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Stable isotopes and mtDNA reveal niche segregation but no evidence of 1 

intergradation along a habitat gradient in the lesser whitethroat complex 2 

(Sylvia curruca; Passeriformes; Aves) 3 

 4 

Stephen C. Votier
1
 s.c.votier@exeter.ac.uk 5 

Simon Aspinall
2
 6 

Stuart Bearhop
3
 s.bearhop@exeter.ac.uk 7 

David Bilton
4
 D.Bilton@plymouth.ac.uk 8 

Jason Newton
5
 j.newton@suerc.gla.ac.uk 9 

Per Alström
6
 per.alstrom@slu.se 10 

Paul Leader
7
 pjleader@asiaecol.com.hk 11 

Geoff Carey
7
 gjcarey@asiaecol.com.hk 12 

Robert W. Furnes
8
 Bob.Furness@glasgow.ac.uk 13 

Urban Olsson
9
 urban.olsson@zool.gu.se 14 

 15 

1
 Environment & Sustainability Institute, 

3
Centre for Ecology & Conservation, University of Exeter, Penryn Campus, Cornwall, 16 

UK TR10 9EZ, UK 17 
2
 Deceased 18 

4
 Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth PL 19 

5
 NERC Life Sciences Mass Spec. Facility, SUERC, Rankine Avenue, East Kilbride, Glasgow G75 OQF, UK 20 

6
 Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36 Uppsala, 21 
Sweden 22 

7
 Asia Ecological Consultants Ltd, 127 Commercial Centre, Palm Springs, Hong Kong.  23 

8
 College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, G12 8QQ, UK 24 

9
 Department of Biology and Environmental Science, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden 25 

 26 

  27 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/74389875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:s.bearhop@exeter.ac.uk
mailto:D.Bilton@plymouth.ac.uk
mailto:j.newton@suerc.gla.ac.uk
mailto:per.alstrom@slu.se
mailto:J.Newton@suerc.gla.ac.uk
mailto:J.Newton@suerc.gla.ac.uk
mailto:Bob.Furness@glasgow.ac.uk
mailto:urban.olsson@zool.gu.se


Phylogenetic diversity and the isotopic niche in Sylvia curruca 

 

- 2 - 

 

Abstract 28 

Niche segregation plays a critical role in the speciation process, but determining the extent 29 

to which taxa are geographically or ecologically isolated is challenging. In this study we use 30 

stable isotopes of carbon (13C), nitrogen (15N), hydrogen (2H) and oxygen (18O) to test 31 

for ecological differences among taxa in the Lesser Whitethroat Sylvia curruca complex. 32 

Analysis of mitochondrial DNA (mtDNA) revealed 6 distinct haplotype groups, which conform 33 

to at least 5 distinct taxa. Stable isotopes provided insight into geographical and broad-scale 34 

ecological differences among haplotypes. The most striking isotope differences were 35 

between the populations inhabiting Siberian boreal forest (S. c. blythi) from the one 36 

inhabiting semi-desert in Kazakhstan (S. c. halimodendri). It is generally assumed that these 37 

two populations form a morphological cline along a gradient from mesic to xeric habitat. Our 38 

sample includes a large proportion of morphologically intermediate individuals that appear to 39 

represent a hybrid population. However, in all of these there is strict correspondence 40 

between haplotype and isotope signature, suggesting an ecological division on the breeding 41 

grounds between all our samples of these two taxa. The lack of ecologically intermediate 42 

individuals among our sample of morphologically intermediate ones thus speaks against the 43 

existence of a cline. The two taxa blythi and halimodendri emerge as potential models for the 44 

study of the early stages of the speciation process. While differences in stable isotopes may 45 

be largely influenced by geography, we also demonstrate how, in specific instances (such as 46 

the alleged cline reported here) may be used to evaluate niche segregation between taxa, 47 

providing information of importance for determination of species limits.   48 

 49 

Key words: 13C, 15N, 18O, 2H, phylogeography, speciation, warbler, Sylvia curruca, cline, 50 

stable isotopes 51 
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Introduction 55 

Speciation generally involves a three-step process – range fragmentation, the development 56 

of reproductive isolation between spatially separated populations, followed by range 57 

expansions leading to sympatry (Price, 2008; Mayr and Diamond, 2001). To be able to 58 

coexist in sympatry, reproductive isolation between genetically distinct taxa is required to 59 

avoid introgression (Endler, 1977; Mayr and Diamond, 2001; Price, 2008), as are probably 60 

also ecological differences (Chesson, 2000; Mayr and Diamond, 2001; Price, 2008; Price et 61 

al., 2014). In birds there is evidence that it may take more than two million years for 62 

reproductive isolation to be completed (Price, 2008; Weir and Price, 2011).  63 

 64 

The Lesser Whitethroat complex (Sylvia curruca sensu lato, Sylviidae, Passeriformes, Aves) 65 

is a group of morphologically similar insectivorous warblers, breeding across almost the 66 

entire Palearctic, from Western Europe to east Siberia, and southwards through 67 

northwestern China and Central Asia to south-western Iran (Cramp 1992, del Hoyo 2006, 68 

