
�������� ��	
���
��

Palmitate-induced changes in energy demand cause reallocation of ATP
supply in rat and human skeletal muscle cells

Raid B. Nisr, Charles Affourtit

PII: S0005-2728(16)30385-1
DOI: doi: 10.1016/j.bbabio.2016.04.286
Reference: BBABIO 47683

To appear in: BBA - Bioenergetics

Received date: 1 February 2016
Revised date: 16 April 2016
Accepted date: 28 April 2016

Please cite this article as: Raid B. Nisr, Charles Affourtit, Palmitate-induced changes in
energy demand cause reallocation of ATP supply in rat and human skeletal muscle cells,
BBA - Bioenergetics (2016), doi: 10.1016/j.bbabio.2016.04.286

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Plymouth Electronic Archive and Research Library

https://core.ac.uk/display/74389691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.bbabio.2016.04.286
http://dx.doi.org/10.1016/j.bbabio.2016.04.286


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 
 

Palmitate-induced changes in energy demand cause reallocation of ATP supply in rat 

and human skeletal muscle cells 

 

Raid B. Nisr1 and Charles Affourtit1,2 

 

1School of Biomedical & Healthcare Sciences, Plymouth University, Drake Circus, PL4 8AA, 

Plymouth, UK 

 

2Corresponding author 

School of Biomedical and Healthcare Sciences, Plymouth University, Drake Circus, PL4 8AA, 

Plymouth, United Kingdom 

Tel. +44 (0)1752 584649 

Fax. +44 (0)1752 584605 

Email charles.affourtit@plymouth.ac.uk 

 

Abstract: Mitochondrial dysfunction has been associated with obesity-related muscle insulin 

resistance, but the causality of this association is controversial. The notion that mitochondrial 

oxidative capacity may be insufficient to deal appropriately with excessive nutrient loads is 

for example disputed. Effective mitochondrial capacity is indirectly, but largely determined by 

ATP-consuming processes because skeletal muscle energy metabolism is mostly controlled 

by ATP demand. Probing the bioenergetics of rat and human myoblasts in real time we show 

here that the saturated fatty acid palmitate lowers the rate and coupling efficiency of 

oxidative phosphorylation under conditions it causes insulin resistance. Stearate affects the 

bioenergetic parameters similarly, whereas oleate and linoleate tend to decrease the rate but 

not the efficiency of ATP synthesis. Importantly, we reveal that palmitate influences how 

oxidative ATP supply is used to fuel ATP-consuming processes. Direct measurement of 

newly made protein demonstrates that palmitate lowers the rate of de novo protein synthesis 

by more than 30%. The anticipated decrease of energy demand linked to protein synthesis is 

confirmed by attenuated cycloheximide-sensitivity of mitochondrial respiratory activity used 

to make ATP. This indirect measure of ATP turnover indicates that palmitate lowers ATP 

supply reserved for protein synthesis by at least 40%. This decrease is also provoked by 

stearate, oleate and linoleate, albeit to a lesser extent. Moreover, palmitate lowers ATP 

supply for sodium pump activity by 60-70% and, in human cells, decreases ATP supply for 

DNA/RNA synthesis by almost three-quarters. These novel fatty acid effects on energy 

expenditure inform the „mitochondrial insufficiency‟ debate. 

Keywords: palmitate-induced insulin resistance, skeletal muscle, mitochondrial dysfunction, 

ATP turnover, obesity, type 2 diabetes  
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1. INTRODUCTION 

Obesity and insulin resistance are related features of the Metabolic Syndrome, a cluster of 

medical disorders that increase the risk of developing type 2 diabetes and cardiovascular 

disease [1]. Increased insulin secretion by the pancreatic beta cells may compensate insulin 

resistance of skeletal muscle and the liver initially, but the obese state often also provokes 

beta cell dysfunction [2], which largely accounts for the persistently high blood glucose level 

that characterises type 2 diabetes [3]. The molecular mechanisms that link obesity to insulin 

resistance are yet to be established conclusively but likely involve excess dietary nutrients, 

peptide hormones and inflammatory molecules [4]. Non-esterified fatty acids (NEFAs1) are 

for example relatively abundant in the circulation of obese subjects [5], and exposure of 

skeletal muscle and myocytes to free fatty acids – saturated long-chain species such as 

palmitate and stearate in particular – causes insulin resistance [6]. 

