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ABSTRACT

Aim  To investigate the association between species richness, species' phylogenetic signal, 

insularity, and historical and current climate with hummingbird-plant network structure.

Location 54 communities along a c. 10,000 kilometer latitudinal gradient across the 

Americas (39ºN - 32ºS), ranging from sea level to c. 3700 m asl, located on the mainland and

on islands, and covering a wide range of climate regimes.

Methods We measured the level of specialization and modularity in mutualistic plant-

hummingbird interaction networks. Using an ordinary least squares multi-model approach, we

examined the influence of species richness, phylogenetic signal, insularity, and current and 

historical climate conditions on network structure (null-model corrected specialization and 

modularity).

Results Phylogenetically-related species, especially plants, showed a tendency to interact 

with a similar array of partners. The spatial variation in network structure exhibited a constant 

association with species' phylogeny (R2=0.18-0.19); however, network structure showed the 

strongest association to species richness and environmental factors (R2=0.20-0.44; R2=0.32-

0.45, respectively). Specifically, higher levels of specialization and modularity were 

associated with species-rich communities and communities in which closely-related 

hummingbirds visited distinct sets of flowering species. On the mainland, specialization also 

associated to higher levels of warmer temperatures and higher historical temperature 

stability.

Main conclusions Our results confirm previous macroecological studies of interaction 

networks which have highlighted the importance of species richness and the environment in 

determining network structure. Additionally, for the first time, we report an association 

between network structure and species phylogenetic signal at macroecological scale, 

indicating that high specialization and modularity are associated with high inter-specific 
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competition among closely-related hummingbirds, sub-dividing the floral niche. This suggests

a tighter co-evolutionary association between hummingbirds and their plants than previously 

studied plant-animal mutualistic systems.
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INTRODUCTION

An urgent challenge facing contemporary ecologists is to understand how ecological, 

evolutionary and environmental mechanisms affect the structure and function of ecological 

communities. Better understanding of how these processes form and maintain communities 

should help us to construct more robust theories and accurate models of community 

dynamics to predict how species and communities may respond to disturbance (Vázquez et 

al., 2009a; Woodward et al., 2010). For this purpose, the use of network approaches to study 

complex communities of interacting species, i.e. networks representing species as nodes and

interactions as links between species, has significantly advanced our understanding of 

ecological systems (Woodward et al., 2010).

For instance, research on mutualistic networks such as plant-pollinator or plant-

frugivore interactions, has revealed that these communities typically exhibit a number of 

architectural attributes, such as complementary specialization and modularity, which differ 

significantly from random interactions among species (Olesen et al., 2007; Blüthgen 2010; 

Dalsgaard et al., 2011, 2013; Schleuning et al., 2012, 2014; Trøjelsgaard & Olesen, 2013; 

Dormann & Strauss, 2014; Sebastián González et al., 2015). Complementary specialization 

measures the exclusiveness in species' interactions. Specifically, it is a measure of the 

deviation from a neutral scenario in which species interact solely according to their 

availability, measuring species' availability either as its abundance or its interaction frequency

(Blüthgen et al., 2006). Modularity quantifies whether species interact more frequently with 

subsets of available species within a community, forming modules of densely interacting 

species, with loose connections between modules (Olesen et al., 2007). Such modules have 

been suggested to reflect co-evolutionary units (Olesen et al., 2007), within-network 

functional specialization (Maruyama et al., 2014), and phenological units of species in 

environments with strong climatic seasonalities (Martín González et al., 2012; Schleuning et 
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al., 2014).

These architectural attributes have a profound impact on the dynamics of ecological 

communities. For example, higher levels of complementary specialization have been linked 

to higher dependencies between species and, hence, to a higher risk of secondary 

extinctions (Blüthgen, 2010); whereas high levels of modularity may at first provide higher 

network resilience to perturbations, as these are not typically spread across modules, but 

ultimately may result into unconnected modules, community fragmentation and rapid species 

loss (Thébault & Fontaine, 2010; Stouffer & Bascompte, 2011). Complementary 

specialization and modularity are typically related, as some degree of modularity necessarily 

implies a certain level of complementary specialization on a subset of species from the 

available species pool (Dormann & Strauss, 2014). Nevertheless, these metrics measure 

different aspects of interaction specialization and, hence, may show disparate dynamics and 

associations with different ecological, evolutionary and environmental factors.

Thus, comparative studies at macroecological scales, where differences in network 

structure can be associated to varying ecological, evolutionary and environmental factors, 

may provide valuable insights into the structure and dynamics of ecological networks 

(Dalsgaard et al., 2011, 2013; Schleuning et al., 2012, 2014; Trøjelsgaard & Olesen, 2013, 

Sebastián González et al., 2015). For instance, species richness may promote higher 

degrees of complementary specialization and modularity by increasing interspecific 

competition and providing more species to interact with, i.e. allowing a finer niche partitioning 

(e.g. Dalsgaard et al., 2011; Junker et al., 2013). Additionaly, evolution may structure biotic 

interactions via niche conservatism, as closely-related species may display more similar 

phenotypes, spatial distributions, and ecological interactions than distantly-related species 

(Webb et al., 2002; Ives & Godfray, 2006; Rezende et al., 2007; Vázquez et al., 2009a). 