Mayr 1986, Olsson et al. 2013, Shirihai et al. 2001, Vaurie 1959) (Fig 1). The subtle 69 

morphological variation between the different taxa in this complex has long obscured the 70 

taxonomy, but Olsson et al. (2013) proposed, based on analyses of mitochondrial DNA, that 71 

it consists of six well supported clades (Fig. 2). Four of these clades, representing S. c. 72 

althaea, S. c. blythi, S. c. halimodendri and S. c. margelanica, occupy more or less 73 

parapatric ranges in Central Asia, which share a most recent common ancestor 1.95 + 0.55 74 

million years ago (Olsson et al., 2013). Consequently, these clades seem to be mainly below 75 

the critical two million year level of divergence, offering one possible explanation as to why 76 

they do not occur in sympatry Several authors point out that there seems to be a 77 

morphological cline between S. c. blythi of the Siberian boreal forests and S. c. halimodendri 78 

of Central Asian semi-desert (Loskot, 2005; Shirihai et al., 2001; Vaurie, 1959). A 79 

morphological cline could arise if reproductive barriers between two previously separated 80 

populations are incomplete or break down after they come into secondary contact (Endler, 81 

1973, 1977). Gene flow between the two taxa would dilute the characteristics of the parent 82 
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taxa, rendering the hybrids phenotypically intermediate to a varying degree. Olsson et al 83 

(2013) estimated that S. c. blythi and S. c. halimodendri diverged 1.41+ 0.42 million years 84 

ago, indicating that they may not yet have reached a stage of divergence where they are 85 

able to remain reproductively isolated upon secondary contact (Goldberg and Lande, 2006; 86 

Price, 2008; Weir and Price, 2011), making a scenario of secondary gene flow plausible.  A 87 

morphological cline could theoretically also arise as a result of isolation by distance (Wright, 88 

1943), particularly when divergent selection is strong towards the ends of the distribution 89 

range due to e.g. differences between habitats or other ecological factors (Endler, 1973, 90 

1977). In both cases, individuals in the centre of the cline would be expected to be less 91 

habitat specific, and haplotypes typical of one taxon could have spread to individuals being 92 

morphologically more similar to, or occurring in habitat more characteristic of, the other 93 

taxon.  94 

 95 

Both blythi and halimodendri have distinctive habitat requirements in the core areas of their 96 

respective ranges, but Olsson et al. (2013) could not evaluate the alleged cline between 97 

blythi and halimodendri as these taxa occur over a very wide range and in areas that are 98 

difficult to access, leading to a paucity of detailed observations on the breeding grounds. In 99 

fact, there is a general paucity of records between approximately 50 and 55°N (Lars 100 

Svensson in litt.). Dement’ev and Gladkov (1968) list the distribution of both S. c. blythi and 101 

S. c. halimodendri in some detail, and make no mention of intermediate individuals among 102 

the few observations from within the contentious area. According to their account, all 103 

specimens from north of a line from Yekaterinburg (56°N) to Omsk (55°N) and the 104 

Novosibirsk (55°N) and Barnaul (53°N) area are blythi, and records of breeding season 105 

halimodendri are more or less restricted to the south of 50°N. The type locality of S. c. 106 

halimodendri is located relatively close to the apparent northern limit of the taxon at 107 

approximately 48°N. Almost all evidence of intergradation stems from a large proportion of 108 

specimens of morphologically intermediate appearance that have been collected outside of 109 

this area. Furthermore, the morphological similarity between blythi and halimodendri (cf. 110 
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Shirihai et al., 2001) makes some single individuals almost impossible to diagnose with 111 

certainty based on morphology alone, particularly considering that an individual exhibiting 112 

intermediate characters may be a hybrid.  113 

 114 

Unfortunately, diagnosis based on mitochondrial DNA data is almost equally unhelpful when 115 

it comes to diagnosing morphologically intermediate individuals. Although mitochondrial 116 

haplotype will unambiguously assign an individual to one of the clades identified by Olsson 117 

et al. (2013), it will not reveal whether an individual that is morphologically intermediate is of 118 

hybrid origin or just represent an extreme end of a within-taxon morphological variation. 119 

Moreover, Olsson et al. (2013) found no fixed differences between these taxa in nuclear 120 

markers. The most likely reason for this is that the time since these lineages diverged is too 121 

short for fixed differences to occur in these markers. For these reasons, we sought ways to 122 

indirectly collect information pertaining to the ecological requirements and relationships of 123 

these two taxa.  124 

 125 

The analysis of stable isotope ratios has emerged as a powerful tool for ecological study in 126 

recent decades (e.g. Bearhop et al., 2004; Boecklen et al., 2011; Bowen et al. 2005; 127 