The mechanism by which free fatty acids dampen the insulin sensitivity of skeletal muscle is 

not fully understood, but NEFA-induced insulin resistance has been associated firmly with 

mitochondrial dysfunction [7-9]. However, the causality of this association remains subject of 

fierce debate [10,11]. It is highly conceivable that the oxidative capacity of muscle cells in 

obese subjects is insufficient to burn the elevated NEFA supply effectively [7,12] and thus 

causes accumulation of metabolites that blunt insulin responsiveness. Molecules suggested 

to interfere with insulin signalling include lipid species such as ceramide and diacylglycerol 

[13,14], and mitochondrial reactive oxygen species (ROS) [15-17]. Despite experimental 

evidence in its favour [10], the „mitochondrial insufficiency‟ model does not enjoy unanimous 

support [8,11]. Various rodent models of severe mitochondrial dysfunction for example 

exhibit improved rather than impaired muscle insulin sensitivity [18-20], and fat oxidation 

capacity tends to be increased, not decreased, in obese/insulin-resistant and type 2 diabetic 

subjects [11]. Moreover, type 2 diabetic patients increase their substrate oxidation rate some 

40-fold in response to exercise [11]. Based on this sizeable response, it has been reasoned 

[11] that obese subjects should have enough spare respiratory capacity to fully oxidise any 

excess lipid. 

The capacity of a biological system to burn metabolic fuel depends on the way it controls its 

energy metabolism. Arguably the most important parameter in cellular bioenergetics is the 

                                                
1  Abbreviations: AHA, L-azidohomoalanin; 2DG, 2-deoxyglucose; BSA, bovine serum 

albumin; DMEM, Dulbecco‟s modified Eagle medium; FCCP, trifluorocarbonylcyanide 

phenylhydrazone; FBS, fetal bovine serum; Hepes, 4-(2-hydroxyethyl)-1-piperazineethane-

sulfonic acid; KRPH, Krebs Ringer Phosphate Hepes buffer; NEFA, non-esterified fatty acid; 

PBS, phosphate-buffered saline; RFU, relative fluorescence units; ROS, reactive oxygen 

species 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 
 

ATP/ADP ratio, as it is this phosphorylation potential that allow cells to perform work [21]. In 

muscle cells, the ATP/ADP ratio is mostly controlled by ATP demand, a paradigm [21] that is 

acknowledged by both proponents and opponents of the „mitochondrial insufficiency‟ model 

[10,11]. Such distribution of control implies that the rate of ATP supply, and hence oxidative 

phosphorylation, is fully governed by ATP turnover. In other words, any spare respiratory 

capacity of a muscle cell will be inconsequential if there is no demand for ATP. Indeed, many 

paradoxical observations in the insulin resistance literature are readily reconciled by 

considering the variable energetic needs of the different experimental systems studied [8]. 

As cellular energy demand clearly influences how lipids affect insulin sensitivity [8], we 

deemed it important to establish whether or not NEFA exposure had any effect on the ATP 

requirements of skeletal muscle cells. 

In this paper we report that palmitate-induced insulin resistance of rat and human skeletal 

muscle cells associates with a decreased rate and efficiency of oxidative phosphorylation, 

and, importantly, with an inhibition of major ATP-consuming processes. These data suggest 

that the lowered ATP supply is partly owing to decreased ATP turnover. 

