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Humans use their arms to engage in a wide variety of motor tasks
during everyday life. However, little is known about the statistics of
these natural arm movements. Studies of the sensory system have
shown that the statistics of sensory inputs are key to determining
sensory processing. We hypothesized that the statistics of natural
everyday movements may, in a similar way, influence motor perfor-
mance as measured in laboratory-based tasks. We developed a porta-
ble motion-tracking system that could be worn by subjects as they
went about their daily routine outside of a laboratory setting. We
found that the well-documented symmetry bias is reflected in the
relative incidence of movements made during everyday tasks. Specif-
ically, symmetric and antisymmetric movements are predominant at
low frequencies, whereas only symmetric movements are predomi-
nant at high frequencies. Moreover, the statistics of natural move-
ments, that is, their relative incidence, correlated with subjects’ per-
formance on a laboratory-based phase-tracking task. These results
provide a link between natural movement statistics and motor perfor-
mance and confirm that the symmetry bias documented in laboratory
studies is a natural feature of human movement.

I N T R O D U C T I O N

Studies of sensory systems have shown that their represen-
tations are adapted to the statistical structure of natural sensory
stimuli (Barlow 1961). For example, the receptive fields of
cells in the visual cortex appear to be optimized for the
statistical properties of natural scenes (Körding et al. 2004;
Olshausen and Field 1996). Although the statistics of natural
sensory inputs have received a great deal of attention and
detailed characterization (Klein et al. 2003; Ruderman and
Bialek 1994; Schwartz et al. 2003), the statistics of natural
movements have received little attention (Ingram et al. 2008;
Kilbreath and Heard 2005; Slijper et al. 2009). Rather, human
movement has been predominantly studied in a laboratory
setting using predefined tasks. Just as the study of the sensory
system has benefited from analysis of the statistics of natural
sensory stimuli, we suggest that the study of the motor system
can similarly benefit from an analysis of the statistics of natural
movements.

One feature of movement performance, which has been
extensively studied in the laboratory, is the phase relation
between left and right body parts during rhythmic movements
(Kelso 1984, 1995; Li et al. 2005; Mechsner et al. 2001;
Schmidt et al. 1993; Swinnen et al. 1998, 2002). In this
context, bimanual movements can be described in terms of the

phase relation between the left and right arms (see Fig. 1, A and
B). In common with previous studies, we use the convention
that a 0° phase difference between the two arms corresponds to
their moving in a mirror-symmetric way in extrinsic space with
respect to the midsagittal plane. In muscle-based definitions of
symmetry, such 0° phase differences correspond to the use of
homologous muscles (Kelso 1984).

Studies of symmetry bias clearly demonstrate that not all
movements are equally easy to perform and highlight two
cardinal features. First, at low frequencies both symmetric and
antisymmetric movements (phase difference between the two
arms of 0 and 180°, respectively) can be performed easily and
stably, whereas movements with intermediate phase relations
are more difficult to perform. Second, as the frequency of
movement increases, only symmetric movements can be per-
formed stably and all other phase relations tend to transition to
a symmetric mode (Tuller and Kelso 1989; Wimmers et al.
1992). The properties of this symmetry bias have been exten-
sively documented and modeled using oscillator and nonlinear
dynamical systems models. These models can explain not only
the two modes of observed stable behaviors but also the
discontinuous phase transitions between them (Haken et al.
1985). Here we hypothesize that the symmetry bias will also be
present in everyday movements. Moreover, we suggest that the
incidence of particular movement phases—that is, how often
they occur—will be related to performance. For example,
previous laboratory studies have found that measures of per-
formance depend on the logarithm of the number of training
trials (Heathcote et al. 2000) and this suggests that the loga-
rithm of the incidence of different phase relations in everyday
movements (corresponding to training) may also relate to
measures of laboratory performance. This hypothesis would
not preclude a dynamic systems model accounting for the
empirical data.