Alternatively, closely-related species experiencing strong interspecific competition may 
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undergo niche partitioning, competitive exclusion, or resource-use complementarity (Webb et

al., 2002; Rezende et al., 2009; Krasnov et al., 2012). Environmental setting may also affect 

biotic interactions. Historical climatic stability may promote specialization and modularity by 

providing species more opportunity to co-evolve over longer periods of time compared to 

species from climatically more unstable areas. Notably, large late Quaternary glacial-

interglacial climate change is coupled with a decreased modularity in pollination networks 

(Dalsgaard et al., 2013), and decreased specialization in hummingbird-plant networks 

(Dalsgaard et al., 2011). Likewise, current environmental conditions may influence the identity

and strength of species interactions by altering species' spatial distribution, phenophases and

foraging capability (Cruden, 1972; Martín González et al., 2009; Dalsgaard et al., 2011, 2013;

Schleuning et al., 2012, 2014). For example, bird pollination has been reported to become 

increasingly important and specialized in areas of current high precipitation and low 

temperatures, possibly because insect pollinator diversity and activity is lower in cold and wet

environments due to thermoregulatory and nesting constraints (Cruden, 1972; Dalsgaard et 

al., 2009, 2011; Martín González et al., 2009). Finally, insularity may influence pollination 

network structure, as insular communities typically show significantly lower levels of 

specialization and modularity compared to the mainland (Olesen et al., 2002; Dalsgaard et 

al., 2013).

Despite the recently increasing interest in determining the influence of species 

richness, phylogenetic signal and past and current environmental conditions on network 

structure (Dalsgaard et al., 2011, 2013; Schleuning et al., 2012, 2014; Sebastián González et

al., 2015), very little is known about the relative importance of these factors. Only Schleuning 

et al. (2014) studied their combined influence on the modular patterns of mutualistic 

networks. Specifically, they used a dataset of 18 frugivore bird-plant networks, reporting a 

high modularity in areas having low temperatures and high temperature seasonality, whereas
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modularity exhibited no detectable association to species' phylogenetic history and historical 

climate. Here, we likewise examine how the structure of hummingbird-plant networks, 

another type of mutualistic assemblage, associates to species richness, phylogenetic signal 

and environmental conditions. To do so, we compiled a dataset consisting of 54 high-

resolution quantitative hummingbird-plant interaction networks, and combined them with 

complementary data on species richness, state-of-the-art species phylogenies and 

simulations of paleo and current climate. In accordance with previous studies on pollination 

networks, we show that complementary specialization and modularity are influenced by 

species richness and climatic conditions. Additionally, for the first time, we report an 

association between network structure and species phylogenetic signal at macroecological 

scale. Specifically, communities where closely-related hummingbirds interact with distinct 

sets of plant species exhibited higher levels of complementary specialization and modularity.

MATERIAL & METHODS

Hummingbird-plant interaction networks

We compiled a large dataset of 54 high-resolution and geographically widely distributed 

hummingbird-plant interaction networks from published and unpublished sources (Fig. 1; see 

Table S1 for full references, and Dalsgaard et al., 2011 for a previous version of this dataset). 

This dataset does not include networks which have not sampled the entire floral community, 

i.e. we discarded studies which had focused only on ornithophilous species or on specific 

floral or hummingbird groups. We also discarded illegitimate interactions, i.e. our database 

focuses exclusively on interactions with potential for pollination. These networks describe the 

interaction frequency between plants and hummingbirds, recorded as number of observed 

visits. In total, our dataset is composed of 141 species of hummingbirds belonging to all 

major hummingbird lineages (about 42% of all described species; McGuire et al., 2014) and 
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824 plant species belonging to 79 different plant families (Appendix S1).

Mutualistic hummingbird-plant interaction networks constitute a particularly suitable 

model system to explore large-scale patterns in network structure as there is ample 

knowledge of the historical biogeography of hummingbirds, these assemblages are widely 

distributed in a variety of ecosystems across the Americas, and they offer examples covering 

the entire interaction specialization-generalization spectrum (Bleiweiss, 1998; Dalsgaard et 

al., 2011). Furthermore, our data consists of a single and monophyletic pollinator group 

(Brown & Bowers, 1985; McGuire et al., 2014), allowing us to explore the association 

between phylogeny on overall network structure more precisely.

Finally, the spatial distribution of these networks extend from sea level to c. 3700 m 

a.s.l. and spans a c. 10,000 kilometer gradient from 39ºN to 32ºS, from tropical and 

subtropical ecosystems in South America to temperate communities in North America. The 

spatial distribution includes both mainland and insular communities and consists of 

communities from various environmental settings (Fig. 1).

Network composition and network metrics

Network interactions were quantified in terms of the number of interaction events between 

hummingbird and plant species at particular locations. For each network we calculated two 

complementary metrics that describe the degree of specialization or specificity of 

hummingbird-plant interactions: complementary specialization (Blüthgen et al., 2006) and 

quantitative bipartite modularity (Dormann & Strauss, 2014). These metrics were correlated in

our dataset R2=0.78 (Table S2) but were chosen to more fully characterize how evolutionary 

and environmental factors associate to specialized network structures. For the calculations 

we used the R package bipartite 1.20 (Dormann et al., 2009).