 

 

2. MATERIAL AND METHODS 

2.1 Cell culture 

Rat L6 myoblasts were obtained from the European Collection of Cell Culture and were 

maintained at 37 ºC under a humidified carbogen atmosphere in Dulbecco‟s Modified Eagle 

Medium (DMEM – LifeTechnology 42430-025) containing 25 mM glucose and 20 mM Hepes 

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and supplemented with 10% (v/v) FBS 

(fetal bovine serum), 100 U/mL penicillin, and 100 µg/mL streptomycin. Cells between 

passages 18 and 25 were used for experimentation. As described in detail before [22], 

human myoblasts were isolated and cultured at the University of Exeter Medical School, St 

Luke‟s Campus (Human Tissue Authority licence 12104), and passaged at least twice before 

off-site analysis. Needle biopsies to remove skeletal muscle (vastus lateralis) tissue were 

taken with informed donor consent and with approval from the Ethics Committee of the 

Department of Sport and Health Sciences, College of Life and Environmental Sciences, 

University of Exeter, UK. Human muscle cells were maintained at 37 ºC under a humidified 

carbogen atmosphere in DMEM (Life Technology 22320-22) containing 5 mM glucose and 

20 mM Hepes  and supplemented with 20% (v/v) FBS, 0.5% (v/v) chick embryo extract, 2 

nM insulin, 100 U/mL penicillin, and 100 μg/mL streptomycin. The initial cell population was 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

4 
 

allowed to double 4x before experimentation, and all assays were performed before the 

population had doubled 10x. 

2.2 Fatty acids 

Prior to NEFA exposure, cells were nutrient-restricted for 10 or 24 h (glucose uptake and 

cellular bioenergetics assays, respectively) in DMEM (Life Technology 22320-22) containing 

just 5 mM glucose and supplemented with only 2% (v/v) FBS to sensitise the cells to insulin 

[22,23]. NEFAs were administered in conjugation to fatty-acid-free bovine serum albumin 

(BSA – Sigma A7030) as described previously [22], and cells were exposed to BSA-

conjugated NEFAs or to BSA alone for 16 h in DMEM (Life Technology 22320-22) without 

added FBS. NEFA:BSA conjugates were applied at molar ratios to yield estimated free 

NEFA levels of approximately 20 nM [24]. 

2.3 Insulin resistance 

Insulin sensitivity was measured as the response of 2-deoxyglucose (2DG) uptake to 100 

nM insulin as described previously [22]. The estimated free palmitate concentration of 20 nM 

rendered both L6 and human myoblasts insensitive to insulin following 16-h exposure (Fig. 

2B) but did not cause significant cell loss (not shown). 

2.4 Protein synthesis 

The rate of de novo protein synthesis was determined by tagging newly synthesised proteins 

with L-azidohomoalanine (Click-iT® AHA, Invitrogen C10102) as published by others [25]. In 

essence, L6 myoblasts were cultured in 25-cm2 flasks to approximately 60% confluency and 

then exposed to BSA-conjugated palmitate or BSA alone for 16 h. Cells were washed twice 

with methionine-free DMEM (Invitrogen 21013) supplemented with 2 mM L-glutamine and 1 

mM sodium pyruvate, and incubated in this medium for 1 h at 37 ˚C under carbogen. After 

this methionine depletion, 25 µM AHA was added and cells were incubated for another 4 h. 

Cells were harvested by trypsinisation in 1 mL phosphate-buffered saline (PBS) containing 3% 

(w/v) BSA. After passing cells in this „flow medium‟ through a 35-µM cell strainer (Fisher 

Scientific 08-771-23) they were harvested by centrifugation in 500 µL PBS containing 0.05% 

(v/v) Triton X-100. After 2-min incubation, permeabilised cells were washed once with flow 

medium and resuspended in 500 µL Click-iT® cell reaction buffer that was supplemented 

with CuSO4 and proprietary additives according to the manufacturer‟s instructions (Invitrogen 

C10269) and with 3 µM Alexa Fluor® 488 alkyne (Invitrogen A10267). Cells were incubated 

for 30 min at room temperature to allow chemoselective ligation between the green-

fluorescent alkyne probe and the azido-modified protein. After this, cells were washed once 

with flow medium and analysed by flow cytometry using a BD FACSAria™ II cell sorter. 
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2.5 Cellular bioenergetics 

2.5.1 Oxygen consumption 

Mitochondrial respiratory activity was measured in attached cells as described before [26]. 

