes it difficult to study the behavioural ecology of belowground

insects without manipulation of conditions in usually less than realistic lab-

oratory experiments. One area in which molecular ecological techniques

have helped to overcome these practical issues is feeding ecology. Above-

ground insect herbivores have been extensively studied, for example, in

terms of host–plant interactions (e.g. Pieterse and Dicke, 2007;

Whiteman and Jander, 2010) and predator–prey food webs (Hereward

and Walter, 2012), but there are relatively few studies on soil insect herbi-

vores specifically.

Soil organisms have been recognised to play a vital role in nutrient

cycling and decomposition and as such have been studied in relation to their

role in the soil food web. This has mainly been limited to the mesofauna,

bacteria and fungi (through the use of stable isotopes, e.g. Crotty et al.,

2011, 2012); however, researchers have started to consider species-specific

interactions of the macrofauna in the soil food web (Eitzinger et al., 2013).

This has been achieved by gut content analysis, using molecular probes that

target specific regions of plant or herbivore DNA present in whole-organism
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DNA extracts using PCR, without the need for extraction and dissection of

the gut. These PCR products can then be subjected to gel electrophoresis

and identified based on the size of the product produced or fluorescently

labelled and analysed using fragment analysis using an automated sequencer.

Traditionally, monoclonal antibodies (reviewed in Sheppard and Harwood,

2005) and isoenzyme electrophoresis (e.g. Amalin et al., 2000; Traugott,

2003) have been used for gut content analysis, but diagnostic PCR protocols

are nowmore commonly adopted since they are cost- and time-efficient and

use widely available equipment, and once the tool is developed, it can be

applied by other researchers and/or modified to detect specific DNA targets,

depending upon the question under study (Juen and Traugott, 2006).

2.1. Predator–prey interactions
As in studies of aboveground insects (Sheppard and Harwood, 2005), sec-

tions of the mtDNA COI gene have been targeted in the present studies.

This region of DNA is commonly used for species identification through

barcoding (see Section 4.1) and contains both conserved and variable

regions, meaning universal primers (Folmer et al., 1994) and species-specific

primers can be employed. As such, this makes it an easily manipulated target

for use in gut content analysis. Juen and Traugott (2005) developed the first

PCR-based approach for studying soil insect predator–prey dynamics using

white grubs, also known collectively as canegrubs and chafers (Scarabidae

larvae;Melolontha melolontha), in feeding experiments with larvae of the gro-

und beetle Poecilus versicolor, a common above- (as adults) and belowground

(as larvae) predator. They tested the effect of digestion time on detection of

target DNA of different lengths, using primers designed specifically to

amplifyM. melolonthaDNA. Importantly, for future studies, they found that

DNA could be detected from even small amounts of predation (i.e. when

larvae were fed a single egg) and that the primers were able to amplify

DNA from feeding on both carcasses and fresh prey at similar levels. This

was not correlated with rate of digestion and did not differ significantly

between lengths of fragment targeted (ranging from 175 to 585 bp). It

was therefore not possible to distinguish between scavenging and active

predation—a possible limitation to this type of study. This protocol was

applied in an investigation of the predator guild of another pest scarab,

the garden chafer Phyllopertha horticola, but using newly designed primers

specifically targeting this species (Juen and Traugott, 2007). P. horticola

DNA was successfully detected in a variety of predators (mostly in Geo-

philidae and predatory beetle larvae), showing that the larvae are a
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potentially important prey item in the soil foodweb and that these taxa could

therefore be important natural enemies of this pest. This is especially relevant

since earthworm DNAwas only found in 2.7% of tested individuals, yet this

taxon is known to be a widespread and highly abundant and important food

source for soil predators.

Using a slightly different approach, Lundgren et al. (2009) considered

predation of Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) larvae

using qPCR to detect D. virgifera DNA sequences in arthropod predator

guts. Primers that amplified a segment of the COI and tRNA-Leu genes

of D. virgifera were designed and used together with feeding experiments

with various predators. This semiquantitative method not only detects prey

DNA but gives an idea of the amount present. It was found that more pred-

ators were positive for D. virgifera DNA in the egg stage than the larval stage

and predators differed in their propensity to consume D. virgifera. This sug-

gests that timing might be an important factor in predation (i.e. longevity of

egg and larval stages) and that a range of arthropod species (ground beetles,

harvestmen, wolf spiders and predaceous mites) are important in regulating

this pest, which has implications for agricultural management. However, the

study mainly concerned surface-active predators caught in pitfall traps;

focusing on predators within the soil column may provide a different pic-

ture. Using the same approach, a further study (Lundgren and Fergen,

2011) evaluated whether winter vegetation increased larval predation by

predators aboveground and in the soil column. Twenty predator taxa from

the soil column and 33 taxa from the soil surface were found to have con-

sumed the larvae, with Carabidae being one of the most abundant in both,

showing this pest has a diverse predator community, which suggests conser-

vation efforts should be targeted at this level rather than at specific taxa.

qPCR correlated well with pest damage only when a predation index

was used taking into account DNA quantity, predator abundance and rela-

tive frequency of detection but, combined with predation intensity obser-

vations using restrained larvae, gave an overall view of these predator–prey

interactions.

Eitzinger et al. (2013) recently developed a PCR assay for the detection

of prey DNA in soil-dwelling centipedes (Lithobius spp.) from forest soils,

targeting a range of invertebrate taxa at the family level, and others have

developed assays for soil-dwelling predacious beetle larvae-consuming taxa

at other trophic levels (e.g. detritivores: earthworms and Collembola;

Eitzinger and Traugott, 2011), which could potentially be adapted for

assessing interactions of root herbivores specifically.
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As shown in aboveground predator–prey systems, there are various param-

eters that can affect the ability to detect and quantify prey within predators,

such as predator identity and size of the target DNA molecule (Sheppard

and Harwood, 2005). These effects are little known for root herbivores,

but some aspects have recently been studied by Waldner et al. (2013), who

tested prey detection intervals for DNA fragments of different sizes, meal size

and relative biomass increase in four different soil-dwelling predators of white

grub. Whereas meal size and predator biomass had no significant effect (as for

similar aboveground studies), prey detection intervals were affected by the size

of DNA fragments, for which smaller intraspecific differences were found for

the medium-sized fragment in beetles, and differed between, but were similar

within, taxa. These results imply that primer sensitivity and predator identity

may affect observed outcomes. In terms of quantification, there are many

interacting factors that lead to the final amount of food present in the gut,

and as such, it is not possible to make inferences about the number of prey

eaten, rather an indication of which species are involved and their relative pre-

dation capabilities (Lundgren et al., 2009).