(1) Complementary specialization (H2') describes how species restrict their interactions 
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relative to random expectations based on species’ abundances/interaction frequency. 

Complementary specialization is calculated as 
H 2=−∑

i=1

r

∑
j=1

c

( p ij ln pij )
, where pij reflects the 

proportional number of interactions of each species relative to their availability, i.e., for their 

respective marginal total (in our case total interaction frequency) for r plant and c animal 

species. We illustrate this in Figure 1; for instance, from the example community A from Fig. 

1, p1A=0.99 (which results from an interaction frequency of 155 between plant 1 and 

hummingbird A, over a marginal total of 155+1=156 for plant 1) and pA1=1 (155 over 155). 

Hence the interaction A-1 exhibits a high complementary specialization, as hummingbird A 

visits exclusively plant 1 and at a high frequency, while plant 1 is only visited, and at a very 

low frequency, by another hummingbird species. If a community is composed majoritarily by 

interactions with such high complementarity, the community will exhibit high values of 

complementary specialization (Blüthgen et al., 2006). On the other hand, species C and 4 

also interact 155 times, but in this case hummingbird C interacts with many other plant 

species and has a higher marginal total, lowering the complementary specialization of this 

pair (pC4=0.36, p4C=1).

We standardized complementary specialization as 
H 2 '=

H 2max−H 2

H 2max−H 2min , so that H2' 

ranges from minimum (H2'=0) to maximum (H2'=1) link selectiveness, where species establish

distinct and highly specific interactions far different than expected interactions (Blüthgen et 

al., 2006). Thus, H2'  quantifies the deviation of the observed interactions from those expected

under a neutral assumption that species' interactions are entirely determined by partner 

availability. This assumption minimizes the influence of rare interactions by causing frequent 

interactions to dominate H2'.

(2) Quantitative bipartite modularity (QuanBiMo) is an algorithm which places species 
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among an a priori unespecified number of modules, such that species interact at high 

frequencies within their module, and show few links and/or low frequency links with species 

outside their module (Dormann & Strauss, 2014; Schleuning et al., 2014; Fig. 1). Such 

partition is based on a hierarchical representation of interaction frequencies and optimal 

allocation of species into modules. Specifically, the algorithm maximizes the bipartite version 

of Newman's modularity (Q), so that 
Q=

1
2N

Σ(Aij−K ij)δ(mi ,m j)
, where N reflects the total 

number of interactions, Aij the normalized number of interactions between species i and j, Kij 

the expected interaction probability between species i and j drawn from a neutral model of 

interactions, and the indicator function δ(mi ,m j)  equals 1 when species i and j are placed in 

the same module and 0 otherwise. Modularity ranges from no (Q=0) to maximum (Q=1) 

modularity. We ran the QuanBiMo algorithm following the methodology established by 

Schleuning et al. (2014) and the default specifications of the computeModules function in 

bipartite, that is, for each network we chose the partition showing highest modularity from five

independent runs of the algorithm (Dormann & Strauss, 2014; Schleuning et al., 2014). 

Variations in the likelihood values of modularity were negligible (all SD<0.05).

As raw values for network metrics may be affected by species frequencies and 

network connectance, network estimates for complementary specialization and modularity 

were corrected using null models (Schleuning et al., 2012, 2014; Dormann & Strauss, 2014). 

Null models simulated matrices with the same number of species and interactions as the 

empirical network, with a species' interaction probability distribution drawn from observed 

species' connectivity (vaznull model in bipartite; Vázquez et al., 2007 – except for network #3 

for which we used the r2dtable null model in bipartite due to the imposibility of calculating 

vaznull). Corrected metrics were then calculated as the difference between the value of the 

empirical network and the mean value obtained from 1000 and 100 null models for H2' and 
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QuanBiMo, respectively (as in Schleuning et al., 2012, 2014). As for the calculation of 

empirical QuanBiMo values, for each of the 100 null matrices we used the maximum value of 

five independent runs of the QuanBiMo algorithm (Schleuning et al., 2014). By extracting the 

network structure achieved under null conditions, corrected metrics quantify how much an 

empirical community departs from an average random one with an equivalent set of species, 

number of interactions and interaction probability distribution. Notice that for instance, as 

Figure 1 illustrates, a corrected value of 0.3 gives no information on the uncorrected values, 

only that there is a 0.3 difference between observed and null values, e.g. this value can result

both from a raw observed value of 0.4 and a mean null value of 0.1 (Fig. 1 community A), or 

from a raw observed value of 0.5 and a mean null value of 0.2 (Fig. 1 community B), etc.

Analysis of phylogenetic signal in bipartite interaction networks

We measured the phylogenetic signal exhibited by hummingbird-plant networks by 

quantifying the degree to which closely-related species share more interaction partners than 

distantly-related species (Ives & Godfray, 2006). Species’ interactions are considered to 

exhibit a higher phylogenetic signal, when closely-related species share relatively more 

interaction partners than distantly-related species (Ives & Godfray, 2006; Vázquez et al., 

2009b).

We used state-of-the-art phylogenies of plants and hummingbirds to create variance-

covariance matrices, which quantify the phylogenetic relatedness of plants or hummingbirds 

in each community, using the “vcv” function from the R package ape (Paradis et al., 2004). 