Briefly, L6 myoblasts seeded at 4 x 104 cells per well and exposed to palmitate on XF24 

tissue culture plates (Seahorse Bioscience) were washed 4x with a Krebs Ringer Phospate 

Hepes buffer (KRPH) comprising 136 mM NaCl, 3.7 mM KCl, 10 mM Hepes, (pH 7.4), 2 mM 

NaH2PO4, 1 mM MgCl2, 1.5 mM CaCl2, and 0.1% (w/v) BSA, and were then incubated in this 

buffer for 1 h at 37 ºC under air. Human myoblasts were treated similarly, but were seeded at 

2-3 x 104 cells per well, and were not washed into KRPH, but into serum-free DMEM 

containing 2 mM glucose and 10 mM Hepes. Subsequently, the plates were transferred to a 

Seahorse XF24 extracellular flux analyser (controlled at 37 ˚C) for a 10-min calibration after 

which cellular oxygen consumption was recorded under various conditions to determine both 

ATP supply and ATP demand (Fig. 1). 

 

Fig. 1 – Skeletal muscle bioenergetics. 

The ATP/ADP ratio in skeletal muscle cells 

is controlled by ATP demand: changes in 

ATP-consuming processes are countered by 

proportional changes in ATP supply. Under 

aerobic conditions, ATP is mainly supplied 

by oxidative phosphorylation. Mitochondrial 

substrate oxidation (measured as rotenone-

and-antimycin-A-(Rot/AA)-sensitive oxygen 

uptake) builds a protonmotive force (pmf) 

across the mitochondrial inner membrane 

that is either used to make ATP (oligomycin-

sensitive oxygen uptake) or is dissipated by 

proton leak (oligomycin-insensitive oxygen 

uptake). FCCP renders membranes proton-

permeable. Protein synthesis, DNA/RNA 

synthesis and Na
+
 pump activity are ATP-

demanding processes that account for about 

two-thirds of total ATP turnover in L6 and 

human myoblasts (Figs 6C and 6D). These 

processes are inhibited by cycloheximide, 

actinomycin D and ouabain, respectively. 

 

2.5.2 ATP supply  

Following Seahorse measurement of basal cellular respiration [26], oligomycin (5 µg/mL), 

FCCP (trifluorocarbonylcyanide phenylhydrazone – 2 µM and 20 µM for human and L6 cells, 

respectively), and a mixture of rotenone (1 µM) and antimycin A (2 µM) were added 

sequentially to inhibit the ATP synthase, uncouple oxidative phosphorylation, and to 

determine non-mitochondrial respiration, respectively  (Fig. 1). Non-mitochondrial respiratory 
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activity was subtracted from all other activities to calculate bioenergetic parameters 

concerning mitochondrial ATP supply. Cellular respiratory control was calculated as the ratio 

of FCCP-stimulated and oligomycin-inhibited respiratory rates [27], and coupling efficiency of 

oxidative phosphorylation was defined as the oligomycin-sensitive part of mitochondrial 

respiration, i.e., the respiratory proportion that is used to make ATP [27]. Respiration was 

normalised to cell density derived from DAPI fluorescence [28] to calculate absolute oxygen 

uptake. Absolute oligomycin-sensitive oxygen consumption rates were converted to ATP 

supply rates assuming P/O ratios of 2.41 and 2.10 for glucose and palmitate oxidation, 

respectively [29]. 

2.5.3 ATP demand 

In systems where the ATP/ADP ratio is fully controlled by ATP demand, the activity of an 

ATP-demanding process may be approximated from the change in oligomycin-sensitive 

mitochondrial respiratory activity that is seen upon specific inhibition of that process  [30,31]. 

Cycloheximide (40 µM), actinomycin D (10 µM) and ouabain (380 µM) were applied to 

estimate how much ATP supply flux was allocated to fuel, respectively, protein synthesis, 

DNA and RNA synthesis, and sodium pump (Na+/K+-ATPase) activity (Fig. 1). The stated 

inhibitor levels were selected empirically as the lowest concentrations that exerted saturating 

inhibitory effects on basal mitochondrial respiration without significantly affecting the FCCP-

uncoupled respiration. 