Charmantier et al., 2014; Inger & Bearhop 2008; Newsome et al., 2007; Post, 2002; West et 128 

al., 2006), and, in the context of the present study, may be helpful in resolving ecological 129 

differences among the closely related members of the lesser whitethroat complex in general 130 

and blythi,/halimodendri in particular. This approach relies on the fact that naturally occurring 131 

gradients in stable isotopes are reflected in consumer tissues in a predictable manner. Some 132 

keratinous tissues like hair, feather or nail are metabolically inert following synthesis and so 133 

maintain an isotopic record reflecting the location where the tissue was synthesized (Schell 134 

et al. 1989; Mizutani et al. 1990). Moreover, in the case of feathers they provide data 135 

covering the period over which they are grown (weeks to months; Bearhop et al. 2003). This 136 

time-integrated information on organic carbon sources for heterotrophs and information on 137 

habitat of origin may be more informative than observations of habitat unless the latter are 138 



Phylogenetic diversity and the isotopic niche in Sylvia curruca 

 

- 6 - 

 

conducting over extended periods. 139 

 140 

Here we measure isotopes of hydrogen (2H), carbon (13C), nitrogen (15N) and oxygen 141 

(18O) in Lesser Whitethroat feathers grown during the breeding to provide information on 142 

food choice and habitat use. The ratio of heavy to light hydrogen 1H: 2H (expressed as 2H) 143 

and oxygen isotopes 18O:16O (expressed as 
18O) vary largely because of isotopic 144 

fractionation during the phase change for vapour to liquid or solid associated with 145 

precipitation, with the proportion of 2H and 18O decreasing on a continuous scale with 146 

increasing latitude, with distance from the sea and with increasing altitude (Bowen, et al. 147 

2005). We here use 2H and 18O primarily as broad-scale markers of distribution within the 148 

Lesser Whitethroat complex, as well as to test for altitudinal differences among clades. The 149 

ratio of heavy to light carbon isotopes 12C: 13C (expressed as 13C) in primary producers 150 

(and therefore in upper trophic levels too) varies on a discrete scale as a function of different 151 

photosynthetic pathways – C3 plants having lower 13C values compared with plants utilising 152 

C4 photosynthetic pathways, with plants utilising crassulacean acid metabolism (CAM) being 153 

somewhat intermediate but with 13C values usually most similar to C3 plants (Peterson and 154 

Fry 1987; Tieszen et al.1983). The ratio of 14N:15N (expressed as 15N) increases with 155 

each trophic level (DeNiro and Epstein 1981), and, although interpretations are not always 156 

straightforward (Vanderklift and Ponsard, 2003), may contribute evidence of possible 157 

differences in food choice.  158 

 159 

Our stable isotope analysis was used primarily to evaluate the existence of a hybrid zone 160 

between the morphologically intergrading S. c. blythi and S. c. halimodendri. This alledged 161 

hybrid zone is located in an area difficult to access, and it was not possible to obtain 162 

samples from this region. Instead we combined samples from the wintering grounds and all 163 

individuals caught during one spring migration season at a locality south of the breeding 164 

ranges of both taxa. A basic assumption is that individuals occupying the extensive area 165 
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where semi-desert gradually changes into boreal taiga would be exposed to different 166 

environmental conditions than individuals living in either semi-desert or taiga. These different 167 

conditions would be assumed to produce isotopic signatures rendering populations from 168 

within the cline different from populations occupying the extreme ends of the cline. 169 

Furthermore, if the apparent morphological cline between these two taxa is best explained 170 

by extensive ongoing geneflow across a continuous range, we expect stable isotope 171 

signatures from the transitional area to show a lack of correlation to haplotype group. We 172 

here test a hypothesis that no hybrid zone exists, and that morphologically intermediate 173 

individuals exist for other reasons than geneflow. This hypothesis would be rejected if 174 

isotope signatures are not correlated to haplotype group.  175 

 176 

Methodology 177 

 178 

Taxonomic names and sampling 179 

Throughout we follow the taxonomy according to Olsson et al. (2013). 74 of the samples 180 

used by Olsson et al. (2013) were analysed for stable isotopes (GenBank accession 181 

numbers given in Supplemental Table 1). As we were unable to access the area of alleged 182 

clinal overlap between S. c. blythi and S. c. halimodendri, the majority of the samples used 183 

for isotope analysis came from birds caught on migration or in the winter quarters throughout 184 

Central Asia and the Middle East (Table 1), and were diagnosed based on mtDNA 185 

haplotype, so that each of the Central Asian clades identified by Olsson et al. (2013) were 186 

included. Olsson et al. (2013) demonstrated that haplotypes were in most cases more 187 

strongly correlated to breeding ranges than were morphological features. We have thus here 188 

adopted the view that the haplotypes are the most reliable taxonomical indicators. All 189 

samples of S. c. blythi came from south of the area of the alleged cline. We used 19 blythi 190 

caught on northward migration in Kazakhstan during a period spanning most of the month of 191 