We fitted these vcv matrices to each observed bipartite interaction matrix through a linear 

model using the “pblm” function from the R package picante (Kembel et al., 2010). This 

analysis results in two independent measures of the strength of the phylogenetic signal, one 

for plants (dplants ) and another for hummingbirds (dhummingbirds), together with an overall measure
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of strength of the model fits for the entire community (measured as mean squared error of the

model, MSE). We evaluated three different models, one assuming no phylogenetic signal 

(dplants=dhummingbirds=0; Star model), one assuming a maximum phylogenetic signal 

(dplants=dhummingbirds=1; Brownian model), and a final one which incorporated the observed 

phylogenetic signals combined (estimated dplants and dhummingbirds; Data model). We used the 

bootstrapping option to calculate confidence intervals for dplants and dhummingbirds. Networks 

where these confidence intervals did not overlap zero or when the MSEData < MSEStar were 

considered to exhibit a significant phylogenetic signal (Ives & Godfray, 2006; Vázquez et al., 

2009b). For a list of all species included in this study and a detailed explanation of the 

phylogenetic analysis, refer to Appendices S1 and S2, respectively.

Environmental variables

We analyzed six variables describing contemporary and historical temperature and 

precipitation known or hypothesized to affect the structure of pollination networks. Four of the

six variables describe contemporary climatic conditions: mean annual temperature (MAT, ºC),

temperature seasonality (TS, standard deviation × 100), mean annual precipitation (MAP, 

mm) and precipitation seasonality (PS, coefficient of variation). We obtained these 

measurements from the WorldClim dataset with spatial resolutions of 1 x 1 km 

(http://www.worldclim.org; see also Hijmans et al., 2005). The historical climate variables, the

velocity of temperature change and the velocity of precipitation change, reflect the speed of 

temperature and precipitation change between the Last Glacial Maximum (LGM) and pre-

industrial times (VT, m/yr; VP, m/yr), following the definition of Loarie et al. (2009). Projections

of the global climate during the LGM and pre-industry were generated by Hadley Centre 

Coupled Model Version 3 (HadCM3) with a resolution of 3.75 × 2.5 arc degrees (Singarayer 

& Valdes, 2010), and were downscaled to 0.1 × 0.1 arc degrees. For each study site, climate 
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estimates were calculated as the average values of all 1 x 1 km grid cells (0.1 × 0.1 arc 

degrees for paleoclimate data) within a concentric distance of 10 km from the sampling 

location. Additionally, we scored whether a network was located on the mainland (0) or on an 

island (1).

Macroecological models

We used a multi-model approach based on information theory as outlined in Diniz-Filho et al. 

(2008) to simultaneously evaluate the relationships of species richness, phylogenetic signal 

and environment with hummingbird-plant network structure. First, for each network metric, we

calculated full ordinary least squares (OLS) regression models which included the following 

ten predictor variables: 1) species richness (network size), 2) the phylogenetic signal in the 

interaction pattern of plants' (dplants) and 3) hummingbirds' (dhummingbirds), 4) annual average 

temperature, 5) temperature seasonality, 6) annual average precipitation, 7) precipitation 

seasonality, 8) temperature-change velocity, 9) precipitation-change velocity and 10) 

insularity. Second, for each network metric, we used the Akaike Information Criterion (AICC) 

aiming at identifying minimum adequate models (MAMs) among all possible model 

combinations of our ten predictor variables. MAMs were defined as models exhibiting a 

difference in AICC of at least two points lower than other models (i.e. a ∆AICC < 2; Burnham & 

Anderson, 2002; Diniz-Filho et al., 2008). As no single MAM was identified, often around 10 

models had ∆AICC < 2, we instead used a multi-model approach. Specifically, instead of 

calculating regression coefficients in a single best model (MAM), we calculated the overall 

importance of each model (wi) as the relative likelihood of any given model i over the sum of 
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the likelihoods of the entire dataset of models, such that 

w i=
exp (

−1
2

Δ i)

∑
r=1

R

exp(
−1
2

ΔR)
, being Δi the 

differences in AIC between the set of R models, so that the relative strength of each model 

depends on the entire set of models. We report the standardized regression coefficients and 

the overall importance (Σ wi) of each variable for an averaged OLS model based on weighted

wi (Burnham & Anderson, 2002; Diniz-Filho et al., 2008), for which we adopted an importance

cut-off value of ≥0.750. The standardized regression coefficients were also reported for the 

OLS regression model including all ten predictor variables (“full” model). For each network 

metric, we used partial regressions to separate the total, unique and shared variation 

explained by species richness, phylogenetic signal and environmental factors in the “full” 

models.