2.2. Plant–herbivore interactions
Studies on the dietary choices of root-feeding insects have also only recently

started to be explored. Staudacher et al. (2011b) developed a method for

detecting the presence of wheat and maize DNA in wireworms

(Coleoptera: Elateridae; click beetle larvae) using a similar protocol as the

predation studies previously mentioned but targeting genes that are more

relevant for plant identification (COI is not thought to be suitable since it

evolves too slowly). General primers were developed to amplify fragments

of rbcL and trnL plastid DNA, often used for plant DNA barcoding and

also specifically for maize and wheat. The plants could be detected for up

to 72 h postfeeding (the maximum tested), and the specific primers made

it possible to determine which plant DNA was present because of differen-

tially sized products, though further testing would be needed to determine

the postfeeding limits of detection. Following on from this, Wallinger et al.

(2013), using a multiplex PCR approach (Wallinger et al., 2012), deter-

mined that plant identity, but not wireworm species identity, and level of

decay were important in the detection of plant DNA, with decayed material

having a lower detection rate than fresh material and wheat detection being

significantly decreased over time as compared to maize.

228 Carly M. Benefer and Rod P. Blackshaw



Only one study has applied a developed molecular method, in combina-

tion with stable isotopes, to specifically investigate aspects of the ecology of

root herbivores, again using Agriotes wireworms as a model species

(Staudacher et al., 2013b). Using plants that are more or as attractive to pests

than the cultivated crop has been proposed to prevent wireworm damage

(Landl and Glauninger, 2013; Vernon et al., 2000), and this study investi-

gated wireworm feeding behaviour in the presence of increased plant diver-

sity and whether this could protect the maize crop. The protocol described

by Wallinger et al. (2012) was used for gut content analysis, while stable

isotopes were used to assess the long-term diet. The presence of a range

of plant species did in fact lure the wireworms away from the main crop,

increasing its yield, while it was shown that the larvae were actively feeding

on the other plant species, switching to these from the maize crop previously

consumed. This not only confirms previous observations but also shows

that using a mixture of noncrop plants planted at the same time as the crop

potentially provides protection from damage. However, some plants were

consumed more often than others and this differed between seasons, so

further work using these techniques is needed to determine the most appro-

priate plant mix for optimum results.

2.3. Endosymbionts
The importance of symbionts in insect–plant interactions is becoming

increasingly recognised (Frago et al., 2012), partly due to the relative ease

in which this can now be studied due to advances in molecular genetic

and genomic techniques. Gut symbionts allow adaptation to different food

plants, protection from predators or stress and may also promote speciation

by causing reproductive and ecological isolation of host populations (Moran

et al., 2008).Wolbachia species are intracellular, maternally inherited bacterial

parasites that can cause cytoplasmic incompatibility (preventing infected

males fertilising the eggs of uninfected females), feminisation of males and

killing of male embryos. Using primers targeting Wolbachia genes, the pres-

ence of this endosymbiont was investigated in northern corn rootworm,

Diabrotica barberi (Coleoptera: Chrysomelidae) populations in north central

United States (Roehrdanz and Levine, 2007). Previous studies found two

distinct mtDNA clades east and west of this boundary suggesting little

mixing of populations (Roehrdanz et al., 2003) and sinceWolbachia had been

detected in populations from the east of this area, this was postulated as a

possible cause. mtDNA (12S-N4 and CB2H-C2R genes) was amplified
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for the corn rootworm to gain mitochondrial haplotypes and primers

targetingWolbachia genes (16S rDNA, ftsZ and wsp genes) used to determine

its presence in rootworm DNA extracts. Two different strains were

detected on either side of the boundary, each associated with a different

mtDNA clade, suggesting the strains are not compatible, but testing with

nuclear DNA may help to determine whether Wolbachia is reducing gene

flow and increasing population differentiation or other factors are also

involved. Practically, if these delineated populations have different traits

affecting their control (e.g. insecticide resistance), this could have an impact

on pest management programmes.

Some endosymbionts have been considered for genetic manipulation as

biocontrol agents, especially for root-feeding pests such as wireworms for

which pesticide application is difficult and broad-spectrum pesticides are

now limited. Microbial agents have been trialled for wireworms in the past

with limited success, but a modified form of known symbionts in certain

species may increase their efficacy. Lacey et al. (2007) carried out a survey,

using 16S rRNA, of gut bacteria associated with Limonius canus wireworms,

which are often associated with potato damage, for this purpose. A number

of potential control candidates were found, including species that have

already been manipulated to produce insecticidal toxins and antagonistic

rhizosphere-associated species, which could be added to seed dressings or

used in a trap cropping approach (Rahnella aquatilis is common in the wheat

rhizosphere). Other bacterial species have also been isolated and tested for

their pathogenicity using the same approach for Agriotes lineatus wireworms,

though testing in the field is needed to confirm their efficacy in control

(Danismazoglu et al., 2012).

Metagenomic analysis of gut symbionts in three different herbivorous

insects, grasshopper (Acrida cinerea; Orthoptera), cutworm (Agrotis ipsilon;

Lepidoptera) and termite (Nasutitermes sp.; Isoptera: Termitidae), recently

revealed that gut symbiont composition was related to their function in bio-

mass degradation and nutrient biosynthesis (Shi et al., 2013). Furthermore,

gut symbionts and insects coevolved based on insect food preferences in

favour of optimal biomass degradation, nutrient utilisation and other

species-specific factors related to lifestyle. For example, cutworm contained

a higher diversity of symbionts than the other herbivores, possibly related to

its generalist feeding habit. This deep-sequencing approach revealed many

more symbionts than traditional techniques such as denaturing gradient gel

electrophoresis followed by 16S rRNA sequencing, including many

unculturable (but taxonomically described) species.
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3. GENETIC DIVERSITY

Investigating the genetic diversity within and between populations

provides much insight into the biology and ecology of species and is an

important contributor to the long-term conservation of populations, partic-

ularly under environmental change. Though it may be relatively straightfor-

ward to distinguish populations of aboveground insects, for which

boundaries can be more obvious, the soil represents a continuous habitat,

which makes it difficult to determine where one population ends and

another begins or indeed whether organisms are spatially structured in the

same way as they are aboveground. Dispersal is a key mechanism for

maintaining genetic diversity and viable populations, and for pest species,

knowledge of this is particularly relevant for devising management strategies,

taking into account spatial and temporal aspects of species’ biology.

At present, little is known of invertebrate movement within the soil.

Though some sophisticated techniques have been employed to look at

the in situ movement of soil-dwelling invertebrates, for example, X-ray

microtomography (Johnson et al., 2004) and controlled laboratory and field

experiments (Murray et al., 2010;Williams, 2012), this fails to provide infor-

mation on the extent of movement within and between populations in the

field. Using stable isotopes, Schallhart et al. (2011) attempted to track the

movement of Agriotes obscurus wireworms (click beetle larvae) between

fields, though none was detected (probably because there was a food supply

present). However, since many root herbivores are insect larvae with above-

ground adult stages, which can be assessed more easily, the majority of stud-

ies carried out to date have focused on adults. Few root-feeding taxa have

been studied but, where they have, several techniques have been used to

determine the population genetics of economically or ecologically impor-

tant species.