2.6 Statistics 

Mean differences were tested for statistical significance by ANOVA, applying Fisher‟s LSD 

multiple comparison post-hoc analysis, using SPSS v17 (IBM) and Stat Graphics Plus v5.1 

(Statistical Graphics Corporation) software. 

 

 
Fig. 2 – Palmitate-induced insulin resistance. Panel A: 2DG uptake was measured in L6 (circles) 

and human (triangles) myoblasts in the absence (white symbols) or the presence of 100 nM insulin 

(black symbols) as described before [22]. The differences between insulin-exposed and control cells 

are statistically significant (P < 0.05) at applied 2DG levels of 600 and 1000 ng/well. Panel B: 2DG 
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uptake was measured at 30 mg/well in the absence and presence of 100 nM insulin (white and black 

bars, respectively) in myoblasts exposed to palmitate (PA) or BSA as described in section 2.2. 

*Differs significantly (P<0.05) from the equivalent condition minus insulin. Data are means ± SEM of 3 

independent experiments. 

3. RESULTS 

3.1 Palmitate lowers protein synthesis rate  

To examine NEFA effects on the energy metabolism of skeletal muscle cells, myoblasts 

were exposed to palmitate at a dose and exposure time (Material and Methods) that caused 

insulin resistance (Fig. 2). Control myoblasts respond acutely to insulin as reflected by the 

stimulatory effect of insulin on dose-dependent 2DG accumulation by L6 and human cells 

(Fig. 2A). This responsiveness is unaffected when cells are exposed to BSA, but is fully 

annulled upon exposure to BSA-conjugated palmitate (Fig. 2B). 

To explore if the insulin-numbing palmitate exposure is in any way associated with changes 

in skeletal muscle energy demand, we measured the rate at which L6 cells make protein, a 

process that represents a significant source of ATP consumption in muscle and other cells 

[30,32]. Figs 3A and 3B show typical flow cytometry experiments quantifying fluorescence 

exhibited by control and palmitate-exposed cells, respectively, following 4-h incubation with 

AHA and subsequent treatment with ALEXA Fluor® 488 alkyne. Control myoblasts clearly 

contain newly synthesised (AHA-labelled) protein as is reflected by 2 distinct cell populations 

with median fluorescence values of approximately 8,000 and 20,000 RFU (relative 

fluorescence units), respectively (Fig. 3A). Fluorescence of cells not exposed to AHA was 

below 200 RFU (not shown). Palmitate increases the median frequency of the „low-

fluorescence‟ population from about 250 to 300 counts and decreases the median „high-

fluorescence‟ frequency from 120 to 60 counts (Fig. 3B). Consequently, the average 

fluorescence intensity of palmitate-exposed cells is lower than that of control cells (Fig. 3C – 

12,500 versus 18,500 RFU), which demonstrates that palmitate has lowered the rate of de 

novo protein synthesis by more than 30%. 

 

 

Fig. 3 – Palmitate lowers de novo protein synthesis. Control (Panel A) and palmitate-exposed 

(Panel B) L6 myoblasts incubated with AHA for 4 h and then treated with ALEXA Fluor® 488 alkyne 
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were analysed by flow cytometry (10,000 counts per run) applying a excitation/ emission wavelength 

filter of 495/519 nm. Panel C: average fluorescence intensity of cells exposed to BSA or palmitate 

(PA). Data are means ± SEM of 4 exposures. *Differs significantly (P < 0.05) from the BSA control. 

 

 

Fig. 4 – Palmitate lowers the rate and efficiency of myoblast ATP synthesis. Panel A: typical 

respiratory traces showing oxygen uptake by L6 (circles) and human (triangles) myoblasts exposed to 

palmitate (black symbols) or BSA (white symbols). These traces were used as controls in preliminary 

ATP-demand assays (Fig. 5), which is why buffer was added before oligomycin (OLI), FCCP and 

rotenone/antimycin A (R/A). Traces were obtained from 1 Seahorse run and are means ± SEM of 3-4 

wells per condition. Cell respiratory control (Panel B), coupling efficiency of oxidative phosphorylation 

(Panel C) and the absolute rate of ATP supply (Panel D) were derived as described in the text. Data 

are means ± SEM of 10 experiments. *Differs significantly (P<0.05) from the equivalent BSA control. 