May. These samples were all originally identified as belonging to one of the desert forms (i.e. 192 
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halimodendri or minula) based on morphology, but were re-identified a posteriori as blythi 193 

based on their haplotype. The bulk of our blythi samples may thus be characterised as being 194 

either morphological intergrades or halimodendri with blythi haplotype. Two additional 195 

morphologically normal blythi from the United Arab Emirates were sampled on the wintering 196 

grounds. The migrating or wintering S. c. halimodendri included in the study were all 197 

originally correctly assigned to one of the desert taxa S. c. halimodendri or S. c. minula, 198 

which may in this context be considered to be the same due to previous taxonomic 199 

confusion. We have not come across any individuals with halimodendri haplotype showing 200 

phenotypic characters typical of blythi.  201 

 202 

 203 

Stable isotope analyses 204 

Isotope ratios were measured from tail feathers plucked from birds caught either on the 205 

breeding grounds, during the non-breeding season or on migration. Since Lesser 206 

Whitethroats undergo a complete post-breeding moult on the breeding grounds (Svensson 207 

1992, Shirihai et al. 2001), stable isotope ratios of feathers most likely represent breeding 208 

habitat preferences. Although a small proportion of Lesser Whitethroats moult tail feathers at 209 

other times of the year (Svensson 1992, Shirihai et al. 2001), these feathers are younger 210 

and less worn than those grown on the breeding grounds, and any such feathers were 211 

excluded from our study.  212 

Prior to analysis, feathers were washed with water and air-dried, the rachis was 213 

homogenised and ~0.7mg was weighed into either a tin cup (for nitrogen and carbon 214 

isotopes) or a silver cup (for hydrogen and oxygen isotopes). Analyses were conducted at 215 

the East Kilbride Node of the Natural Environment Research Council Life Sciences Mass 216 

Spectrometry Facility via continuous flow isotope ratio mass spectrometery (CF-IRMS) using 217 

a Costech (Milan, Italy) ECS 4010 elemental analyser interfaced with a Thermo Electron 218 

(Bremen, Germany) Delta XP mass spectrometer. For hydrogen and oxygen isotope ratio 219 

measurements, a separate ~0.7mg aliquot was weighed into a silver capsule and run by CF-220 
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IRMS on the same instrumentation, but using the Costech HTG-02 reactor (see Newton 221 

2010 for description). Isotope ratios are reported as -values and expressed as ‰ according 222 

to the equation X=[Rsample/Rstandard)-1] x 1000, where X is 2H, 13C, 15N or 18O and R is the 223 

corresponding ratio 2H/1H, 13C/12C, 15N/14N or 18O/16O and Rstandard is the ratio of the 224 

international references for each element. Hydrogen isotope analysis of feather samples is 225 

not straightforward since around a fifth of the hydrogen in keratin can exchange readily with 226 

ambient water vapour. We used the comparative equilibration procedure of Wassenaar and 227 

Hobson (2000, 2003) and the CFS and BWB-II standards reported there, to correct for non-228 

indigenous hydrogen.  229 

 230 

Statistical analysis 231 

To determine whether isotope values varied as a function of haplotype, we used Multivariate 232 

Analysis of Variance (MANOVA). The stable isotope values for 2H, 13C, 15N and 18O 233 

were included as the dependent variables with haplotype as a six-level factor. In the case of 234 

a significant overall model, we then used one-way Analysis of Variance (ANOVA) to 235 

determine differences among isotopes and post-hoc Tukey HSD multiple comparisons to 236 

identify specifically which haplotypes differed. All data met assumptions of homoscedasticity 237 

and normality except 18O, which was normally distributed following log10 transformation.  238 

  239 

Results 240 

Overall there were significant isotopic differences among the six lesser whitethroat 241 

haplotypes (Fig. 3, Table 2; MANOVA, Wilk’s =F24, 137.3=4.59, P<0.001, Figure 3) and 242 

univariate analysis revealed differences among 2H (ANOVA, F6,42 = 12.788, P<0.001), log10 243 


18O (F6,42 = 16.815, P<0.001), 13C (F6,63 = 13.205, P<0.001) and 15N (F6,63 = 16.613, 244 

P<0.001).  245 

 246 

2H and 18O 247 
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Haplotype group 1, representing S. c. blythi (sensu Olsson et al. 2013), differs significantly 248 

from virtually all other haplotype groups (post hoc Tukeys HSD, all p<0.05, Table 2a) – 249 

except haplotype 3, representing S. c. margelanica (sensu Olsson et al. 2013). Haplotype 250 

groups 2a, representing S. c. halimodendri (sensu Olsson et al. 2013) and 2b (incertae 251 

sedis, sensu Olsson et al., 2013), had higher 18O values compared with haplotype group 3, 252 

(p=0.009 and p=0.008, respectively), but did not differ significantly in 2H. There were no 253 

other statistically significant differences among haplotype groups (Table 2a).  254 

 255 

13C and 15N 256 

Haplotype group 1 had significantly lower 13C values compared with haplotype groups 2a, 257 