3.1. Corn rootworm
Molecular markers have been utilised to investigate the population genetics

of corn rootworm, which comprise a complex ofDiabrotica species that are of

particular economic importance in maize systems; larvae feed on crop roots

belowground, while adults inhabit the aboveground plant. Early studies

using allozymes (Krysan et al., 1989; McDonald et al., 1985) and PCR–

RFLP (based on the nuDNA ITS1 region; Szalanski et al., 1999) found

low levels of differentiation in geographically isolated populations of western
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corn rootworm (D. v. virgifera;WCR), Mexican corn rootworm (D. v. zeae;

MCR) and northern corn rootworm (D. barberi; NCR), suggesting high dis-

persal ability and limited barriers to gene flow. In the PCR–RFLP study, it

was also found that for some mitochondrial regions (18S and 5.8S rRNA),

there was no variation between subspecies, suggesting a recent common

evolutionary history. Because of the lack of variation at these mitochondrial

regions, microsatellite markers have since been developed for all three spe-

cies (Kim and Sappington, 2004; Kim et al., 2008; Waits and Stolz, 2008).

Kim and Sappington (2005) used these microsatellites for the WCR and

found that there were high levels of genetic diversity but little differentiation

between populations (though there was a significant correlation between

geographic and genetic distances overall). The authors concluded that

although it is possible these beetles have a high migration rate, it is more

probable that populations have had insufficient time to become significantly

genetically different since their expansion eastwards across the United States

around 50 years previously. More recently, Chen et al. (2012) used micro-

satellites forWCR to genotype populations with high, intermediate and low

levels of resistance to methyl parathion and aldrin, finding significant differ-

entiation between populations with high and low levels of resistance and

between geographically separated populations. As well as showing how

genetic and biological species information can be combined to increase

understanding of species’ ecology, the long-term study of corn rootworm

also shows how marker choice has evolved and is important in quantifying

genetic variation at different organisational levels.

3.2. Root-associated aphids
Due to their status as major agricultural pests, much work has been carried

out on the genetic diversity and evolutionary history of aphids and their

association with crops (Hales et al., 1997). There are, however, root-

associated species, which have attracted less attention, but are interesting

because of their life cycle. The lettuce root aphid (Pemphigus bursarius),

for example, sexually reproduces on black poplar and winged forms then

migrate tomembers of the Compositae (including lettuce) as secondary hosts

where they parthenogenetically reproduce on the roots. After several gen-

erations, winged forms emerge and they migrate back to the primary host

(Miller et al., 2003). Microsatellites have been developed (Miller et al.,

2000) and applied (Miller et al., 2003) to investigate the genetic structure

of populations on the primary and secondary hosts. The population structure
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of this species was found to be irregular. Several sample locations showed

significantly different allele frequencies when compared, but there was no

significant relationship between genetic and geographic distances. Excess

homozygosity was observed at a number of sites (i.e. populations were

not in Hardy–Weinberg equilibrium), and inbreeding and local bottlenecks,

based on observational data of galls on poplar, which contained no aphids

but sometimes anthocorid (Heteroptera: Anthocoridae) predators, were

put forward as reasons for this spatial structure. In addition, there were allele

frequency differences between populations on poplar and lettuce, which

may be accounted for by secondary host races and occurrence of

anholocyclic (viviparous females give birth to only viviparous females, clon-

ally reproducing) and holocyclic (viviparous females produce oviparous

females or males, which go on to sexually reproduce). In this case, the

use of microsatellite markers increased the understanding of the population

dynamics of this species, though further work is needed to determine the

mechanisms, which account for the structure that was found. Since there

are differences in the dispersal abilities of above- and belowground organ-

isms, particularly those such as aphids that are wind-dispersed aboveground,

the spatial scales of study and dispersal may differ and as such this should be

taken into account in future studies.

Understanding the population dynamics of species with this type of life

cycle becomes more complicated when two morphologically similar species

are involved. In this case, Chen et al. (2009) used bothRAPDs and AFLPs to

differentiate species and determine the population dynamics and occurrence

of Pemphigus populitransversus and Pemphigus obesinymphae, which have a pri-

mary poplar host and secondary cruciferous host, namely, cabbage, on

which they are important pests in Texas. The occurrence of two separate

species was confirmed (previously only determined using morphology)

and they were found at different times of the year but co-occurred for

extended periods, having implications for previous studies that assumed

one, continuously present species. Most aboveground alate adults, deter-

mined morphologically, were P. obesinymphae and clearer RAPD banding

patterns were found for this species in the soil, which the authors suggest

could be down to their greater presence. However, many factors can affect

the efficiency of the PCR and the increased band intensity may therefore be

attributable to causes other than simply more individuals of this species being

present. Methodologically, RAPDs proved to be superior to AFLPs; this

technique was more efficient, cheaper and with higher numbers of polymor-

phic bands (manyweremissing from the AFLPs in tests with DNA of known
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species). These molecular methods were particularly useful for determining

the apterous soil stage of the species, which is more difficult to identify mor-

phologically, but required fresh samples for the best results (those preserved

in 100% ethanol contained less and lower-quality DNA).

Other root-associated aphid species also have interesting life histories,

which have consequences for their genetic diversity and population struc-

ture that may be in contrast to aboveground species. The yellow meadow

ant Lasius flavus found in grasslands in Europe tends a number of aphid spe-

cies in exchange for honeydew (and also eats them). Ivens et al. (2011) devel-

oped 26 microsatellite markers for studying the effects of these mutualistic

relationships on the population genetic structure of four species of ant-

associated aphids and then applied them (Ivens et al., 2012b) to determine

the extent of dispersal, mode of reproduction and potential for dispersal

between nests by winged forms. All species were found to be anholocyclic

with few alate individuals and there was a strong correlation between genetic

and geographic distances for two species, which confirms previous observa-

tions and suggests that there is limited dispersal between nests. However,

some dispersal was observed since some clonal lineages were spread along

the sampling transect. As with Pemphigus species, sexual reproduction usually

occurs on the primary host, but these were not present nearby, which could

have had an effect on the results. Their presence in the underground nests all

year may have had an impact too and is in contrast to their aboveground

equivalents, which often maintain a holocyclic lifestyle, highlighting how

it is important to study these belowground populations independently.

A further study (Ivens et al., 2012a) looked into the spatial structure in more

detail and found that more than half of the mounds contained a single species

with a single clone, but where multiple clones did exist, they were spatially

separated. As well as giving information on aphid biology, it gives much

insight into the behaviour of these ants, which seem to eat the younger

instars and maintain lower levels of honeydew-producing adults in a similar

way that humans farm livestock.