To examine whether performance is related to the statistics
of natural movements, we developed a wearable motion-track-
ing system to record the arm movements of human subjects as
they went about their daily life. The system allowed our
subjects to engage spontaneously in normal everyday tasks
while we recorded the kinematics of their right and left arms.
Our results suggest that the symmetry bias reported from
laboratory-based tasks is present in natural everyday move-
ments. Moreover, when the same subjects performed a labo-
ratory-based tracking task that measured error as a function of
different phase relationships between the arms, we found that
the incidence of natural movements correlated with subjects
performance in the task. Both the form of the phase-related
errors on the task and the incidence of particular phase rela-
tions in the natural data set replicated the “seagull effect”
(Kelso 1995; Tuller and Kelso 1989). Moreover, the relation-
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ship between the errors and incidence was well fit using a
logarithmic relation, consistent with previous studies (Heath-
cote et al. 2000). These results represent a novel contribution to
the field by, first, documenting the relative phase relations that
occur in natural arm movements and, second, demonstrating
that the incidence of these phase relations is correlated with
performance.

M E T H O D S

Data acquisition

After providing written informed consent, six subjects took part in
the experiment. A local ethics committee approved the experimental
protocol. Two of the participants were authors (ISH and JNI) and four
participants were naı̈ve to the purpose of the experiment. No qualita-
tive differences were observed between the subjects. Liberty sensors
(Polhemus, Colchester, VT) were attached to the left and right upper
arms, just above the elbow, and also to the wrists (Fig. 1C). Subjects
carried a backpack containing the modified Liberty hardware, battery
power supply, and a computer logging the data at 120 Hz. The
Polhemus transmitter was firmly attached to the participant’s chest
(Fig. 1C). The initial version of the backpack weighed about 11 kg
and allowed subjects to carry out most everyday tasks and move
around freely both indoors and outdoors. The design was later im-
proved, reducing its weight to 5.5 kg. In total, �31 h of recording was
obtained from the subjects. The first three subjects wore the original
backpack design (8.8, 9.1, and 3.9 h recorded in blocks of �1 h) and
the final three subjects wore the improved design (3.1, 3.1, and 3.0 h
also recorded in blocks of �1 h). Several of the subjects wore
backpacks regularly, rather than using a briefcase, so were accus-
tomed to performing daily tasks in the presence of a backpack. Results
were qualitatively the same with both types of backpack and across

the subjects, independent of whether they regularly wore a backpack.
Subjects were told to avoid close proximity to large metallic objects,
which could distort the measurements, and were informed that signal
quality could be monitored using a visible status indicator. Subjects
were requested to perform typical activities they would do normally;
questioning revealed that recording sessions included a wide range of
activities such as walking, going shopping, reading, doing jigsaw
puzzles, constructing model airplanes, food preparation, and having
lunch.

Joint angle analysis

Each sensor provided position and orientation, which was used to
calculate the elbow angles and the angular speed of the elbow and
shoulder joints of each arm. The Polhemus system records the three-
dimensional (3D) position (3 � 1 vectors Tk

t) and 3D orientation (3 �
3 matrices Rk

t ) of each sensor with respect to the transmitter (the
subscript k � 1, 2 refers to the upper and lower sensors for a particular
arm and the superscript t is the time sample). The center of rotation for
the elbow joint can be estimated from the sensors proximal and distal
to the joint (Fig. 1D). Each sensor can be considered to represent a
coordinate system that translates and rotates with the sensor. Dk is a
vector that defines the center of rotation of the elbow joint relative to
sensor Sk (Fig. 1D)—that is, using the coordinate system defined by
the position and orientation of sensor Sk, vector Dk corresponds to the
location of the elbow joint within that coordinate system. Dk is constant
because the relative locations of the sensors and elbow joint do not
change as the arms move. We used the measurements from each sensor
to estimate the location of the center of the elbow joint in the coordinate
system of the transmitter: that is, R1

