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Abstract: The possibility of absorbing wave energy using a submerged balloon fixed to the sea

bed is investigated. The balloon is in the form of a fabric encased within an array of meridional

tendons which terminate at a point at the top of the balloon and at some radius at the bottom. The

expansion and contraction of the balloon in waves pump air via a turbine into and out of a chamber

of constant volume. A more refined model than that used by Kurniawan and Greaves [Proc. 2nd

Offshore Energy and Storage Symposium, 2015] predicts a similarly broad-banded response, but

the maximum absorption is less than previously predicted. Both approaches are compared and

discussed.

1. Introduction

To optimally absorb energy from ocean waves, it is well-known that a wave energy device needs

to oscillate with optimum amplitude and phase [1, 2]. The period and amplitude of ocean waves

are however never constant, but varying at all time scales. The device needs to operate as close

as possible to the two optimum conditions not just for a single wave amplitude and a single wave

period, but for a range of wave amplitudes and periods, typically from 5 to 15 seconds. This

challenge is particularly pertinent for point absorbers, which by definition are much smaller than

the incident wavelengths [3]. A conventional rigid-bodied point absorber has an inherently narrow

resonance bandwidth and without any phase control is not able to capture a significant portion of

energy available beyond its natural period.

A recent study has however suggested that a point absorber in the form of a bottom-mounted

vertical cylinder whose top is free to oscillate vertically can have an extremely broad-banded power

absorption, even in the absence of any phase control [4]. Motivated by this, we considered a

conceptually similar device, but with a completely flexible balloon replacing the cylinder, with the

aim of reducing cost even more [5].

The balloon is of the same type as the underwater balloon used in [6] as a compressed air energy

storage. The construction is that of a fabric encased within an array of meridional tendons which

terminate at a point at the top of the balloon and at some radius at the bottom (see Fig. 1a). In

the simplest configuration, a single balloon is connected to a chamber of constant volume via a

self-rectifying air turbine (Fig. 1b). As the balloon expands and contracts under wave action, air

is exchanged with the chamber, driving the turbine. The chamber is not required if two balloons

are spaced at approximately half a wavelength apart (Fig. 1c). With an array of balloons (Fig. 1d),

it may be more cost-effective to have two centralized accumulators and a single common turbine,

with a system of check valves directing air flow from the balloons through the turbine and back to

the balloons. As the balloons are fixed to the sea bed, they are suited for nearshore locations with
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Fig. 1. (a) Sketch of the balloon. (b) Schematics of a solo device, (c) device in tandem, (d) device

in array.

water depths of about 10 m. One or two rows of balloons aligned perpendicular to the incident

wave direction will act at the same time as breakwaters [7].

In this paper, the response of the device in the simplest configuration (Fig. 1b) will be predicted

numerically. The shape of the balloon is defined by the profile of its tendons, and therefore the

challenge is in predicting how the tendons will move when the balloon is subjected to waves. Pre-

viously, this was done by predefining a mode shape to describe the deformation of the tendons [5].

The mode shape was taken as the difference between the static profile of the tendons at the mean

pressure and that at a slightly different pressure. Such approach predicted a broad-banded response

whose magnitudes were almost proportional to the volume of the chamber.

The purpose of this paper is to extend the previous analysis to allow the tendons to deform

more naturally without any apriori assumption on the mode of deformation. Both the previous and

the present approaches rely on the prediction of the static behaviour of the balloon in still water,

and this will be first examined. As in the previous approach, we assume small wave amplitudes

and small deformations of the balloon to justify the use of linear potential theory to obtain the

hydrodynamic forces on the balloon and the use of linearised isentropic relations for an ideal gas

to obtain the pneumatic forces. Furthermore, the turbine is modelled as a linear resistance.

2. Static behaviour

When the balloon is inflated, the fabric forms meridional lobes between the tendons, keeping the

tension in the fabric to a minimum while the tendons carry most of the tension. When the internal-

external pressure difference is uniform, the balloon assumes an isotensoid shape, which was first

derived by Taylor in his studies of parachutes [9]. Submerged in water, however, the shape of the

balloon is more like an inverted and truncated pear, due to the increasing hydrostatic pressure with

depth.