3.3. Root weevil
The genetic diversity of other beetle species has also been investigated. The

root weevil (Diaprepes abbreviatus) is a serious invasive pest introduced from

the Caribbean to the United States in the 1960s, since spreading and becom-

ing associated with more than 300 plant species (Ascunce et al., 2008). Lar-

vae feed on roots and adults on leaves. Studies on populations in Florida
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using esterase polymorphisms and RAPD–PCR markers (Bas et al., 2000)

produced different results dependent on the marker used; esterase and pro-

tein can be changed by physiological analysis (they depend upon active

genes) and optimum PCR conditions are critical to the success of RAPD

markers, reducing their reliability for population genetic studies. Since then,

eight microsatellite markers have been developed (though published studies

using them are not yet available; Ernst et al., 2006).

Finally, 16S rRNA and COI mitochondrial markers have been used to

characterise populations and determine dispersal in Florida and Dominican

populations, their supposed origin (Ascunce et al., 2008). There was low

genetic diversity and one haplotype in each of six sampled populations, with

low numbers of substitutions between the three haplotypes found in total,

suggesting a recent introduction. That the same haplotype was found in the

east and west, despite populations being discontinuous, suggests some form

of human transportation on infected plants (movement has been shown to be

slow and localised previously). The authors suggest that using fine-scale neu-

tral markers such as microsatellites may help to resolve the differences seen

using betweenmtDNA and esterase polymorphism andRAPDs, which sug-

gest more widely differentiated populations than COI or 16S rRNA

sequences. None of theCOI sequences for the Dominican samples matched

those from Florida, suggesting these may have been imported from another

Caribbean island. However, there was some uncertainty in the morpholog-

ical identification and a high genetic distance between species varieties found

in Dominica and Florida within this genus, which requires further analysis.

3.4. Wireworms
A similar study to that of Ascunce et al. (2008) has been carried out for wire-

worms in Canada (Benefer et al., 2013). However, unlike all previous studies

on the genetic diversity of root herbivores, this focused on the damaging,

soil-inhabiting larval stage rather than the aboveground adults. Wireworms

are click beetle larvae that feed on crop roots, causing high levels of eco-

nomic damage in some areas. There are several invasive species in Canada

(including those in the genus Agriotes, which are the main UK pest species)

for which information on the distribution and species identity is lacking.

Phylogenetic analyses were conducted using mtDNA 16S rRNA to assess

genetic variation in populations across Canada. While there was low intra-

specific variation for most of the species (low sample size prevented further

analysis or strong conclusions to be drawn for these), there was relatively
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high variation between Hypnoidus bicolor individuals and a significant rela-

tionship between genetic and geographic distances, with genetic separation

of populations from the east to west of Canada. Further investigation rev-

ealed that there may be two different, cryptic Hypnoidus species present.

There was also some evidence for genetic variation related to geographic

location for Limonius californicus, for which samples from British Columbia

in the west were separated from those in Saskatchewan and Alberta in the

mid to midwest areas. Since the distance between these locations is large

(up to 1460 km), the opportunity for populations to mix is probably limited.

High cryptic diversity and possible nuclear mtDNA (numts) were limita-

tions to the study, but it provided preliminary data as a starting point for fur-

ther investigation into pest species identity and distribution in Canada.

Like for root weevil, it is recognised that it would be advantageous to

have fine-scale data on wireworm population genetics. Previous attempts

had been made to develop microsatellite markers at Plymouth University

(Benefer, 2011; J. Ellis, personal communication) for A. lineatus, A. obscurus

and A. sputator, common European pests, without success; none were found

to be polymorphic on initial screening. Benefer (2011) then developed

AFLP markers to investigate population structure and dispersal of these spe-

cies in the United Kingdom, but due to numerous methodological problems

(including lack of reproducibility between runs), an optimised set of markers

could not be produced. Work is now under way to develop microsatellite

markers using NGS data for the same species (C. Benefer, personal commu-

nication), whereby fragment libraries were generated from known adult

genomic DNA and all three sequenced on a 454 GS FLX platform, the data

mined for microsatellite loci and primers designed using freely available soft-

ware. This protocol cuts out the lengthy development time associated with

traditional cloning techniques and produces hundreds of loci, which can be

selected depending on their likely ability to amplify the target loci (taking

into account primer and loci attributes). So far, 20–25 microsatellite loci

per species have been developed using this protocol and are being screened

across individuals.

3.5. Canegrubs
In a follow-up study to that of Miller et al. (1999) where pest scarab larvae

were identified using PCR–RFLP and genetic variation was found to cor-

respond with species distributions (see Section 4.1), Miller and Allsopp

(2005) investigated the phylogeography of the scarab beetle Antitrogus

236 Carly M. Benefer and Rod P. Blackshaw



parvulus in southeastern Queensland. The females of this species are thought

to be poor dispersers, mating and laying eggs close to the emergence site,

while males are strong fliers. This type of mating behaviour and other eco-

logical factors play a role in population structure, having implications for pest

management, and as such, the effect of habitat fragmentation and maternal

dispersal ability were focused on here, using cytochrome oxidase II (COII)

sequences analysed by analysis of molecular variance (AMOVA), nucleotide

divergence (as a measure of sequence divergence among individuals

between populations), Mantel test for isolation by distance and

neighbour-joining (NJ) phylogenetic analysis. Most of the genetic variation

was accounted for at the regional or population level, while intrapopulation

variation was low, and there was a highly significant relationship between

geographic distance and gene flow, with migration limited by geographic

distance. This was reflected in the NJ tree in which populations from the

same regions were clustered together, sharing more than one haplotype.

These results suggest that females do not move far, but when they do, they

move to the next closest soil patch. Two populations were anomalous, with

high gene flow compared to others, possibly due to other factors, for exam-

ple, wind flow, playing a role in their dispersal. Other populations were

found to be somewhat genetically distinct despite their close proximity

due to geographic barriers. Soil-type preference and rainfall/moisture could

also be important, as seen in similar species, which suggests knowledge of

dispersal ability and ecological preferences may help in targeting manage-

ment practices for scarab pests in this region.