tD1 � T1
t and R2

t D2 � T2
t. Because

both of these represent the same location—that is, the center of the
elbow joint in the coordinate system of the transmitter—they should
coincide (subject to noise in the sensor readings and the fact that the
elbow joint does not have a single point of rotation). Therefore we can
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FIG. 1. A: front view of subject showing
movements at the elbow in joint space and at
the hands in extrinsic space for the x-axis
and z-axis. Dotted line shows the midsagittal
plane. The directions of symmetric move-
ments are shown by corresponding pairs of
either open arrowheads on both sides or
filled arrowheads on both sides. The direc-
tions of antisymmetric movements are
shown by corresponding pairs of open ar-
rowheads on one side with filled arrowheads
on the other. B: top view of subject, as in A,
showing movements at the elbow in joint
space and at the hands in extrinsic space for
the x-axis and y-axis. C: the transmitter and
sensor locations shown for the right arm
with S1 located on the upper arm and S2 on
the lower arm near the wrist. The transmitter
is mounted on the chest over the sternum and
defines the coordinate system for position
and orientation of the sensors. Sensors S3

and S4 (not shown) are similarly located on
the left arm. D: details of the joint center
analysis showing sensors proximal and distal
to the elbow joint with rotations (R1 and R2

for sensors 1 and 2, respectively) and trans-
lations (T1 and T2) relative to transmitter.
The vectors D1 and D2 describe the location
of the joint center relative to the upper and
lower sensors, respectively. E: experimental
setup for the phase-tracking task. The coor-
dinate system is marked on the figure and the
tracking movements were made along the
y-axis.
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estimate D1 and D2 by finding their values that minimize the error
between the two estimates across time samples. Specifically, we seek
to minimize the squared error given by

E � ���R1
t D1 � T1

t	 � �R2
t D2 � T2

t	
T ��R1
t D1 � T1

t	 � �R2
t D2 � T2

t	
�

where � � � denotes the average across time samples. For simplicity, we
define concatenated matrices and vectors

Rt � �R1
t � � R2

t 
 D � �D1

D2
�

and T t � T1
t � T2

t.
That is

Rt � � R1
t

1,1
R1

t
1,2

R1
t

1,3
�R2

t
1,1

�R2
t

1,2
�R2

t
1,3

R1
t

2,1
R12,2

R1
t

2,3
�R2

t
2,1

�R2
t

2,2
�R2

t
2,3

R1
t

3,1
R1

t
3,2

R1
t

3,3
�R2

t
3,1

�R2
t

3,2
�R2

t
3,3

�
which is a 3 � 6 matrix, where the first subscript on each element
identifies the original rotation matrix and the second subscript defines
its corresponding element. As stated earlier, the superscript t defines
time. Similarly

D � �
D11

D12

D13

D21

D22

D23

�
which is a 6 � 1 vector where the first subscript on each element
identifies the original displacement vector and the second subscript
defines its corresponding element.

Thus we can rewrite the expression for error as

E � ��RtD � T t	T �RtD � T t	�

To find the minimum we differentiate with respect to D and equate it
to zero, that is

dE

dD
� 0

which gives

���Rt	TRtD � �Rt	TT t 
� � 0

and thus

D � � ��Rt	TRt��1 ��Rt	TT t �

To calculate the center of the elbow joint for each time point, we
take the average of the estimates derived from the proximal and distal
sensors

Et � �R1
t D1 � T1

t � R2
t D2 � T2

t	/2

where Et is the location of the elbow joint, in the coordinate frame of
the transmitter, at time t. The elbow angle was then calculated using
the cosine rule as the angle between the vectors linking the proximal
sensor to the elbow joint (T1

t � Et) and the distal sensor to the elbow
joint (T2

t � Et). The elbow speed was obtained by computing the
difference between elbow angles over consecutive time points and
dividing by the sampling interval t.

To calculate the angular speed of the shoulder joint we use the fact
that rotation of a rigid object, such as the upper arm, can be repre-
sented by a single scalar rotation angle about a given axis. This is the

basis of the quaternion representation that specifies both the axis of
rotation (three parameters defining the vector for the axis of rotation)
and the (scalar) angle of rotation. To calculate the shoulder speed we
computed the change in rotation angle for the upper arm between
consecutive time samples. To do this we first calculated the change in
the rotation matrix between time samples Rt � (R1

t)�1R1
t�1. This

rotation matrix was used to determine the angular change (�t) using
standard conversion to quaternion form

�t � 2 cos�1 �1

2
�1 � R11

t � R22
t � R33

t �
where Rkk

t is the (k, k) element of the matrix. The shoulder rotation
speed is then given by �t/t. We performed these analyses for the
left and right arms.