Since the balloon is axisymmetric, the shape of the balloon is defined by the profile of just a

single tendon. To obtain the profile of the tendon, we start off by discretising the tendon into N arc

elements having identical lengths h but unknown radii of curvature ρi. One such element is shown
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Fig. 2. One discretised tendon element of length h. The radius Ri is measured from the vertical

axis of the balloon. The elevation Zi is measured from the water line.

in Fig. 2. The arc length h is related to the radius of curvature ρi through

h = −2ρiφi, (1)

where 2φi = dαi is the arc sector angle in radians. Likewise, the distances dRi and dZi can be

expressed in terms of h, φi, and αi.

The radius ρi of each element is obtained by solving the force equilibrium normal to the ele-

ment, according to

ρi =
T

2πPi+0.5Ri+0.5

, (2)

where T is the sum of tension in all tendons, while Pi+0.5 and Ri+0.5 are the internal-external

pressure difference at the midpoint of element i and the distance from the vertical axis of the

balloon to the same point. If the midpoint is above water, then Pi+0.5 = P , which is the uniform

internal pressure above atmospheric. If the midpoint is under water, then Pi+0.5 = P + ρgZi+0.5,

where the last term is the external (hydrostatic) pressure.

The calculation starts at the top of the balloon, where R1 = α1 = 0, and proceeds piecewise

downward along the tendon. The top elevation of the balloon Z1 and the tendon tension T are not

known beforehand, so an iterative procedure is necessary to obtain the correct Z1 and T to give

the correct radius and elevation at the bottom of the balloon. This means repeating the calculation

with different Z1 and T until the differences between (RN+1, ZN+1) and the specified (Rbot, Zbot)
are less than some small tolerances.

This method of calculating the shape of the balloon assumes that the tendons are inextensible

and that all forces are transferred to the tendons. This is equivalent in theory to a balloon with

infinitely many tendons. Nevertheless, the calculated profiles have been shown to be in good

agreement with the actual profiles of a scaled model balloon having 16 tendons. Further details

were given in [10].

In this paper, the length of one tendon from the top to the bottom of the balloon is chosen to

be 15 m, and the bottom radius 3 m. The bottom radius needs to be sufficiently large to minimise

pitching of the balloon in waves. The consequence however is that there will be a hoop load at the

base as well as a requirement for a pulling-down load. It would be more attractive from practical

point of view if the tendons came to a point at the base.
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Fig. 3. (a) Calculated tendon profiles for various bottom submergences: 15 m, 10 m, 7.5 m,

and 5 m, for a balloon with a tendon length of 15 m and a bottom radius of 3 m. Two profiles are

shown for each bottom elevation, one corresponding to the minimum and the other to the maximum

pressures used in Fig. 4. (b) Equilibrium tendon profiles for cases specified in Table 1.

The calculated tendon profiles of this balloon with 15 m tendon length and 3 m bottom radius

are shown in Fig. 3a, for various bottom elevations. When the balloon is completely underwater,

the external pressure in the static case varies linearly with depth. Hence, the tendon profile of

a balloon with its bottom submerged a m below the water level is exactly the same as that of a

balloon submerged a + b m below the water level, provided its internal pressure is increased by b
m of water. This is evident from Fig. 3a: the profile of the balloon with its bottom submerged 15

m below the water level and with 18-m internal pressure (outer solid line) is the same as that of the

balloon which sits 5 m higher and with its internal pressure reduced to 13 m (outer dashed line).

On the other hand, when the balloon is partly submerged or surface-piercing, the external pressure

below the water level varies linearly with depth, while above the water it is uniform. The variation

of the internal-external pressure difference from the top to the bottom of a surface-piercing balloon

is therefore unique for each bottom submergence, resulting in a unique profile for each combination

of internal pressure and bottom submergence.

When the internal pressure (in metres of water) is less than the bottom submergence of the

balloon, the tendon curvature is reversed at a depth equal to the internal pressure. The internal-

external pressure difference is zero at this inflection point. Above this point, the internal pressure

is higher than the external pressure, while below it, the internal pressure is lower than the external

pressure. Thus, above and below this point, the tendon is bulging outward and inward, respectively.

In Fig. 4, various static parameters of the balloon are plotted as functions of the internal pressure

and bottom submergence of the balloon. The top of the balloon generally rises as the internal pres-
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Fig. 4. Variations of static parameters of the balloon with internal pressure, for various bottom

submergences: (a) top elevation; (b) volume (solid) and displacement (dashed); (c) sum of tension

in all tendons (solid) and upward force on the base (dashed); (d) waterplane radius. These are for

a balloon with a tendon length of 15 m and a bottom radius of 3 m.
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Table 1 Water depths, mean pressures, and calculated equilibrium

volumes and surface areas of the balloon in cases a to c.