2b and 5, the latter representing S. c. curruca (Table 2b). Differences between the remainder 258 

of the haplotype groups were not significant.  259 

 260 


15N values for haplotypes 2a and 2b were similar and were significantly higher compared 261 

with haplotypes 1, 3 and 5 (Table 2b, Fig. 3). Differences between the remainder of the 262 

haplotype groups were not significant (Table 2b, Fig. 3). 263 

 264 

Discussion 265 

Stable isotope ratios from lesser whitethroat feathers grown on the breeding grounds varied 266 

by haplotype group – differences were particularly strong between the allegedly intergrading 267 

S. c. blythi and S. c. halimodendri. This may be an indication that gene flow between these 268 

taxa is low or absent. Below we explore our findings, consider their shortcomings and 269 

consider their implications for understanding relationships among lesser whitethroat taxa and 270 

for using isotopes in other studies investigating links between phylogeny and ecology. 271 

 272 

General caveats and limitations of stable isotope analysis  273 
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While the interpretation of isotope values is complex, here we generally assume that 2H 274 

and 18O are large-scale indicators, reflecting geographic origin based on spatial variation of 275 

precipitation isotopes (Bowen, et al. 2005). Thus samples from the same area should show 276 

similar stable isotope values, although local phenomena can also affect the values. For 277 

example, spatio-temporal differences in amounts of precipitation may result in different 278 

signatures, and evapotranspiration can increase 18O values in leaf tissue (Barbour 2007). 279 

Conversely, 13C and 15N reflect finer scale differences in habitat/diet choice, and vary as a 280 

function of changes in photosynthetic pathways and trophic enrichment (Inger and Bearhop 281 

2008). These may thus vary between species living sympatrically, depending on factors 282 

pertaining to niche differentiation, such as microhabitat or food choice. 15N is primarily 283 

influenced by the trophic level of a species, but local-scale changes in 15N of plants may 284 

arise due to differing agricultural regimes or pollution close to urban areas. 13C is mainly 285 

influenced by the primary producers at the beginning of the food chain, with a species living 286 

in xeric habitat expected to be mostly influenced by food chains starting with C4 plants, but if 287 

their predominant prey comes from food chains starting with C3 plants, they would still show 288 

low  13C levels. Baseline values in plants may also vary greatly on a local scale due to e.g. 289 

fertilization or nitrification (West et al., 2010).  290 

 291 

It is also important to bear in mind that lack of significant isotopic differences does not 292 

automatically equate to ecological similarity. Isotopic signatures in consumer tissues are a 293 

combination of a number of naturally occurring gradients and therefore it is possible for 294 

animals to occupy different habitats but have similar isotope values. One such potential 295 

problem with using isotope values is the inability to differentiate between isotopic gradients 296 

occurring as a function of continental-scale differences in rainfall patterns, and those that 297 

occur as a function of altitudinal gradients (Bowen, et al. 2005, Hobson, et al. 2004). In other 298 

words, it is possible that birds occupying different habitats may share similar isotopic niche 299 

signatures. The lack of differentiation between S. c. halimodendri and S. c. althaea, which 300 
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are partly sympatric but are altitudinally segregated (plains and mountains, respectively), 301 

may be an example of this.  302 

 303 

It is clear therefore that isotopes are not wholly effective at delineating fine-scale habitat 304 

differences. Nevertheless, they are valuable in the context of the present study since they 305 

enable us to test for broad-scale ecological differences and similarities and particularly to 306 

determine whether morphological intermediate individuals exhibit intermediate ecologies.  307 

 308 

Stable isotope differences between the blythi and halimodendri haplotype groups 309 

Sylvia c. blythi (sensu Olsson et al., 2013) is thought to primarily inhabit scrub and glades in 310 

the Siberian boreal forest region (Dement’ev and Gladkov, 1968; Shirihai et al., 2001). Our 311 

sample of this haplotype group differs significantly in 2H and 18O values from all other 312 

haplotype groups studied here, except from haplotype group 3 (representing margelanica, 313 

sensu Olsson et al., 2013), further explored below. The significant differences in 2H and 314 


18O values between blythi and halimodendri, reflecting overall habitat characteristics 315 

influenced by amount of rainfall, primarily corroborate the already known broad-scale 316 

differences in geographic location between these taxa. The most intriguing observation is 317 

that, despite their halimodendri-like plumage, all of our blythi haplotype samples show 318 

isotope signatures consistent with an origin in the mesic boreal forest region. This runs 319 

counter to the expectations of morphologically intermediate samples originating from the 320 

area between the semi-desert and the boreal forest. In such a scenario isotope signatures 321 

would have been expected to differ from typical blythi as well as halimodendri, by showing 322 

intermediate values of 2H and 18O.  323 

 324 

Significant differences in 13C indicate that blythi and halimodendri occupy different habitats, 325 

may feed on prey that are part of different food chains (based on C3 plants or C4 and CAM 326 

plants, respectively), or both. The 13C values are significantly lower for blythi compared to 327 
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halimodendri, which occurs mainly in low altitude xeric habitats (Dement’ev and Gladkov, 328 