Wavelet phase analysis

Short-term frequency-dependent phase analysis was performed on
the two elbow angle time series. Because the elbow angle depends on
the relative angle between the two sensors on each arm, it is less
sensitive than the raw data to any movements of the transmitter.
Moreover, in distinction to the convention needed to define symmetry
in terms of movement of the limbs in extrinsic space, there is no
ambiguity when defining symmetry in terms of the angular motion of
the elbow joints (see Fig. 1, A and B). Position trajectories of
point-to-point reaching movements are similar in form to a half cosine
and thus have an associated fundamental frequency and phase. An
analysis was required that was able to extract the phase of such signals
as a function of frequency. Of course, there will also be movements
involving oscillations of the arms, especially during activities such as
walking, with the arms swinging. Although short-term fast Fourier
transform (FFT) analysis can be used to estimate phase, it is not as
effective in dealing with localized events such as discrete movements.
One way to improve this is to match window length as a function of
frequency. In this way, the window length will better fit a discrete
event in the signal. This is effectively what wavelet analysis does—
the time window of the wavelet is a function of its bandwidth (Mallat
1999). The Hilbert transform is often used to decompose a signal into
instantaneous phase and amplitude. However, it is not appropriate
here because it does not provide the necessary frequency-dependent
phase analysis. Moreover, wavelet analysis is being increasingly
applied to biological signals such as electroencephalograms (Sele-
snick et al. 2005).

We performed a dual-tree complex wavelet transform (DT-CWT)
(Kingsbury 2001) on the left and right elbow angles, using eight levels
of wavelet decomposition. The complex nature of the subband outputs
from this transform produces analytic waveforms that have both
amplitude and phase in subbands that are each approximately one
octave wide. The DT-CWT has the important property of shift
invariance, which ensures that all input signals are analyzed in
equivalent ways.

The analysis was repeated several times on resampled input data, to
shift the center frequencies of the wavelet analysis, resulting in 30
overlapping bands ranging from a 0.45- to 0.9-Hz band to a 3.2- to
6.4-Hz band. For each band we obtained the time series of phase
relations and amplitude in the left and right elbow angle signals. To
obtain a relative incidence for each phase relation for a band, we first
calculated a weighted incidence using the cross power (i.e., the
product of the left and right amplitudes). Because phase is always
defined, even when the cross power is close to zero, this ensured the
statistics reflected only the phase relations that occurred during
significant movements of both arms, thereby excluding periods in
which one or both of the arms were stationary. As such, the contri-
butions of unimanual movements to the relative phase distributions
are suppressed.
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Computation of relative phase incidence

Within a frequency band the relative phase incidences were first
allocated to one of 18 bins each 20° wide. The total incidences across
all bins in a given frequency band were then normalized to sum to 1.
Statistical tests were performed for each subject using a t-test of the
relative incidence of phase relations at 0/360° (symmetric) versus
180° (antisymmetric) and at 180° versus the average incidence at 90
and 270°.

Similar phase analyses were performed for movements of the distal
sensors for the three Cartesian axes, except that in this case only the
low-frequency band of 0.9–1.8 Hz was examined.