The structure of mainland and island hummingbird-plant and pollination networks may 

differ, as previous studies predict higher levels of generalization and less modularity for 

insular pollinator communities (Olesen et al., 2002; Dalsgaard et al., 2009, 2013). The 

colonization of the Caribbean by hummingbirds has been considerably more recent than 

mainland America (c. 5 million years ago versus 12-22 million years ago for North and South 

America, respectively), and consequently insular hummingbirds have had less time for 

specialization and coevolution with their nectar plants than their mainland counterparts 

(Bleiweiss, 1998; McGuire et al., 2014). Moreover, Caribbean communities undergo a high 

level of periodic disturbances, which may hinder high levels of specialization on islands 

(Graves & Olsen, 1987; Rivera-Marchand & Ackerman, 2006). Hence, the relationship 

between species richness, phylogenetic signal and environmental factors and network 

structure may differ between mainland and insular communities. For instance, the influence 

of historical climate change may be weaker on islands than on the mainland (Dalsgaard et 
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al., 2013, 2014). As our dataset contains too few island networks (n=9) to allow for a separate

analysis for insular networks, we explored putative differences in mainland and island 

networks by analyzing a subset of the dataset composed exclusively by networks from the 

mainland (Mainland, n=45 networks) and compared these results to those of the entire 

dataset (Global dataset, which includes both mainland and insular communities, n=54 

networks).

For all macroecological models, we log10-transformed species richness, temperature 

seasonality, temperature velocity, and precipitation velocity, we squared temperature, and 

square-root transformed precipitation. All other variables were left untransformed. In all 

spatial models we tested whether significant positive spatial autocorrelation remained in 

model residuals of the “full” models (i.e., whether p<0.05 in all distance classes, tested using 

10 equally-spaced distance classes and applying a permutation test with 10,000 iterations). 

As no positive spatial autocorrelation was observed we did not build more sophisticated 

spatial models. All regression analyses were conducted using the software Spatial Analysis in

Macroecology, SAM 4.0 (Rangel et al., 2010).

To better support our findings, we performed a number of complementary 

macroecological models which included sampling effort as a predictor variable (Appendix 

S3), observed (uncorrected) metrics of network structure instead of null model corrected 

metrics (Appendix S4), and climate anomaly as a measure of historical climate stability 

instead of climate change velocity (Appendix S5).

RESULTS

Phylogenetic signal on species interaction patterns 

Values for the independent phylogenetic signals of plants (dplants) and hummingbirds 

(dhummingbirds) were low but above zero in 85 and 65% of the networks, respectively, suggesting 
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a significant relationship between phylogenetic signal and species interaction patterns. The 

confidence intervals (CI) of dhummingbirds overlapped with zero in a higher number of networks 

than did CIs of dplants (82 and 57%; Table in Appendix S2), indicating that a significant 

association between phylogeny and interaction patterns was exhibited mostly by plant 

species.

We examined the overall association between phylogeny and the structure of bipartite 

interaction networks by comparing the mean squared error (MSE) of the model fit among 

models adjusted after observed phylogenetic signal (MSEdata), models which assumed no 

phylogenetic signal (MSEstar), and models which assume a maximum signal (MSEBrownian). 

Results showed that most networks exhibited a significant phylogenetic signal (in 52 

networks MSEdata<MSEstar, in 1 networks MSEdata=MSEstar, and in 1 MSEdata>MSEstar; in all 

cases MSEBrownian had clearly the highest values; Table in Appendix S2), e.g. in most 

communities the model which fitted best to the data (the one having the lowest error) was 

achieved when adjusting the model with observed phylogenetic signals of plants and 

hummingbirds (MSEdata). Nevertheless, most differences between MSEdata and MSEstar were 

small, and much smaller than between MSEdata and MSEBrownian, indicating that in general, the 

association between phylogenetic signal and species interaction pattern was weak.

Macroecological models

Full OLS models on corrected network metrics were able to account for 54%-62% of the 

observed variation in network metrics across the sampled communities (Table 1, Table S3, 

Fig. 3). Species richness and environmental factors showed the strongest association with 

network structure, although with varying strengths across the "Global" and "Only Mainland" 

datasets and network metrics (Table 1, Table S3, Figure S1). On the contrary, the 

associations between phylogenetic signal and network structure remained constant, 
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exhibiting low regression coefficients in both metrics and datasets (Table 1, Table S3). 

Collectively, complementary specialization exhibited a stronger association with current 

temperature and historical temperature stability, and to a lesser extent with species richness; 

whereas modularity had the strongest association with species richness (Fig. 3; Table S3).

When the ten predictor variables included in the full OLS models were examined in 

detail, species richness and hummingbird phylogenetic signal were the only variables 

showing an important, spatially consistent and widespread association to network structure, 

emerging as highly important for both network metrics and datasets. Species richness 

showed a strong positive relationship with complementary specialization and modularity 

(Table 1). On the contrary, a higher phylogenetic signal among hummingbirds was related 

with a lower complementary specialization and level of modularity. In other words, despite the

association between phylogenetic signal and species' interaction pattern was weak and the 

weighted regression coefficients of dhummingbirds were low, complementary specialization and 

modularity consistently increased when closely-related hummingbirds visited distinct arrays 

of plant species (Table 1, Table S3, Fig. 3).

Complementary specialization was also highly associated with the environmental 

conditions, as the total variation explained by environmental factors was consistently higher 

than the variation attributed to species richness and phylogenetic signal in both the "Global" 

and "Only Mainland" datasets, and approximated to the variation explained by the full models

(Table S3, Fig. 3). The amount of unique variation (i.e. variation explained exclusively by the 

predictor-type) explained by environmental factors was similar to the unique variation 

explained by species richness on the Global dataset (Table S3, Fig. 3). However, when 

examining only mainland networks, the unique variation explained by environmental factors 

was two times greater than the unique variation explained by the other two predictor-types 

(Table S3, Fig. 3). Among the seven environmental variables examined, only current 
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temperature and historical temperature stability showed a strong relationship with 

complementary specialization, with increasing complementary specialization in communities 

with current warmer temperatures and with a higher historical temperature stability (Table 1).