1968, Olsson et al., 2013, Shirihai et al., 2001). A possible explanation for the low 13C 329 

values in blythi is that the samples came from a habitat with food chains including a higher 330 

proportion of C3 plants, with the opposite effect expected in habitats dominated by C4 and 331 

CAM plants (Still et al. 2003). These differences corroborate the assumption that blythi is 332 

primarily a taxon of scrub and woodland (i.e. mesic habitats) and halimodendri is typically 333 

found in desert or xeric habitats.  334 

 335 

Differences in 15N values are statistically significant between blythi and halimodendri, 336 

suggesting that these closely related taxa utilise different food sources. 15N values show a 337 

stepwise enrichment by a factor of 2.5–3 between subsequent trophic levels (Caut et al. 338 

2009), indicating that halimodendri may on average feed at one or two trophic levels higher 339 

than blythi. It is possible that primary consumer prey items, e.g. lepidopteran larvae, are 340 

more abundant in mesic habitats. However, although differences in 15N values are usually 341 

taken to indicate differences in trophic enrichment, the interpretation is complicated by 15N 342 

values also being generally lower in mesic than in xeric habitats (Kelly 2000). Furthermore, 343 

presence of grazing livestock may contribute to increased levels of 15N (Kerley and Jarvis, 344 

1996). It is possible that there are more grazing animals in the arid areas of Central Asia 345 

than in the temperate forest region, contributing to this difference. Consequently, the 346 

predictive value of differences in 15N increases in cases when the samples come from the 347 

same area, particularly in cases of possible niche overlap. In the case of blythi and 348 

halimodendri there is a possibility that the differences are influenced by other factors than 349 

different feeding habits.  350 

 351 

Even if the differences in general between blythi and halimodendri need to be interpreted 352 

with caution (see General caveats and limitations of stable isotope analysis above), the 353 

origin of the differences is in this context less important than the fact that they indicate 354 
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significant ecological division between blythi and halimodendri on the breeding grounds, i.e. 355 

that they occupy different niches. The correlation between haplotype and geographic 356 

distribution reported by Olsson et al. (2013) also indicate that they breed in different areas. 357 

Furthermore, the niche utilization does not seem to be correlated to the external morphology 358 

in blythi, as our entire sample of this taxon was morphologically more similar to the desert 359 

forms than to curruca-like typical blythi. Hypothetically, halimodendri-like plumage could be 360 

an indication that they originated from a population under selection for similar exterior 361 

morphology as halimodendri, i.e. one living in halimodendri-like habitat. However, our 362 

isotope data clearly indicate that all samples with a blythi haplotype originated from boreal 363 

forest habitat. Furthermore, all individuals collected by Olsson et al (2013) on the breeding 364 

grounds in the temperate forest belt belonged to the distinct blythi haplotype group, and all 365 

individuals collected during the summer months on the breeding grounds in Central Asian 366 

arid semi-desert belonged to the halimodendri haplotype. 367 

 368 

Implications of isotopic niche differentiations among other taxa 369 

The reason for the lack of differentiation in 2H and 18O values between blythi and 370 

margelanica is not clear. Possibly margelanica occurs in areas with a higher amount of 371 

precipitation than the other southerly populations, resulting in an isotopic signature more 372 

similar to those further north and highlighting the shortcomings of using geographic range 373 

alone as a proxy for habitat selection. Differences in 18O values between margelanica and 374 

halimodendri are significant and consistent with the 2H results, the latter appearing to 375 

inhabit the most xeric habitat. 376 

 377 

Differences in 13C values are significantly lower for blythi compared to minula, which occurs 378 

mainly in low altitude xeric habitats (Olsson et al., 2013). Differences in 13C values between 379 

blythi and the two high altitude haplotype groups althaea and margelanica are not 380 

statistically significant, but the values indicate that the habitats of althaea and margelanica 381 
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may be intermediate between that of blythi, and that of minula and halimodendri in this 382 

respect.   383 

 384 


15N values differ significantly between the three southern forms. halimodendri on the one 385 

hand and margelanica and minula on the other, where habitat differences are less obvious, 386 

and the reason for this is unclear. In contrast, there are no significant differences in 15N 387 

values between the northern blythi and the southern margelanica and minula in spite of 388 

obvious habitat differences (Olsson et al., 2013; Shirihai et al., 2001). Between blythi and 389 

althaea differences in 15N values are nearly statistically significant (p=0.069), although the 390 

implications of this are unclear.  391 

 392 

A possible conclusion from 13C and 15N values may be that halimodendri feeds at a higher 393 

trophic level or in areas with longer food chain lengths compared with blythi, margelanica 394 

and minula, respectively.  395 

 396 

Apart from the cases highlighted above, there were no other consistent patterns in terms of 397 

differences in stable isotope ratios between haplotype groups. Interestingly, there are no 398 

statistically significant differences in stable isotope ratios between halimodendri and althaea, 399 

which breed sympatrically, but are segregated by altitude.  It is well known that these birds 400 

are morphologically divergent from each other, and they are considered separate species by 401 

most authors, based on evidence of reproductive isolation (Korelov, 1972; Loskot, 2001; 402 