4. SPECIES IDENTIFICATION AND PHYLOGENY

Some of the studies already mentioned have shown how important it

is to be able to identify the species concerned correctly (see Section 3). This

has been made possible for many insect taxa through the sequencing of diag-

nostic regions of DNA that are variable between species. Though other

DNA regions can and are used, this DNA barcoding approach commonly

refers to the use of a 648 bp region of the mtDNA COI gene. This has been

somewhat controversial, mainly where it is applied to the identification of

new species because of the unpredictable range of intraspecific variation

(Blaxter et al., 2005; Hebert et al., 2003; Janzen, 2004; Taylor and

Harris, 2012). Nevertheless, it has been extensively applied to a range of

invertebrate taxa, again mainly aboveground, providing information on spe-

cies ecology that was previously inaccessible. For soil-dwelling species, the
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use of such barcoding methods provides a relatively quick, easy and afford-

able way of identifyingmorphologically similar or cryptic species that usually

require a great deal of skill and time using microscopy and that for many

immature stages is not possible at all, such as for many Coleopteran and

Dipteran larvae, or microscopic and mesofaunal organisms. Species identi-

fication through the use of sequence data has been adopted for root-feeding

taxa such as nematodes (from the early 1990s, e.g. Okimoto et al., 1991, and

more recently, e.g. Floyd et al., 2002) including using metagenomic, NGS

approaches (Porazinska et al., 2009). Others include springtails (Collembola;

Porco et al., 2012; Yu et al., 2012) and earthworms (Huang et al., 2007;

Porco et al., 2012). To date, root-feeding taxa have been identified by a

combination of molecular markers and sequence data.

4.1. Identification of larval pests
There are 19 pest species of Melolonthini (Coleoptera: Scarabaeidae) in

Australiawhose larvae causeeconomic levelsofdamage to sugarcaneby feeding

on their roots, but of these, five are indistinguishable usingmorphological tech-

niques and have similar behaviours and overlapping distributions. Therefore,

cytochrome c oxidase II subunit gene (COII) sequences were used to develop

adiagnostic tool for species identification (Miller et al., 1999). Firstly, sequences

fromknown adults, which aremore easily determined,were used to produce a

phylogenetic tree. This information on species relationships and mtDNA var-

iation (base-pair differences) was used to select restriction enzymes producing

diagnostic RFLPs for use in PCR–RFLP for analysis using gel electrophoresis,

negating the need to sequence larvae. The phylogenetic analysis also revealed

genetic differentiation of populations of one species (Lepidiota negatoria), which

could be related to biogeographic boundaries to gene flow, and no differenti-

ation for another species (Antitrogus consanguineus), suggesting uninterrupted

gene flow. As well as providing a tool to identify important pest species that

could be useful in pest management, this study also suggests that the sequence

data may be more broadly useful for assessing species’ biology, ecology and

behaviour.

Crane fly larvae, or leatherjackets (Diptera: Nematocera), were some of

the first root herbivore species to be subjected to molecular identification

using isoelectric focusing, based on the position and number of protein

bands (Humphreys et al., 1993). Tipula oleracea and T. paludosa are pests

of cereal crops and grassland and this method was used to assess the species

responsible for the recent (at the time) destruction of winter cereals in
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Northern Britain, since larvae of these species are difficult to differentiate

using morphological characteristics and time-consuming to rear to adults.

A survey of Northern Ireland and Scotland revealed that T. oleracea was rare

in grassland, possibly due to different moisture and vegetation preferences to

T. paludosa, and that it might only become damaging when adult dispersal is

restricted (eggs are usually more widely dispersed due to better female flight

ability). This technique had not been used since this survey, for any publi-

shed study at least, and has now been replaced by the use of sequence data.

Rao et al. (2006) used mitochondrial cytochrome B (cytB) to distinguish

these same two leatherjacket species in Oregon, the United States. Although

there are other Tipula species present in this state, these particular species are

invasive, with T. paludosa becoming a pest of pastures, lawns and golf courses

but with less information on the host plants of T. oleracea. In contrast, the

native species, which look very similar, are thought to feed on organic mat-

ter rather than the grass itself. Indeed, of all the samples identified using the

technique, only the invasive species were found in urban landscapes (exclud-

ing one T. tristis), while only native species were found in cultivated grass.

The invasive species were also found in cultivated peppermint with very few

native species. The authors suggest further work would be needed to ascer-

tain whether the native species are actively feeding on the crop, but the tool

could help to identify the invasive species that are likely to cause damage,

preventing indiscriminate pesticide application on finding leatherjackets.

This method (Rao et al. 2006) is relatively laborious and costly when com-

pared with other PCR-based techniques and Tipula research would benefit

from the development of a different method.

The use of molecular techniques for the study of wireworm identity, dis-

tribution and phylogeography has increased rapidly in recent years. Ellis et al.

(2009) developed a terminal restriction fragment length polymorphism

(T-RFLP) approach to identify three UK pest species (A. obscurus,A. sputator

and A. lineatus). As with the other larval pests mentioned so far, these species

are almost impossible to identify without a great deal of time and expertise.

Firstly, primers were developed for the mitochondrial 16S rRNA region and

adults of each species from locations in the United Kingdom, Europe and

Canada sequenced. Based on this sequence data, restriction enzymes were

chosen for their ability to produce fragments of different sizes dependent

on species identity. A PCR in which the reverse primer is fluorescently

labelled was carried out, then digested with the chosen enzymes and sub-

jected to fragment analysis on an automated sequencer, differentiating it

from the similar PCR–RFLP method, which uses gel electrophoresis to
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discriminate DNA fragments. This method was subsequently used by

Benefer et al. (2010, 2012) to look further into the distribution of these spe-

cies (see Section 4.3) and the 16S rRNA sequencing protocol used to iden-

tify Canadian wireworm species (Benefer et al., 2013; phylogenetic analyses

described in Section 4.4). While there are thought to be approximately

30 economically important species in Canada, lack of a robust identification

technique has limited studies on the distribution and occurrence of pest spe-

cies or aspects of their biology and ecology, which could provide useful

information for control. Importantly, this study showed that identification

to morphospecies was not always reliable due to identification errors (mor-

phological characters were difficult to differentiate) and cryptic species. In a

similar scenario to that of chafer communities (Ahrens et al., 2007;

Section 4.2), although adults are fairly easy to distinguish, the larvae for some

species have not been described, and due to their long life cycle (3–5 years

depending on climate), it is not practical to rear these to adults for the major-

ity of biological and ecological projects. The use of 16S rRNA sequences

may therefore be useful as a first step in linking adult and larval life stages

(including eggs) and initiating morphological description of larvae.

Using a PCR-based approach, Staudacher et al. (2011a) identified further

pest species within the genus Agriotes that are of agricultural importance. This

technique focused on the COI region, first amplified using universal primers

or newly designed primers in some cases (for degraded DNA) using adult

samples from across Europe. Once general sequences were obtained for

20 Agriotes species, a set of primers were developed targeting nine of the most

important species for use in a multiplex PCR assay and tested using the

original 20 species plus other soil invertebrates found together with Agriotes

populations. It was then applied to over 900 Agriotes larvae, 83% of which

produced diagnostic bands when using gel electrophoresis. Of those that

did not produce bands using the multiplex PCR, several were found to be

related Adrastus spp., which are morphologically very similar. The study also

found that there was a high genetic similarity between A. proximus and

A. lineatus, which also have only minor morphological differences as adults

and are attracted to the same sex pheromone in the field. Further analysis

of both the pheromone composition andCOI sequences of these two species

has been carried out using a different section of the COI region (Vuts et al.,

2012), finding again very high sequence similarity between the two species

(>99%) and also a highly similar pheromone profile suggesting a very close

relationship between the species. Since sex pheromones are used for monitor-

ing adult presence and activity in the field as a surrogate for wireworm
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presence in the soil, it is important to understand the relationship of these

species, and further work is currently underway on overlapping populations.