Quantitative bipartite modularity showed the strongest association with species 

richness, particularly in the global dataset, with environmental conditions having a similar 

strength association among mainland communities (Table S3, Fig. 3).

Shared variability among species richness and phylogenetic signal (i.e. variability 

explained by these two predictor types) was non-existent, i.e. richness and phylogenetic 

signal were distinctly associated to specialization and modularity. Shared variability between 

environmental factors and species richness or phylogenetic signal was low (Table S3).

The remaining five environmental variables (insularity, temperature seasonality, mean 

annual precipitation, precipitation seasonality, and precipitation change velocity) as well as 

phylogenetic signal in the interaction pattern of plants, showed no important associations with

null model corrected network structure (Table 1).

DISCUSSION

As previous macroecological studies of interaction networks, we found complementary 

specialization and modularity to vary along with environmental conditions and species 

richness. Additionally, for the first time, we report an association between phylogenetic signal 

and network structure at macroecological scale. Specifically, species richness and 

phylogenetic signal in hummingbird interaction patterns were the two predictor variables that 

associated most consistently to network structure, with an association between 

complementary specialization and current and historical temperature conditions limited to 

mainland networks.

Hummingbird phylogenetic signal had a constant association with both complementary
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specialization and modularity, and on both the Global and Only Mainland datasets, although 

the variability associated with phylogenetic signal was the lowest of all predictor types. A 

weak but significant relationship between phylogenetic signal and species' interaction pattern 

within ecological networks has also been reported by previous studies on food webs, host-

parasite networks or plant-pollinator networks (Ives & Godfray, 2006; Vázquez et al., 2009b; 

Krasnov et al., 2012; Rafferty & Ives, 2013). These studies also identified asymmetries in the 

phylogenetic signal between trophic levels, with the association between phylogenetic 

relatedness and species interaction pattern being stronger at lower trophic levels, i.e. plants 

in our system (but see Rezende et al., 2007). According to these studies, such asymmetries 

may stem from a differential relationship between phylogeny and the interaction pattern of 

each trophic group, as species from the higher trophic group (“consumer” species) are more 

likely to adjust their feeding behavior according to local conditions. Our results corroborate 

this hypothesis: hummingbird phylogenetic signal showed a weaker relationship with their 

interaction pattern than plant species (dhummingbirds tended to be lower than dplants, and CI 

dhummingbirds overlapped with zero in more networks). Nevertheless, and unlike for plants which 

showed no association to the spatial variation in network structure, hummingbird 

phylogenetic signal was associated to network structure, with higher levels of complementary

specialization and modularity consistently achieved when closely-related hummingbird 

species visited distinct sets of flowering plant species. This suggests that resource 

partitioning and inter-specific competition among closely-related hummingbirds might play an 

important role in structuring interactions in hummingbird-plant networks. Indeed, inter-specific

competition is known to be strong among hummingbirds, and has been noted as a potential 

driver of patterns of hummingbird biodiversity (Brown & Bowers, 1985; Bleiweiss, 1998; 

Cotton, 1998).

Species richness had the strongest association with both metrics, and in both the 
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Global and Only Mainland datasets, except for complementary specialization in the mainland.

Higher species richness may result in a higher niche availability, thus providing ample 

opportunities for biotic specialization. At the same time, higher species richness may increase

inter-specific competition, which may explain why high species richness lead to higher levels 

of complementary specialization and modularity (Rezende et al., 2009; Dalsgaard et al., 

2011; Krasnov et al., 2012; Junker et al., 2013). Moreover, a higher plant richness may also 

translate into a temporally-stable availability of floral resources (or the establishment of a 

constant minimum local flower supply), enabling a locally constant hummingbird population 

and, hence, potential for biotic specialization (Montgomerie & Gass, 1981; Stiles, 1985; 

Araujo & Sazima, 2003; Cotton, 2007; Abrahamczyk et al., 2011).

In the mainland, higher levels of complementary specialization were also found in 

warmer areas and in areas with higher historical temperature stability. The former may again 

be linked to higher inter-specific competition in warmer areas, and particularly in mainland 

settings, where hummingbird species and phylogenetic richness is highest (Bleiweiss, 1998; 

McGuire et al., 2014). This relationship might be stronger on the mainland as insular 

pollinator faunas are typically depauperate (Olesen et al., 2002). Moreover, in historically 

stable climates, hummingbirds may have been able to establish long-term associations with 

plants, which may lead to higher levels of local adaptation, interaction specificity and 

specialization (see Dalsgaard et al., 2011 for a study on a subset of the networks from the 

dataset used here). Such long associations may lead to higher complementary specialization 

in areas with low temperature-change velocity, such as montane habitats and tropical 

environments, leaving more generalized interaction patterns to areas with low topography 

and especially at higher latitudes where changes in temperature velocity have been greatest 