Case
water mean mean mean

depth [m] pressure [m] volume [m3] surface area [m2]

a 7.5 5 754 384

b 7.5 3 598 341

c 15 13 735 375

sure decreases, except at the lowest pressures, where the top of the balloon falls slightly due to the

increased curvature of the tendon as the point of inflection rises with decreasing pressure (Fig. 4a).

The volume of the balloon increases with the internal pressure at a decreasing rate, where the vol-

ume of the balloon hardly increases at high pressures (Fig. 4b). Since there is not much change in

volume when the internal pressure (in metres of water) is higher than the bottom submergence of

the balloon, the operating mean pressure of the balloon should probably be lower than its bottom

submergence. From Fig. 4c we see that the tension in the tendons varies approximately linearly

with pressure, which is quite remarkable, while the upward force on the base is proportional to the

displacement of the balloon. The variation of the waterplane radius of the balloon with pressure

is more subtle (Fig. 4d). For a balloon with a relatively low bottom submergence, the waterplane

radius appears to increase monotonically with pressure. With a deeper bottom submergence, the

waterplane radius first increases and then decreases with increasing pressure. The waterplane ra-

dius decreases more quickly with pressure as the bottom submergence gets deeper.

3. Dynamic response

The cases specified in Table 1 will be considered. The corresponding mean tendon profiles are

shown in Fig. 3b. The balloon is assumed to sit exactly on the sea bed. Thus, the water depth spec-

ified in Table 1 also indicates the bottom submergence of the balloon. The balloons are assumed to

be completely axisymmetric, with the lobes neglected, and only axisymmetric deformations will

be considered.

The difference between the previous approach [5] and the present one lies in the modelling of

the deformation of the tendons, but the pneumatic aspects are the same. For both approaches, lin-

earised isentropic relations for an ideal gas are used to model the air pressure-density relationship

in the balloon and in the chamber, and the flow through the turbine is assumed to follow a linear

relationship. Then it can be shown [4] that the pressure pc and volume amplitude vc of the bag are

related through

vc = −Vc

(

Mf

Mc

G+
1

γ(P + Patm)

)

pc ≡ −pc/E, (3)

with

G =
C

γ(P + Patm)C + iωMf

. (4)

Here, P is the mean internal pressure (which excludes the atmospheric pressure Patm), γ = 1.4 is

the heat capacity ratio, pf and mf are the complex amplitudes of the pressure and mass of air in the

chamber, Mf is the mean air mass in the chamber, vc, mc, and pc are the complex amplitudes of the

volume, mass, and pressure of air in the balloon, while Vc and Mc are the mean volume and mass
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of air in the balloon. The mass flow through the turbine for a unit pressure difference is defined as

the turbine coefficient C.

The mean absorbed power can finally be obtained from

P =
C

2ρair
|pc − pf |

2 (5)

once the deformation of the tendons is known, by which we can calculate the pressure amplitudes

pc and pf .

3.1. Previous approach

In the previous approach [5], the tendons were assumed to deform according to a predefined mode

whose shape was obtained from the difference between the static tendon profile at the mean pres-

sure and a static profile obtained at a slightly different pressure. The hydrodynamic coefficients

(wave excitation force, added mass, and radiation damping) associated with the mode of defor-

mation of the balloon were computed using a three-dimensional panel method [11] by specifying

either the normal or the Cartesian components of the mode shape over the balloon’s mean wetted

surface.

Since there was only one degree of freedom in total, the complex velocity amplitude U of the

balloon was obtained by solving the following equation of motion:

[

iω(M +m) + (B +Bp) +
1

iω
(K +Kp)

]

U = Fe, (6)

where M is the generalised mass excluding the added mass, m is the added mass, B is the radiation

damping, K is the hydrostatic stiffness, Fe is the wave excitation force, while Bp and Kp are the

pneumatic damping and stiffness. The generalised mass M was expressed in terms of an integral

over the mean volume of the balloon:

M =

∫∫∫

V

ρmS · S dV, (7)

where ρm(x) is the density of the balloon. The mode shape S(x), where x = (X, Y, Z) is the

coordinates of any point on the balloon, was written in Cartesian components as

S(x) = (u(x), v(x), w(x))T = (ra(Z) cos θ, ra(Z) sin θ, za(Z))
T, (8)

where ra(Z) and za(Z) are the radial and vertical components of the assumed mode shape, ex-

pressed as functions of a vertical coordinate normalised such that its value is equal to zero at the

bottom of the bag and one at the top, and θ is the azimuthal angle. Likewise, the hydrostatic stiff-

ness K was expressed in terms of an integral over the mean wetted body surface, following [12]:

K = ρg

∫∫

Sb

n(w + ZD) dS, (9)

where ρ is the water density, g is the acceleration due to gravity, while n and D are the normal

component and the divergence of the mode shape S, respectively. The unit normal vector n is

defined as pointing into the balloon.
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The pneumatic stiffness and damping Kp and Rp in (6) are functions of the turbine coefficient

as well as the air volumes. To derive these coefficients, the following steps were taken. First, the

volume amplitude vc was expressed in terms of the unknown displacement amplitude ξ = −iU/ω
and the normal component n of the assumed mode shape:

vc = −ξ

∫∫

Ss

n dS, (10)

where the integral was taken over the mean surface of the balloon. Then, the dynamic pneumatic

force on the balloon was expressed to first order as

Fp = −

∫∫

Ss

pcn dS − P ξ

∫∫

Ss

nD dS. (11)

In accordance with the form of the equation of motion (6), the pneumatic stiffness and damping

coefficients were thus given as

Kp = Re
{

E ν2
c

}

+ Pνp (12)

Rp =
1

ω
Im

{

E ν2
c

}

, (13)

with E as defined in (3), and νc and νp defined as

νc =

∫∫

Ss

n dS (14)

νp =

∫∫

Ss

nD dS. (15)

3.2. Present approach

In the present approach, the tendons are discretised into a number of small elements as in the static

calculations. The aim is to solve for the displacements (radial and vertical) of each element at

its midpoint without making any apriori assumptions on how each element would move, except

that the length between any two neighbouring midpoints must not change, consistent with our

assumption that the tendons are inextensible.

The tendons are assumed to oscillate harmonically about the mean or static position, so any

time-dependent quantity y(t) can be written as Re(Y + yeiωt), where Y is the mean and y is a

complex amplitude of the time-dependent part. The approach consists of expanding the static

equations of the tendons (2) and (1) to include the time-dependent parts, and then subtracting the

static equations from the expanded equations, while keeping only terms up to the first order. The

resulting dynamic equations for each tendon element can finally be obtained as

2πh(Piri + piRi) + Fei + Fri = T (ai−1 − ai)−
Ai−1 − Ai

sinAN

(TaN cosAN + πR2
N+1pc), (16)

where use has also been made of the bottom boundary condition, which requires that the pulling-

down force on the base must be equal to the net upward force on the balloon. Here, we have

defined Pi and Ri as the mean pressure and radius at the midpoint of element i, and Ai−1 and Ai as

the mean angles at the ends of element i. The pressure amplitude pi is equal to pc if midpoint i is
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above water, or pc+ρgzi if it is underwater. Furthermore, Fei and Fri are the wave excitation force

and the radiation force on element i, while ri and ai are the complex amplitudes of the radial and

angular displacements, respectively. The radiation force Fri, as usual, can be expressed in terms

of the added mass and radiation damping. These, as well as the wave excitation force Fei, which

are acting in the direction normal to element i, may be obtained using a three-dimensional panel

method [11] by specifying modes associated with the normal displacement of each element of the

tendons. The panel models used in the computations are shown in Fig. 5. Equations (16), which

pertain to a bottom-fixed balloon, are a special form of the more general equations pertaining to a

heaving, floating balloon which is treated in [13].

The pressure amplitude in the balloon pc is related to the volume amplitude vc through (3). The

volume amplitude vc can further be expressed in terms of the radial and vertical displacements ri
and zi of the element midpoints. In addition, the condition that the tendons are inextensible gives

a relationship between ri and zi. Equations (16) can therefore be formulated in terms of only the

radial displacements ri as the unknowns. The final N independent equations can be written in

matrix form and solved using standard methods. Further details are given in [13].

3.3. Comparison of results

Fig. 6 shows the power absorption performance of the bottom-mounted balloons for the cases

specified in Table 1. The result is presented in terms of the absorption widths as well as the mean

absorbed power per incident wave amplitude squared.