The COI region has also been used to identify wireworm species in the

Midwestern United States, where a complex of species causes damage to

maize (Lindroth andClark, 2009). Larvaewere collected from theMidwestern

and Eastern United States and identified using dichotomous keys and

comparison to museum specimens. Sequences comprising the majority

of the COI gene were obtained for eleven of the 15 known economically

important species. For the Melanotus species, museum specimen sequence

data were compared to unknown larvae from four species that could not be

distinguished and also compared with the full wireworm dataset, allowing

identification based on their grouping with known species in maximum

likelihood analysis. The ability to identify these species provides insight into

the environments in which they are found (e.g. soil temperature andmoisture

preferences), allowing targeting of these areas for pest control.

4.2. Association of life stages
Aphids with morphologically different life stages that exploit taxonomically

different host plants are typically difficult to assign to the correct species.

Zhang et al. (2008) used COI sequences from Eriosomatinae aphids found

on Gramineae (grass) roots, as the secondary host, and those found on Ulmus

(elm) species, as the primary host, to identify species and associate the dif-

ferent life stages, thereby using them as a diagnostic tool. Using sequence

data already available from adult specimens, a phylogeny was produced

and the unknown morph sequences clustered with Tetraneura chinensis, con-

firming the species identity. The authors then described in detail the mor-

phology of the secondary morph, allowing inclusion in future

identification keys.

Ahrens et al. (2007) sequenced both mitochondrial (cytochrome oxidase

subunit 1; cox1 and 16S ribosomal RNA; rrnL) and nuclear (28S rRNA)

DNA from chafer (see Sections 2.1 and 3.5) communities in order to asso-

ciate adult and larval life stages from tropical lowlands of Nepal. Although

adult taxonomy is well developed and identification is possible (albeit by tax-

onomic experts), new species are being discovered and the relation of the

root-feeding larvae, which have limited morphologically characterising fea-

tures, to the adults aboveground is unknown. These authors used more

in-depth phylogenetic analyses to align sequences to species since intraspe-

cific variation can make this difficult when using absolute methods of
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sequence divergence and especially for unknown, large assemblages of spe-

cies. Combined mitochondrial and nuclear gene trees (using maximum like-

lihood) and statistical parsimony, whereby populations are subdivided into

subgroups, and population aggregation analysis, which combines

populations that are uniform for a particular character state, percentage dif-

ferences (p-distance) and AMOVA and species delimitation methods for

estimating species boundaries from the tree were used to assign species mem-

bership. This resulted in 24 species of which 19 could be associated with

adults and identified using Linnaean names (nearly 93% of unknown larvae

were identified to species). The rrnL and cox1 networks produced using the

statistical parsimony analyses were congruent, and there was much lower

divergence for the 28S sequences, which has implications for gene marker

choice in such studies. As for the aphid study, the use of these techniques for

determining species and then searching for diagnostic morphological char-

acters of both larvae and adults is advocated. In terms of relating this to spe-

cies biology, the species assemblages found above- and belowground can

depend upon larval mortality, which varies both spatially and temporally;

in particular, larvae and adults were often not found in the same season,

which can confound attempts to associate larvae with adults. With a sam-

pling scheme that takes these factors into account, it may be possible to

use such DNA-based taxonomy to further investigate spatiotemporal pat-

terns and geographic variation.

4.3. Phylogenetic relationships
As well as simply for species identification, a number of studies have used this

DNA sequence data to produce molecular phylogenies for some taxa for fur-

ther information on their evolutionary relationships. This can provide infor-

mation on the rates and pattern of evolution and species diversification,

providing insight into species ecology. Aboveground, this has been much

used to investigate plant–herbivore interactions (e.g. Jurado-Rivera et al.,

2009; Pinzon-Navarro et al., 2010) and the taxonomy of specific genera

(e.g. Bell et al., 2004; Ortiz-Rivas et al., 2009). However, fewer studies have

focused on community genetics, coevolution and plant–herbivore interac-

tions in the belowground context (though see Hiltpold et al., 2013;

Rasmann and Agrawal, 2011).

Diabrotica (corn rootworm) species have already been discussed in terms

of predator–prey interactions (Section 2.1) and genetic diversity

(Section 3.1), but studies have also considered their phylogenetic
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relationships. Little was known of phylogenetic relationships within this

genus due to their morphological similarity. Allozymes have been used

to determine that these species are represented in two distinct groups

(virgifera and fucata) (Krysan et al., 1989) and molecular markers (mtDNA

NADH 4 with PCR–RFLP) were developed for differentiation of south-

ern corn rootworm, WCR and NCR (Szalanski and Powers, 1996).

Nuclear (ITS1) and mtDNA (COI and COII) genes have since been used

to construct the phylogeny of Diabrotica species (Clark et al., 2001;

Szalanski et al., 2000), which were in support of allozyme and morpholog-

ical data with the same virgifera and fucata groupings observed. As adults are

found in ecosystems with permanent perennial grasses, the virgifera group

has been inferred to have an ancestor that might have evolved as a grass

roots specialist (Branson and Krysan, 1981; Krysan and Smith, 1987),

and the authors point out an interesting route to go down would be to

assess phylogenetic relationships of larval associations of the virgifera group

with their preferred hosts and female host–plant oviposition preferences,

taking the focus to plant–herbivore interactions and evolutionary

relationships.

Using a combination of nuDNA (translation elongation factor 1a; EF-1 a)
and mtDNA (COI), morphological and biological characters, Zhang and

Qiao (2007) examined the evolution of gall morphology in Fordini aphids

from China and Israel. Using samples collected on different primary hosts

(Pistacia or Rhus species; the secondary hosts are grass roots or mosses), phy-

logenetic relationships of species were assessed, and it was found that host–

plant affinity was an important character in subtribe division, with separate

clades in the phylogenetic tree for Pistacia- and Rhus-feeding species. Gall

traits also differed between species and over time seem to have becomemore

adapted to manipulating the host plant, also reflected in the phylogenetic

tree. This study focused on only the aboveground primary host. In the past,

failure to take into account the secondary host morphs has led to taxonomic

difficulties, with researchers creating synonymies. Further investigation

(Ortiz-Rivas et al., 2009) using transfer experiments (of larvae from winged

primary host morphs to wheat shoots), morphometric data of the wingless

aphids reproducing on the roots and sequences from nuclear long-

wavelength opsin, EF-1a and mtDNA, found no correlation of the phylo-

genetic relationships with primary host specialisation, but some aspects of

gall morphology (gall capacity) were related to species position in the phy-

logenetic tree, as found previously. As in other studies of gall-forming aphids

(see Section 3.2), it was difficult to distinguish secondary host morph species
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using morphology, but this was possible using nuDNA and mtDNA

sequences. The data brought into question the characterisation of some spe-

cies and suggested further ecological and biological data are needed to

inform gall-forming aphid taxonomy.