Validation of wavelet phase analysis

We validated the wavelet phase analysis on two different data sets.
For the first data set, we generated synthetic left and right elbow angle
data by simulating two independent random walks. For the second
data set, we inserted a set of relative time shifts between the left and
right elbow angles from the natural movement data set. In all cases the
data were analyzed at low- (0.45–0.9 Hz) and high-frequency bands
(3.2–6.4 Hz). Analysis of the random walk data set resulted in
uniform phase incidences at both low- and high-frequency bands, as
expected. For the time-shifted data sets, analysis resulted in the
expected shifts in the relative phase incidences. Full details of these
two validations are available in the Supplemental Material.1

Conditioning for similar versus different joints

We also performed a phase analysis of the positions of the distal
sensors at the wrists in extrinsic space, for subsets of the data based
on whether the arms were moved predominantly by rotations around
the same or different joints (see Fig. 5, A and C). If the phase
distributions are similar between the two subsets of the data, this
would suggest that the symmetry bias (defined in external space) does
not occur because we use homologous muscle groups, as previously
suggested (Kelso 1984). Elbow and shoulder angular speeds were
used to divide the data into either a “similar-joint” subset or “dissim-
ilar-joint” subset. The similar-joint subset included all the data in
which, for both arms, either the angular speeds of the shoulders were
greater than those of the elbows or the angular speeds of the elbows
were greater than those of the shoulders (Fig. 5A). In this case,
movement of the distal sensors on both arms was dominated by either
both shoulders or by both elbows. In contrast, the dissimilar-joint
subset included the complement of the similar-joint subset. Specifi-
cally, it included data in which the angular speed of the shoulder in
one arm was greater than that of the elbow and in the other arm the
converse was true (Fig. 5C). In this case, movement of the distal
sensors on both arms was dominated by different joints on each arm.

For both subsets of the data set we calculated the phase relations for
each of the three Cartesian axes for movement of the distal sensor
using the same methods as described earlier. The phase relations for
the three Cartesian axes were then averaged to calculate the relative
incidence. We used the convention that a 0° phase difference between
the two arms corresponds to their moving in a mirror-symmetric way
with respect to the midsagittal plane.

Tracking paradigm

To obtain a quantitative measure of performance at different phase
relations for the same subjects who participated in the natural movement
data collection, subjects were also required to perform a phase-tracking
task. The tracking task was designed to compare phase-tracking perfor-
mance with the incidence of relative phases between the distal sensors at
the wrists in the natural movement data set. The task was similar to

that used by previous studies of symmetry bias (Tuller and Kelso
1989). Specifically, subjects were required to track two targets in a
virtual reality system, as shown in Fig. 1E (Howard et al. 2009). Each
target moved sinusoidally toward and away from the body in the
horizontal plane over a range of 16 cm at 0.5 Hz (all subjects) or 1.6
cm at 5.0 Hz (four subjects). Movement amplitude was scaled down
for the higher frequency to maintain the same peak movement veloc-
ities. We chose the frequencies of 0.5 and 5 Hz because we wanted to
use two values that were quite far apart in terms of the distribution of
phases from our natural data set to test the logarithmic law hypothesis.

Subjects held the handles of two robotic manipulanda, separated by
13 cm, that were used to record hand movements at 1,000 Hz (Howard
et al. 2009). The handles were constrained to move in channels
limiting movements to a single degree of freedom (DOF). The
position of each handle was represented by its own virtual cursor that
was used to track each of the two targets. Although the movement of
each hand was constrained to a single DOF in extrinsic space, the arm
itself was unconstrained with regard to joint recruitment.

Subjects each performed 20 trials of 15-s duration at each of the 18
relative phases in a pseudorandom order. On each trial the two targets
moved with a relative phase that was chosen out of the set (0, 20, . . . ,
340°). The last 13 s of each trial were analyzed using wavelets as
described earlier for the distal sensor positions. This allowed us to
determine the relative phase between the two hands and thus compute
the root-mean-square phase error for the tracking task.

We fit the incidence of relative phases for the distal sensors from
the natural movement data set to the performance data from the
tracking task. Specifically, we analyzed wrist translation in the y-axis
(Fig. 1E), which is the direction used for the tracking task. To estimate
incidence at low frequencies, we averaged over several low-frequency
bands to achieve a wider bandwidth (0.27–1.2 Hz) than could be
achieved from a single wavelet band. This ensured the results included
components that covered the low frequencies appropriate for the
0.5-Hz tracking task. For the 5.0-Hz tracking task, a single wavelet
band was sufficient (3.4–6.8 Hz).