(Sandel et al., 2011). Moreover, a higher complementary specialization in areas of high 

historical temperature stability is consistent with general hummingbird historical biogeography
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and speciation patterns, as the core area of hummingbird speciation and diversity occurs in 

Andean highland and in tropical lowland South-America (Brown & Bowers, 1985; Bleiweiss, 

1998; McGuire et al., 2014). We note that complementary macroecological analysis 

presented in Appendices S3-S5 generally confirmed the importance of species richness and 

hummingbird phylogenetic signal, and, additionally, showed that observed (uncorrected) 

complementary specialization/modularity were associated with insularity and precipitation: 

areas of high precipitation and mainland communities showing higher observed 

complementary specialization and modularity. Precipitation has previously been shown to 

influence floral phenotypic specialization and the importance of hummingbird-plant 

interactions for the entire pollination communities (Cruden, 1972; Dalsgaard et al., 2009; 

Martín González et al., 2009). The fact that precipitation and insularity only associated with 

observed complementary specialization and observed modularity, and not with null model 

corrected values of these network metrics, may indicate that insularity and precipitation do 

not directly influence the interaction pattern of species, but rather associate indirectly with 

network structure through species richness and/or interaction probability distributions.

CONCLUSIONS

Characterizing potential ecological, historical and evolutionary mechanisms associated with 

the structure of ecological communities is a critical first step towards understanding the 

determinants of community assembly and how climate-change may affect biodiversity 

(Woodward et al., 2010; Schleuning et al., 2014). By examining null model corrected network 

metrics, we are investigating how much observed communities depart from random ones with

an equivalent set of species and interactions. Hence, we were able to investigate not only 

whether a community presents a structure which differs significantly from random, but also to 

associate the difference in complementary specialization and modularity to species richness, 
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evolutionary, and environmental conditions.

We have shown that complementary specialization and modularity in hummingbird-

plant networks associate to species richness, hummingbird phylogenetic signal and 

environmental factors acting at varying spatio-temporal scales and in different aspects of 

network structure. Notably, species richness and hummingbird phylogenetic signal showed a 

consistent association with network structure, with a more restricted but still important role of 

contemporary temperature and historical temperature stability, which were important among 

mainland communities. These results are markedly different to the ones for avian seed-

dispersal networks for which species' phylogeny and historical climatic stability were 

unrelated to modularity and complementary specialization (Schleuning et al., 2012, 2014; 

Sebastián González et al., 2015). Such difference suggests that hummingbirds and flowers 

engage in tighter co-evolutionary associations than frugivore birds and their plants, and 

hence, historical and evolutionary factors may have a stronger role in hummingbird-plant 

assemblages than for frugivore birds-plant assemblages.
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different aspects of hummingbird-plant interaction patterns at macroecological scales, and to 

identify potential mechanisms responsible for them. Our ultimate goal is to describe general 

macroecological patterns in biotic interactions using hummingbird-plant interactions as a 
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Table 1. Relationship between complementary specialization (H2') and modularity (QuanBiMo) with species richness, phylogenetic signal and environmental 

factors across the Americas (Global dataset) and the mainland, i.e. when excluding insular communities (Only Mainland). Complementary specialization 

measures the exclusiveness of the interactions in the community, whereas modularity quantifies whether species interact more frequently with subsets of 

available species within a community. For each network metric, the standardized regression coefficients are reported for ordinary least squares regression for a 

model including all variables (“Full”) and for a model averaged across all possible models using Akaike Weights (AICc w i - “Averaged”). For the averaged 

models, the relative importance of each predictor variable (“Σ wi”) is given by the Akaike Weights (AICc wi). Predictors with high importance are marked in bold. 

Phylogenetic signal among plants and hummingbirds, dp and dh, respectively; Insularity, Ins; Mean annual temperature, MAT; Temperature seasonality, TS; 

Mean annual precipitation, MAP; Precipitation seasonality, PS; Velocity of temperature change since the last Glacial Maximum, MAT vel; Velocity of precipitation

change since the last Glacial Maximum, MAP vel. The significance of Moran’s I was tested with 10 distance classes and a permutation test with 10,000 

iterations. In all models multicollinearity was not an issue, i.e. VIF ≤ 3.4, CN ≤ 4.0, and there was no positive spatial autocorrelation, i.e. Moran's I was non-

significant.

Species

richness

Phylogenetic

signal

Environmental factors

Model AICc R2 Network

size

dp dh Ins MAT TS MAP PS MAT

vel

MAP

vel

Global

dataset

n=54

H2' Full -54.37 0.54 0.46 -0.09 -0.30 -0.22 0.28 0.18 0.05 -0.21 -0.48 0.19

Averaged 0.52 -0.14 -0.36 -0.12 0.14 0.12 0.09 -0.22 -0.27 0.17

Σ wi 1.00 0.38 0.96 0.28 0.31 0.31 0.26 0.60 0.67 0.29

QuanBiMo Full -99.87 0.64 0.64 -0.15 -0.23 -0.19 0.19 0.08 -0.00 -0.20 -0.13 -0.10