4.4. Distribution
Studies on the spatial distribution of root-feeding organisms have been

somewhat limited. While it is often found that organisms have patchy dis-

tributions within the soil, related to a range of biotic, chemical and physical

factors, interactions between taxa and the scale of sampling are largely

unknown. Benefer et al. (2010) investigated the spatial distribution of four

root-feeding insect larvae pests (wireworms, leatherjackets, Sciarid (Diptera:

Sciaridae) and Bibionid (Diptera: Bibionidae) flies) and their possible inter-

actions over different sampling scales. Wireworms were identified to three

species using T-RFLP (Ellis et al., 2009; see Section 4.1), while the other

insects were defined using morphological characteristics, where possible.

By separating the wireworms to species, differences in their abundance,

composition and spatial distribution became apparent; for example, more

variance in A. obscurus distribution was accounted for at the field scale than

the site scale (locations sampled within fields) and their associations with

other wireworm species changed from the field (largest) to the core scale

(smallest). This has implications for grouping the three Agriotes wireworm

UK pest species together in ecological studies as has traditionally been the

case, assuming they are similar in biology and ecology (mainly because of

a lack of reliable identification method; see Section 4.1). The same pattern

was true of Bibionid larvae, separated to two species morphologically, but

Sciarid larvae and leatherjackets could not be identified morphologically

and so a similar result may be apparent when species are considered

individually.

Other wireworm studies have considered their occurrence and above–

belowground distribution in agricultural land, using molecular identification

techniques. Staudacher et al. (2013a) assessed Agriotes distribution in relation

to climatic and soil parameters in Austria using multiplex PCR (Staudacher

et al., 2011a; see Section 4.1). This also included newly developed primers

for Adrastus spp., which are morphologically very similar to Agriotes. Six out

of 14 known species were identified from 85 sites, with more than 50% of

sites containing more than one species with species-specific differences in

their distribution and abundance apparent across the country. Altitude,
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annual precipitation, pH and water permeability was correlated with

occurrence, with differences being found between species suggesting

different environmental preferences, accounting for their distribution on

a national scale. Ninety-two of the 1242 individuals were found to be

Adrastus species. That not all known Agriotes species were found and some

morphologically similar samples were from different genera suggests it is

important to have knowledge of the species present in the soil, since the

presence of wireworms with this general morphology does not necessarily

mean damage will occur. The relation to climatic and soil data allowed dis-

tinction of two ecological groups, confirming some previous observations

and providing information that could be used together with other

species-specific factors to predict their presence and in different agricultural

regions.

Few studies have considered how populations of above- and below-

ground stages of root herbivores are distributed, despite there being many

ecologically and economically important species that spend their larval stage

in the soil. As already discussed, UK Agriotes wireworms were historically

considered together as a pest complex, without differentiation of individual

species. Benefer et al. (2012) again used T-RFLP (Ellis et al., 2009) to iden-

tify three species of wireworm in the soil to their conspecific adult male click

beetles trapped aboveground using sex pheromone traps. Sex pheromone

traps are used to monitor adult male presence and activity and assume that

this reflects wireworm distribution in the soil. However, noA. lineatuswire-

worms were identified from soil samples despite adults being the most

numerous species captured and present in all fields. Twelve of 72 wireworm

samples subjected to T-RFLP failed to produce the expected fragment sizes,

and subsequent sequencing at the 16S rRNA region revealed them to be

‘non-Agriotes’—there was no conclusive match to the three UKAgriotes spe-

cies or any other wireworm species sequenced at 16S rRNA. Phylogenetic

analyses (Benefer, 2011) suggested that one of these unknown species may

be related toAthous haemorrhoidalis, an occasional pest, andDenticollis linearis.

This result shows that the relationship between aboveground adults

and belowground larvae is not necessarily straightforward and that sex

pheromone traps may therefore be misleading in terms of the proportion

and distribution of species encountered, confirming the deductions of

Blackshaw et al. (2009) and Blackshaw and Hicks (2013). In addition, other

species may be involved in damage if found in large enough populations.

Using multivariate analysis, different associations were found between wire-

worms and environmental variables when considered as a group or separated
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to species, emphasising, as per Staudacher et al. (2011a), that although these

species are closely related, they may have different ecological and biological

preferences that shape their distributions and should be considered

separately.

4.5. Quantification
Soil sampling and extraction techniques (e.g. soil coring followed by heat

extraction) are widely used to obtain samples for further analysis using a

range of sampling designs. Although there are inherent biases and practical

drawbacks to their use (as with any sampling method, whether above- or

belowground), this remains the most practical way to estimate root herbi-

vore abundance in the field, though acoustic monitoring techniques have

been used to map soil insect populations (e.g. Brandhorst-Hubbard et al.,

2001; Zhang et al., 2003). Onemolecular ecological technique that has been

used is monoclonal antibodies and enzyme-linked immunosorbent assays

(ELISA), for quantifying slug density in the soil (McKemey et al., 2006).

Slugs are particularly labour-intensive to sample, the traditional method

involving collecting blocks of soil from the field and slowly flooding to drive

them to the surface. Monoclonal antibodies were tested and selected based

on their ability to detect slug proteins, but not those of other invertebrates,

from soil samples, and then experiments were carried out using ELISA to

calibrate slug biomass, comparing slug protein equivalents against known

biomass, and field experiments comparing flooding and the ELISA-based

technique. The two techniques produced similar estimates of slug density

in the field, proving its utility in studies aiming to determine slug densities

in general, though not species-specific estimates. One complication was that

its sensitivity varied by soil type; though it worked well in natural soils, it

failed in commercially available humus-rich soil, possibly due to high levels

of organic matter. Despite this, the technique has the potential to overcome

some of the difficulties associated with sampling these pests and could be

applied to other root herbivores.

Another molecular approach to quantification involves the use of the

number of DNA sequence reads per individual derived from NGS data.