R E S U L T S

We attached sensors to the elbows and wrists of six volun-
teers who wore a backpack containing motion-tracking equip-
ment. The sensors recorded the position and orientation of both
wrists and elbows over extended periods of time (3.0–9.1
h/subject). The boundary enclosing the 0.9 percentile of the
distributions of wrist and elbow positions for one subject is
shown in Fig. 2. This shows that the majority of wrist and
elbow positions fall within a region close to the body.

From this natural data set we calculated the phase relations
between flexion–extension movements of the right and left
elbows for a range of movement frequencies (Fig. 3). For each
frequency band we examined how often each phase relation
was observed during natural movement, which allowed us to
determine the relative incidence of each phase relation. Figure
3A illustrates how this measure of relative incidence changes
with increasing frequency, showing a progression from a
bimodal to unimodal distribution as the frequency increases.

At low movement frequencies (0.45–0.90 Hz, Fig. 3B) each
subject’s distribution was bimodal with symmetric (phases at
0/360°) movements occurring significantly more often than
antisymmetric (phase of 180°) movements (P � 0.01, average
ratio of incidence of 2.0 across subjects). Moreover, antisym-
metric movements at 180° occurred significantly more often
than did the intermediate phase relations of 90° (P � 0.05) and
270° (P � 0.05). At higher movement frequencies (3.2–6.4
Hz, Fig. 3C) the distribution became unimodal, with symmetric1 The online version of this article contains supplemental data.
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movements still occurring significantly more often than anti-
symmetric movements (P � 0.01, average ratio of incidence of
2.0 across subjects). However, at these higher frequencies the
second peak for antisymmetric movements was no longer
present and their incidence was significantly less than those of
90° (P � 0.001) and 270° (P � 0.01). Taken together, these
results parallel laboratory observations showing that move-
ments with a phase relation other than symmetric and antisym-
metric are especially difficult and that antisymmetric move-

ments become unstable as the frequency of movement in-
creases (Kelso 1984).

Another fundamental issue that has been addressed in labo-
ratory experiments (Mechsner et al. 2001; Swinnen et al. 1998)
relates to the coordinate system for the symmetry bias. Elbow
joint angles were used for the preceding phase analysis because
these were most precisely measured with our apparatus (see
METHODS). Consequently, such an analysis quantified symmetry
bias in joint (intrinsic) space. An important question is whether
the symmetry bias is similarly present in extrinsic space. This
would be expected if the demands on natural motor tasks are
defined in extrinsic space. To examine this, we compared the
relative incidence of phase relations for the distal sensors on
the wrist moving in extrinsic space (Fig. 4, A and B) with that
of the elbow angles in joint space (Fig. 4, C and D). Interest-
ingly, the incidence of 180° phase is significantly higher for the
movements defined in extrinsic space than those defined in
intrinsic space (P � 0.05 for each subject; averaged incidence
ratio � 1.6). Similarly, the incidence of 0° phase was signifi-
cantly lower (P � 0.01 for each subject; averaged incidence
ratio � 0.9). This suggests a stronger component of antisym-
metric movement for task-based (extrinsic) coordinates.

Another important question is whether the bias favoring
symmetric movements arises because they are executed in the
same direction in extrinsic space or because they involve
movements around the same joints. To address this issue in the
natural movement data set, we split the distal sensor data
recorded at the wrists into two parts. The first part contained
samples in which movement of the left and right arms predom-
inantly resulted from rotations around similar joints (Fig. 5A).
The second part contained samples in which movement of the
arms predominantly resulted from rotations around the dissim-
ilar joints (Fig. 5C) (see METHODS for details). For these two
data sets, we analyzed phase relations between the two distal
sensors in a midfrequency band (0.9–1.8 Hz). We chose this
range so we could examine whether the bimodal peaks in
incidence for symmetric and antisymmetric movements were
different between the two subsets of the data.