Shirihai et al., 2001; Stepanyan, 1983). More subtle differences in environmental conditions 403 

such as the amount of precipitation and composition of plant communities may exist but are 404 

not large enough to leave an imprint on the isotopic signatures. 405 

  406 

Loskot (2005) and Williamson (1976) suggested that minula and margelanica intergrade in 407 

the Qaidam depression, but we have no isotope data from this area. Given their lack of 408 
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differentiation in isotopic signature from other areas, indicating similar ecological 409 

requirements, populations in this area would make an interesting case study regarding 410 

amount of niche overlap, heterospecific interaction and selection against hybrids. 411 

 412 

Concluding remarks 413 

In this paper we illustrate how the analysis of isotopic niche can be used in tandem with 414 

phylogenetic information to explore links between ecological divergence and genetic 415 

differentiation within a closely related group of birds, and how this method of reciprocal 416 

illumination allows valuable insights into the speciation process.  417 

 418 

Our data suggest complete correlation between isotope signature and haplotype between 419 

halimodendri and blythi, clearly indicating that halimodendri occupies a different niche than 420 

birds with halimodendri-like appearance but blythi haplotype. There are no indications of 421 

intermediate, less habitat specific, individuals among our halimodendri and blythi samples, 422 

and no haplotypes typical of one taxon were detected in individuals breeding in habitat more 423 

characteristic of the other taxon. This finding casts some doubt on the generally accepted 424 

assumption that morphologically intermediate Lesser Whitethroats originate from a 425 

population of intergrades inhabiting the region where semi-desert grades into the boreal 426 

forest. The strict differentiation into isotopic niches also by intermediate-looking individuals 427 

and a lack of individuals with “misplaced” haplotypes speak against an extensive hybrid 428 

zone, but does not reject it. There is a risk that we may have entirely missed a population 429 

representing the hybrid zone. This could happen by chance as our sample is small, or if, for 430 

example, different populations migrate along different routes or at different times. However, 431 

these limitations apply to the design of this study, not the approach in general. With carefully 432 

designed sampling that ensures samples of both taxa from the area of range overlap are 433 

included, this method should provide information about habitat and food preferences of 434 

different populations that could add valuable evidence for the determination of species limits.  435 

 436 
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Studies in a contact zone of both blythi and halimodendri and other taxon pairs, such as 437 

minula and margelanica, has the potential to shed light on the role of character displacement 438 

as a driver of morphological and ecological divergence in the early stages of secondary 439 

contact. Another outstanding question is whether the morphological and ecological 440 

divergence found between sympatric species is instead driven by adaptations in allopatry, 441 

and must already be in place before sympatry is possible. Future research on the 442 

interactions, habitat preferences and food choice of these taxa in the transition zone 443 

between their distribution ranges should provide important insights into the most crucial step 444 

of the speciation process, the build-up of sympatric diversity.  445 
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Table 1. Details of sampling locations, period of the annual cycle and year of Lesser Whitethroat taxa used in stable isotope analysis. 459 

Allospecies Site Country Status Year sampled 

sama 

Year feather grown Haplotype Latitude Longitude n 

althea Issyk Kol Kyrgyzstan On breeding grounds 2003 2002 4 42
o
25'N 76

o
70'E 1 

althea Turaigyr Kazakhstan On breeding grounds 2003 2002 4 43
o
29'N 78

o
38'E 2 

althea Zhetyzhol Kazakhstan On breeding grounds 2003 2002 4 43
o
01’N  76

o
03’E 1 

blythi Ghantoot, Dubai United Arab Emirates Wintering 2004 2003 1 24
o
16’N 52

o
52’E 2 

blythi Chokpak Kazakhstan Migrating 2002 2001 1 42
o
31'N 70

o
38'E 14 

blythi Balkash Kazakhstan Migrating 2002 2001 1 46
o
70'N 74

o
35'E 1  

blythi Ili River Kazakhstan Migrating 2002 2001 1 45
o
07'N 75

o
26'E 1  

blythi Sorbulak Kazakhstan Migrating 2002 2001 1 43
o
70'N 76

o
50'E 3  

halimodendri Al Wathba, Abu 

Dhabi 

United Arab Emirates Wintering 2004 2003 2a 24
o
15’N 54

o
40’E 3 

halimodendri Al Wathba, Abu 

Dhabi 

United Arab Emirates Wintering 2004 2003 2b 24
o
15’N 54

o
40’E 2 

halimodendri Ghantoot, Dubai United Arab Emirates Wintering 2004 2003 2a 24
o
16’N 52

o
52’E 6 

halimodendri Ghantoot, Dubai United Arab Emirates Wintering 2004 2003 2b 24
o
16’N 52

o
52’E 10 

halimodendri Ili River Kazakhstan On breeding grounds or migrating 2003 2003 2a 45
o
07'N 75