However, there have been mixed results from studies so far, with some

authors finding little correlation between the number of sequence reads

and the number of individuals of a species (Binladen et al., 2007; Deagle

et al., 2013; Porazinska et al., 2009), while others have shown that read

abundance generally reflected the number of individuals per species

(Porazinska et al., 2010). This could be associated with taxon-specific
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variation in copy number per cell, tissue cell density or environmental per-

sistence or due to technical factors during amplification, for example, using

tagged primers, stringent bioinformatics filtering methods or sequencing

platform (Deagle et al., 2013), and would need to be properly evaluated

using controlled experiments and data analysis for application in root herbi-

vore studies. Since this technology and associated quantification issues are

only recently being evaluated, our understanding of the factors involved

should improve as further studies on a wider range of taxa are carried out.

5. SUMMARY AND FOCUS FOR FUTURE WORK

To date, a variety of molecular techniques, including DNA sequenc-

ing of mitochondrial and nuclear genes, markers such as microsatellites,

AFLPs, RFLPs andRAPDs and qPCR or a combination of these, have been

used to study root herbivore ecology. Particularly when combined with

other observational and experimental methods, the data have proved useful

in elucidating species identity and relationships, population dynamics and

dispersal, distribution, feeding behaviour and interactions with other root

herbivores, predators, symbionts and plants. The majority of research has

been carried out on belowground larval stages of economically important

species, particularly Coleoptera (Scarabidae, Elateridae and Chrysomelidae),

with most studies focusing on the aboveground adult stage, which is

involved in dispersal, ultimately responsible for the distribution of the

root-feeding stage in the soil and more practical to obtain. In common

with their aboveground counterparts, root-feeding aphids have been

the subject of a number of molecular studies due to their interesting,

from an evolutionary point of view, and complicated two-host life cycle.

Other less extensively covered taxa include Lepidoptera (Agrotis cutworms),

Curculionidae (Diaprepes root weevils), Tipulidae (Tipula crane fly

larvae—leatherjackets), Bibinoid and Sciarid fly larvae and a mollusc

(Deroceras reticulatum slugs, not an insect but included as an important non-

root herbivore and as explanation of a potentially useful method).

In general, the literature reviewed here shows that root herbivory

research lags behind that for aboveground herbivores in the application of

molecular approaches. Although the full range of available techniques has

been used and in similar ways to that of aboveground herbivores, it is clear

that the taxa coverage is much smaller (only studies on 10 taxa, though com-

prising several species, were identified during the literature search;

Table 5.1) and that in some cases this is still in a method development or
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optimisation phase. For example, protein-based gut content analysis tech-

niques have been used to study predator–prey interactions in aboveground

herbivores since the late 1980s and DNA approaches since the 1990s, while

they have only been applied to that of root-feeding taxa relatively recently

( Juen and Traugott, 2005). In addition, we found few published studies that

had applied the developed methods to test specific hypotheses. Despite the

relatively recent adoption of molecular techniques for some taxa (e.g.

Elaterid wireworms), there has been a surge in studies using these types

of methods to answer questions on species’ ecology, which was not possible

using traditional techniques, for example, species-specific relationships

between adult and larval distributions in Agrioteswireworms, the interaction

between Wolbachia parasites and corn rootworm population dynamics and

differences in distribution of native and invasive Tipulid pest species. While

this has opened up new areas of research in many cases, extension of these

studies and application of new and emerging technologies are likely to fur-

ther increase the practicality and value of this research.

The dominance of (relatively few) pest studies has led to a level of prag-

matism in the questions that have been addressed; the focus has been on pest

management-related issues rather than research to understand the function-

ing of root herbivores within the soil ecosystem (but see Hiltpold et al.,

2013), linking back to the research lag mentioned earlier. This means that

some clearly important questions have not yet been addressed. For example,

most root herbivores have patchy distributions, but the mechanisms under-

lying this are poorly understood. The development of molecular approaches

to identify siblings is an essential precursor to understanding the role of adult

females in oviposition site selection as a biotic factor, hence allowing the

effect of abiotic influences to be better addressed. It is also desirable to be

able to distinguish the sex of root herbivores in spatiotemporal studies,

and here, there is a challenge to develop a molecular approach to substitute

for laborious dissections. Dispersal, scaling and metapopulation dynamics are

also topics that have received scant attention in root herbivore research.

Direct observation is rarely possible in the soil and our current knowledge

is largely based on inferences derived from statistical analyses but, as the work

of Benefer et al. (2012) has shown, such conclusions can be influenced by the

sampling method. Genetic studies are likely to be less susceptible to this

effect and, we suggest, will drive these topics forward in the future.

A further current limitation to root herbivore research is that sampling

and extraction methods are shaped by old technologies (e.g. Tullgren

funnels) and have little relevance to the spatial scale at which the herbivores
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interact with the soil system. It is also desirable to be able to sample at the

spatial scales relevant to specific taxa. Here, lessons can be learned from soil

microbiologists and the recovery of whole-soil DNA for NGS. For this to be

effective for the study of root herbivores necessitates robust sequence data

being available for target species and the ability to scale extraction methods.

For some herbivores, such as nematodes, samples are inevitably bigger than

the space occupied by the animal and extension of the semiquantitative

methods used (Porazinska et al., 2010) to larger herbivores and much bigger

soil samples would be desirable.

At a broader level, there are potential applications in community ecology

and above–belowground interactions that extend current studies and put root

herbivore biology and ecology in the context of ecosystem processes and sys-

tems ecology. NGS techniques nowmake it possible to investigate the genet-

ics of whole communities of organisms (metagenetics). Gut content analyses

have a much bigger contribution to make to understanding the role(s) of root

herbivores in food web and system functioning, and such methods could be

applied to the analysis of root–herbivore interactions in soil food webs (exten-

sion of feeding ecology studies, Pompanon et al., 2012), species-specific sur-

veys of endosymbiont diversity and links with root–herbivore functional

diversity, large-scale phylogenetic analysis using several genetic markers across

many related species for use in root–herbivore host–plant coevolutionary

studies and fast and cost-effective isolation of genetic markers for use in

phylogeographic and population genetic studies (e.g. Bai et al., 2010; Perry

and Rowe, 2011). Other applications such as transcriptome characterisation,

allowing genes expressed and their functions in different life stages or species

to be assessed (Ekblom and Galindo, 2011), could be useful in understanding

the genetics behind variation in traits between individuals and species. Sim-

ilarly, gene expression profiling, often used to assess responses of plants to her-

bivory, could provide the other side of the picture and enable understanding

of responses of root herbivores to environmental cues including parasites and

temperature. The use of such newly emerging methods for nonmodel organ-

isms would allow a view of the functional aspect of root herbivore ecology.

The application of molecular methods has spread across the biological

sciences and enabled researchers to address ever more challenging questions.

These are early days in their adoption for the study of root herbivores, but

we can anticipate their increasing use as awareness of their potential and the

development of molecular skills expands. It is, however, likely that this

expanded use will continue to be dominated by the need to address prag-

matic research questions about specific taxa, notably pests.
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