For both the similar- and dissimilar-joint subsets of the
natural movement data the distributions were bimodal, preserv-
ing the peaks in incidence for symmetric and antisymmetric
movements (Fig. 5, B and D, respectively). Moreover, there
were no significant differences in the relative incidences be-
tween the two data sets at either 0 or 180° phase. Thus the

FIG. 2. Distribution of hand and elbow positions. Front
and side views (A and B, respectively) showing the outer
boundaries of regions that represent 90% of all locations
visited by a typical subject’s wrists (green and red) and
elbows (only left visible, cyan) during 8.8 h of movement.
Small isolated regions have been removed for clarity.
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effect of selecting movements on the basis of different joint
usage preserves the basic form of the distributions. This finding
is in close correspondence with experimental data that show
that the symmetry bias is present in extrinsic coordinates,
regardless of the joints used (Mechsner et al. 2001; Swinnen
et al. 2002).

Previous studies have shown a relationship between the
amount of training on perceptual tasks and performance
(Heathcote et al. 2000). To investigate the relationship between
performance and the relative incidence of movement phases in
our natural movement data set, subjects performed a bimanual
tracking task in a virtual reality environment (Fig. 1E; see
METHODS). This required subjects to track two targets that
moved sinusoidally at various phase relations at a low fre-
quency (0.5 Hz) and a high frequency (5.0 Hz). The phase error

at 0.5 Hz on the tracking task (Fig. 6A) is small for symmetric
(0/360°) and antisymmetric (180°) movements, mirroring the
relative incidence of these phases in the natural movement data set
(Fig. 6B). Similarly, the phase error at 5 Hz on the tracking task
(Fig. 6C) mirrors the relative incidence of these phases in the
natural movement data set (Fig. 6D). However, in this case there
was a stronger tendency to move symmetrically on the tracking
task, as indicated by the almost linear relationship between error
and phase between 0 and 90° and 270 and 360° (Fig. 6C). To
further quantity the relationship between phase incidence in
our natural movement data set and performance on the tracking
task, we used linear regression to fit the performance errors to
the log incidence of the phases. We found a good fit at both low
(r2 � 0.86 P � 0.001, Fig. 6E) and high (r2 � 0.88, P � 0.001,
Fig. 6F) frequencies. This demonstrates that the logarithmic
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law for training is also present between the natural incidence of
a movement and motor performance on a laboratory task.

D I S C U S S I O N

We recorded �30 h of natural arm movements from six
subjects who were free to spontaneously engage in everyday
tasks. Despite the large range of possible movements, we found
that during most normal everyday tasks the arms are confined to
a small volume of space around the body. We also analyzed the
phase relations between the movements of the left and right arms
and found that the relative occurrence of particular phases sup-
ports results from previous studies of symmetry bias in hu-
mans. Specifically, we found that at low frequencies both
symmetric and antisymmetric movements were prevalent,
whereas at higher frequencies symmetric movements became
increasingly dominant. At low frequencies, the form of the
phase incidence curve reflected the “seagull effect” previously
described for finger-tapping experiments (Tuller and Kelso
1989).

The aim of the current study was to acquire data for
movements that corresponded to what subjects do during
everyday activities. Because there are many laboratory studies
that look at only specific movements or tasks, our study was
specifically designed to avoid such constraints. To achieve this
we let subjects go about their daily routine with only a few
instructions, such as avoiding large metallic objects or water.
We examined the statistics of the movements and did not try to
categorize the specific tasks that subjects were performing.

However, it was important that the samples we acquired were
representative of normal activities and we therefore collected
�30 h of kinematic data. Although subjects may have engaged
in different tasks during the recoding period, the statistics
across subjects were very similar, as demonstrated by the low
SEs (Figs. 3–6). This suggests that we have captured repre-
sentative statistics in all our subjects.