o
26'E 2  

halimodendri Sorbulak Kazakhstan On breeding grounds or migrating 2003 2003 2a 43
o
70'N 76

o
50'E 3  

halimodendri Sorbulak Kazakhstan On breeding grounds or migrating 2003 2003 2b 43
o
70'N 76

o
50'E 1  

halimodendri Hilf Oman Wintering 2003 2003 2a 20
o
66'N 58

o
90'E 1 

halimodendri Khatmat Milahah Oman Wintering 2003 2003 2a 24
o
95'N 56

o
35'E 1 

halimodendri Hilf Oman Wintering 2003 2003 2b 20
o
66'N 58

o
90'E 1 

halimodendri Khatmat Milahah Oman Wintering 2003 2003 2b 24
o
95'N 56

o
35'E 3 

halimodendri Xinjiang China September – Breeding grounds? 2004 2004 2b 42
o
09'N 89

o
02'E 1 

margelanica Qinghai China On breeding grounds 2003 2002 3 36
o
30'N 100

o
60'E 1 

margelanica Xinjiang China September – Breeding grounds? 2004 2004 3 42
o
09'N 89

o
02'E 4 

minula Xinjiang China On breeding grounds 2003 2002 5 40
o
05'N 81

o
04'E 9 

minula Xinjiang China September – Breeding grounds? 1998 1998 5 42
o
09'N 89

o
02'E 1 

 460 
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Table 2. Stable isotope signatures vary as a function of lesser whitethroat haplotype. 461 

Results of post hoc Tukey HSD multiple comparisons for differences in: (a) 2H and (log) 462 


18O, primarily reflecting geographical differences and; (b) 13C and 15N primarily reflecting 463 

small-scale differences in habitat occupancy and foraging behaviour.  Mean differences are 464 

presented alongside p-values – statistically significant differences at alpha level 0.05 are 465 

highlighted in bold. 466 

 467 
(a) Haplotype     

 1 2a 2b 3 4 


2
H      

2a -49.26, p<0.001 -    
2b -49.79, p<0.001 -0.53, p=1.000 -   
3 -25.07, p=0.058 24.21, p=0.240 24.74, p=0.181 -  
4 -47.53, p<0.001 1.72, p=1.000 2.26, p=1.000 -22.48, p=0.379 - 
5 -40.34, p<0.001 8.91, p=0.930 9.44, p=0.890 -15.30, p=0.580 7.18, p=0.980 


18

O      

2a -0.25, p<0.001 -    
2b -0.24, p<0.001 0.01, p=1.000 -   
3 -0.08, p=0.145 0.16, p=0.006 0.16, p=0.005 -  
4 -0.18, p<0.001 0.06, p=0.762 0.06, p=0.796 -0.09, p=0.253 - 
5 -0.14, p<0.001 0.10, p=0.081 0.10, p=0.077 -0.06, p=0.619 0.04, p=0.897 

 468 
(b) Haplotype     

 1 2a 2b 3 4 


13

C      

2a -4.81, p<0.001 -    
2b -4.06, p<0.001 0.75, p=0.855 -   
3 -2.23, p=0.114 2.58, p=0.070 1.83, p=0.303 -  
4 -2.24, p=0.177 2.56, p=0.121 1.81, p=0.412 -0.02, p=1.000 - 
5 -2.79, p=0.001 2.01, p=0.085 1.27, p=0.435 -0.56, p=0.991 -0.54, p=0.995 


15

N      

2a -4.11, p<0.001 -    
2b  -4.51, p<0.001 -0.40, p=0.987 -   
3 -0.44, p=0.995 3.67, p=0.001 4.07, p<0.001 -  
4 -2.55, p=0.069 1.56, p=0.586 1.96, p=0.285 -2.11, p=0.417 - 
5 -1.41, p=0.253 2.71, p=0.004 3.11, p<0.001 -0.97, p=0.895 1.14, p=0.853 

 469 
 470 
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Figure 1. Breeding range of five main Lesser Whitethroat taxa as described by Shirihai et al. (2001). A sixth taxon, Sylvia c. blythi (sensu 

Olsson et al., 2013) is thought to primarily inhabit scrub and glades in the Siberian boreal forest region. 
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Figure 2. Phylogeny of the Asian Lesser Whitethroat taxa after Olsson et al. (2013). The 

unnamed sister taxon of halimodendri is here treated as synonymous with halimodendri.    
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Figure 3 Stable isotopes of hydrogen, carbon, nitrogen and oxygen vary as function of six 

haplotype groups in the lesser whitethroat complex. Haplotype 1 equals blythi, haplotypes 2a 

and 2b equal halimodendri, haplotype 3 equals margelanica, haplotype 4 equals althaea and 

haplotype 5 equals minula. Values are means ±1SE. In both contrasts, significant 

differences are found between blythi on the lower left and halimodendri on the upper right. 

The other taxa show intermediate stable isotope ratios.   
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