Averaged 0.65 -0.18 -0.28 -0.14 0.08 0.06 0.10 -0.18 -0.10 -0.13

Σ wi 1.00 0.62 0.92 0.34 0.26 0.24 0.29 0.57 0.29 0.39

Only

Mainland

n=45

H2' Full -55.24 0.58 0.33 -0.04 -0.33 na 0.48 0.13 -0.09 -0.26 -0.71 0.31

Averaged 0.32 -0.05 -0.36 na 0.45 0.11 -0.04 -0.24 -0.65 0.36

Σ wi 0.81 0.20 0.92 na 0.85 0.26 0.23 0.61 0.93 0.78

QuanBiMo Full -76.89 0.57 0.54 -0.17 -0.28 na 0.29 0.05 -0.08 -0.25 -0.29 -0.09

Averaged 0.54 -0.18 -0.30 na 0.23 0.02 0.10 -0.23 -0.24 -0.13

Σ wi 1.00 0.48 0.81 na 0.41 0.20 0.26 0.59 0.43 0.30
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Figure 1. Cartoon illustrations depicting two different communities and the characteristics 

and relationship between complementary specialization (H2') and quantitative bipartite 

modularity (QuanBiMo). Both communities depict 700 interaction events between 10 plants 

and 5 pollinators. Plants are labeled as numbers 1-10 in the matrix and as orange (light tone)

nodes in the network representation, and pollinators by letters A-E in the matrix and as blue 

(dark tone) nodes in the network. Interaction frequencies between plants and pollinators are 

illustrated as numbers of interaction events in the matrix format and as varying line widths in 

the network illustration. Complementary specialization measures the exclusiveness in 

species' interactions, whereas modularity quantifies whether species interact more frequently

with subsets of available species within a community. Community A exhibits a moderate 

complementary specialization, with different species-pairs exhibiting various degrees of 

complementary specialization. For instance, species-pair A-1 shows a high complementary 

specialization, as hummingbird A visits exclusively and with high frequency (155 times) plant 

1, which in turn is only visited once by another hummingbird. On the other hand, the 

complementary specialization of pair E-4 is lower than for the previous pair despite these 

species interact with the same frequency because hummingbird E also interacts with other 

plant species, i.e. the interaction E-4 is less exclusive. Interactions in community B are also 

somewhat specialized (species favored interactions with subsets of the available partners), 

but the exclusiveness of these interactions is lower than for community A. Both communities 

show very similar values for corrected modularity and can be divided into three distinct 

modules, although the modules are composed of a different array of species. By having 

different degree of complementary specialization but similar values of modularity, these 

communities show that although positively correlated, these metrics measure 

complementary but different aspects of specialization. Network drawings were created using 

Network3D and energized with the 3D Force-directed algorithm to enhance visualization of 

modularity patterns (Yoon et al., 2004; Williams, 2010).
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Figure 2. Map of the American continent showing the location of the 54 study sites and a 

number of example networks located along a species richness gradient. Some networks 

have been slightly moved horizontally to maximize visualization (exact coordinates of the 

localities on Table S1). The grey shading of the background illustrates altitude, with darker 

shades depicting higher altitudes. Localities with darker shades of green denote networks 

with a higher richness. For each illustrated network, the reference number and a concise 

description of the vegetation type is given, along with a network drawing. For the network 

drawings, blue (dark tone) and orange (light tone) nodes depict hummingbird and plant 

species, respectively, while line width depicts log+1 frequency of interaction among species. 

Notice that species-rich networks in general present more complex structures, with networks 

11, 21 and 50 exhibiting the lowest corrected complementary specialization; networks 50, 11 

and 21 the lowest corrected modularity; networks 53, 12 and 4 the highest corrected 

complementary specialization; and networks 10, 53 and 4 the highest corrected modularity, 

respectively. Complementary specialization measures the exclusiveness in species' 

interactions, whereas modularity quantifies whether species interact more frequently with 

subsets of available species within a community. Network drawings were created using 

Network3D and energized with the 3D Force-directed algorithm to enhance visualization of 

modularity patterns (Yoon et al., 2004; Williams, 2010).
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Figure 3. Coefficients of determination (R2) for complementary specialization and modularity 

obtained from partial regression of full models, i.e. in models including all ten predictor 

variables (see Table 1 for standardized coefficients of each variable and more details of 

model fit, and Table S3 for the R2 values used in this figure). Complementary specialization 

measures the exclusiveness in species' interactions, whereas modularity quantifies whether 

species interact more frequently with subsets of available species within a community. We 

represent values for all networks in the study (Global dataset; n=54) and excluding insular 

communities (Only Mainland; n=45). Bars illustrate the association between the different 

"predictor-types" and network structure. Predictor-types refers to (a) species richness (one 

variable), (b) phylogenetic signal (two variables: phylogenetic signal in the interaction pattern

of plants and hummingbirds), and (c) environmental factors (eight variables: insularity, 

average annual temperature, temperature seasonality, total annual precipitation, precipitation

seasonality, temperature and precipitation-change velocity between the Last Glacial 

Maximum and the present). The amount of variation explained by each pooled predictor-type

is color-coded with different shades: bars colored in darkest color depict the overall variation 

explained by all factors together; medium colors illustrate the total variation explained by that

predictor-type; light colors show the unique variation explained by each predictor-type and 

not shared by other variable-types. H2', complementary specialization; QuanBiMo, 

quantitative bipartite modularity.
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