Both the previous and present approaches predict a broad-banded power absorption, but it is

clear from Fig. 6 that the previous method largely overestimated the absorbed power. With the

present method, the highest absorption is attained by the balloon in case b, but the maximum

absorption width with a chamber volume of 2000 m3 is only about 1.3 m, which is about 12% with

respect to the waterplane diameter. As with the previous method, increasing the chamber volume

also increases the absorbed power, but at a decreasing rate, such that the maximum absorption

width for case b is only slightly above 2 m (or 20% relative to the waterplane diameter) even when

very large chamber volumes are used.

The higher power absorption of the balloon in case b compared to a and b seems to agree with

the fact that the change in volume around the mean pressure is greater for the balloon in case b

than for the balloons in cases a and c (see Fig. 4b).

For case c, the present method also predicts a cancellation period at which the absorbed power

is zero and below which very little power is absorbed by the balloon. In [5], an explanation behind

this cancellation has been suggested. Such cancellation is not uncommon in wave-body interac-

tions and in the present case has to do with the fact that the balloon is completely submerged. As

the balloon expands, its lower part deforms normally outward but its upper part deforms normally

inward (compare, for example, profiles a and b of Fig. 3b). It is reasonable to expect that there

is a particular period, which is dependent on the mean geometry of the balloon, where the waves

radiated by the upper and lower parts cancel out. This means that no waves will be radiated by the

balloon at this period, and since wave absorption requires wave radiation, no power is absorbed at

the same period.

Looking at Fig. 7, we can see a correlation between the power absorbed by the balloon and its

volume amplitude. The volume amplitude of the balloon is found to be relatively small, and to

absorb an appreciable level of power the balloon has to respond with greater amplitudes, which

seems possible for this bottom-mounted balloon only if the incident wave amplitudes are higher.

In addition, the pressure amplitudes are found to be only about half the incident wave amplitude,
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Fig. 6. Absorption widths and mean absorbed power per incident wave amplitude squared, for

cases a to c and different chamber volumes: 500, 1000, and 2000 m3. Solid lines are obtained

with the present method, dashed lines with the previous method. The absorbed power increases

with larger chamber volume. For the absorption widths, the theoretical maximum λ/2π for point

absorbers is also shown as the monotonically increasing solid line. All results are obtained with

turbine coefficient C = 0.012 ms.

in contrast to the case of a heaving balloon, where the pressure amplitudes in the balloon can be

up to twice the incident wave amplitude [13].

With the previous method, the smallest amplitudes of the displacement of the bag top are ob-

tained for case b, but the opposite is true with the present method, where the amplitudes are the

largest for case b. This clearly indicates that the deformations of the balloon predicted using the

two approaches are quite different. Indeed, we see from Fig. 8 that the actual deformations of

the balloon obtained using the present method differ from the mode shape used in the previous

method. The difference is especially greater above the waterline.

4. Concluding remarks

The possibility of absorbing energy from the waves using a bottom-mounted balloon has been

investigated. Compared to the wave power incident upon the balloon, the power absorbed by the

balloon is found to be very small. The latest results have been obtained using a method which puts

no restrictions on the way the tendons move, apart from ensuring that the length of the tendon must

not change. The previous method, on the other hand, prescribes the way the tendons move, and

is found to overestimate the absorbed power quite substantially. The inadequacy of the previous

method has been highlighted by comparing the prescribed mode shape and the actual deformations

predicted by the present method.

This study suggests that it might be better for such balloon as considered here to be floating
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Fig. 7. Normalised displacement amplitudes of the top of the balloon, and of the pressures in the

balloon and in the chamber, and volume amplitudes of the balloon per wave amplitude, corre-

sponding to Fig. 6. The top displacement and the volume amplitude of the balloon increase with

larger chamber volume. The pressure amplitudes in the balloon and in the chamber decrease with

larger chamber volume, except for case c, where the previous method predicted increasing pressure

amplitudes at larger periods.

and heaving in the water rather than fixed to the sea bed. It would also be interesting to see if two

bottom-mounted balloons exchanging air between them (Fig. 1c) could have better performance

than a single balloon exchanging air with a constant-volume chamber as treated here. In addition,

other geometries radically different from those considered here, such as a completely submerged

balloon with a very large diameter at the base, deserve a further study.
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Fig. 8. Normalised (a) radial and (b) vertical deformations of the balloon in case b, at 8 s (solid),

3 s (dotted), and 15 s (dashed). The radial and vertical components of the mode shape used in the

previous method are drawn in dash-dotted lines.
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