An interesting question arising from the current study is
whether the symmetry bias exists because successful interac-
tion with the environment requires both symmetrical move-
ments (such as bimanual grasping of objects) and antisymmet-
ric movements (such as laterally moving a handheld object).
Alternatively, the symmetry bias may be an immutable prop-
erty of the musculoskeletal and nervous systems. As such, it
would fundamentally constrain the way we can interact with
the world. Previous studies have assumed that fundamental
constraints on performance arising from the perceptual (Mech-
sner et al. 2001) or motor systems (Swinnen et al. 2002)
explain the symmetry bias. Indeed Mechsner et al. (2001)
reported that symmetry in external space, or visual symmetry,
can override this bias. However, as shown here and in labora-
tory-based experiments, the symmetry bias is present in extrin-
sic task space. This may be understood in terms of the require-
ment to interact with the external world. In contrast, constraints
on the musculoskeletal and nervous systems would be expected
to be manifest in intrinsic (joint space) coordinates. For exam-
ple, it is intuitively obvious why symmetric and antisymmetric
movements may be common in bimanual object manipulation
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tasks (Fig. 7). If we seek to simultaneously bring both hands
together from different positions to pick up an object this
requires phases of 0 or 180°, depending on the axis. For
example, bringing the hands laterally together to grasp an
object from the left and right or moving them apart to release
it requires movement phases of 0° (Fig. 7A). In contrast,
bringing the hands vertically together to grasp an object from
above and below or moving them apart to release it requires
movement phases of 180° (Fig. 7B). Once the object is
grasped, transporting it then requires movement with phases of
either 0 or 180°, depending on the direction of transport. For
example, moving a bimanually grasped object left or right
requires movement phases of 180° (Fig. 7C). In contrast,
moving a bimanually grasped object up or down requires
movement phases of 0° (Fig. 7D). Consequently, interaction
with objects typically requires movements with phases at 0 and
180° in extrinsic space.

Another interesting question concerns the relationship be-
tween the incidence of particular movements and performance.
It is well known that training on a task improves performance,
but with diminishing returns as training increases (Newell and
Rosenbloom 1981). Specifically, relative performance is often
related to the log of the number of training trials. This loga-
rithmic dependence of performance on training appears to be a
universal law of learning that applies to a wide range of
cognitive problems such as multiplication, visual search,
movement-sequence learning, rule learning, and mental rota-

tion (Heathcote et al. 2000). In the current study, we found
evidence for the existence of the logarithmic relationship
between natural movement statistics and performance. This
suggests that the log incidence of a movement may be a general
predictor of motor performance and may provide a parsimoni-
ous explanation for the existence of the symmetry bias.

As previously discussed, the symmetry bias does not appear
to be an immutable property of the musculoskeletal and ner-
vous systems. For example, extensive training on the novel
phase relation of 90° over the course of several days improves
performance at this phase, but leads to a decrement in perfor-
mance at other phases (Schoner and Kelso 1988; Zanone and
Kelso 1992). Such training significantly changes the distribu-
tion of phases experienced by subjects and the observed results
reflect these novel statistics. Similarly, if subjects are trained at
new polyrhythms (Summers et al. 1993), significant improve-
ment is observed (Klaiman and Karniel 2006). Interestingly,
improving at one class of movement can come at the expense
of a decrease in performance at others (Van Damme et al.
2002). One hypothesis consistent with these results is that there
are limited neural resources available and that improvement at
one phase necessarily involves a decrement in performance at
others. This hypothesis is further supported by the finding that
training on a particular task increases the size of its neural
representation (Classen et al. 1998; Elbert et al. 1995; Kaas
1991; Karni et al. 1995). Interference between two similar
motor tasks that are performed sequentially also suggests
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FIG. 7. Bimanual phase relations during
object manipulation. Arrowheads on the left
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A: bringing the hands laterally together to
grasp an object (G) from the left and right or
moving them apart to release it (R) requires
symmetric movements. B: bringing the
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apart to release it (R) requires antisymmetric
movements. C: moving a bimanually
grasped object left (L) or right (R) requires
antisymmetric movements. D: moving a bi-
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competition for finite neural resources (Brashers-Krug et al.
1996; Caithness et al. 2004; Miall et al. 2004; Tong et al.
2002). Taken in the context of the current study, this suggests
that neural resources are indeed finite and that the statistics of
natural movements will influence their allocation. This view
provides a potential link between the occurrence of particular
movements and performance.
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