3.2 Palmitate lowers the rate and efficiency of ATP supply 

Inhibition of protein synthesis by palmitate (Fig. 3) is expected to change mitochondrial ATP 

supply, because protein synthesis is a major energy-demanding process in muscle cells [32] 

and because muscle energy metabolism is predominantly controlled by ATP demand [21]. 

Respiratory analysis reveals that palmitate-induced insulin resistance indeed coincides with 

statistically significant changes in oxidative phosphorylation (Fig. 4). Basal cellular oxygen 

consumption in control cells is inhibited considerably by oligomycin, subsequently stimulated 

by FCCP, and then almost abolished by antimycin A and rotenone (Fig. 4A). At first glance, 

these typical respiratory responses are not drastically different in palmitate-exposed cells, 

although FCCP stimulation of respiration appears attenuated in human myoblasts (Fig. 4A). 
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Indeed, the apparent palmitate effect on FCCP-uncoupled respiration is reflected by a 

decreased cell respiratory control ratio [27] in human myoblasts (Fig. 4B). Palmitate 

exposure also lowers respiratory control in L6 cells, but not to a statistically significant extent 

(Fig. 4B). In addition, palmitate lowers coupling efficiency of oxidative phosphorylation in 

human and L6 myoblasts (Fig. 4C), i.e., it decreases the fraction of respiration that is used to 

make ATP. Absolute ATP synthesis flux is readily derived from oligomycin-sensitive oxygen 

uptake by normalising it to cell number and multiplying it by P/O. Assuming control cells are 

fuelled by endogenous glucose (i.e., the sole carbon source fuelling the cells during growth) 

we used a P/O ratio of 2.41 [29] and calculated that rat and human myoblasts make about 

150 pmol ATP per min per 40,000 cells (Fig. 4D). Skeletal muscle suppresses glucose 

catabolism when lipid is available [33], so using a P/O ratio of 2.10 [29] we established that 

palmitate lowers the ATP supply rate in both systems to approximately 120 pmol ATP per 

min per 40,000 cells (Fig. 4D). 

 

 

Fig. 5 – Palmitate lowers the proportion of ATP supply allocated to protein synthesis. Typical 

respiratory traces showing oxygen consumption by L6 (Panel A) and human (Panel B) myoblasts 

grown in fully supplemented DMEM (specified in section 2.1). Buffer (BUF – black circles) or 40 µM 

cycloheximide (CHX – white triangles) was added before sequential injection of oligomycin (OLI), 

FCCP and a mix of rotenone and antimycin A (R/A). Traces were obtained from 1 Seahorse run and 

are means ± SEM of 3-4 wells per condition. Cell respiratory control ratios (Panel C – cf. Material and 
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Methods) are means ± SEM of 3 experiments with L6 (white bars) or human (black bars) myoblasts 

grown in serum-depleted medium containing BSA (cf. section 2.2). Sensitivity of basal mitochondrial 

respiration to cycloheximide (Panel D – CHX) was expressed as a fraction of total oligomycin-

sensitive respiratory activity. Data are means ± SEM of 3 experiments with L6 or human myoblasts 

grown in fully supplemented (cf. section 2.1) DMEM (black bars) or in serum-depleted medium with 

BSA or BSA-conjugated palmitate (white and shaded bars, respectively). *Differs significantly (P<0.05) 

from the equivalent BSA control. 

3.3 Palmitate lowers ATP supply reserved for protein synthesis 

A decreased rate of oxidative phosphorylation (Fig. 4) is consistent with palmitate inhibition 

of protein synthesis (Fig. 3) as lowering ATP supply would be a plausible myoblast response 

to attenuated energy demand. Indeed, inhibiting ATP turnover will acutely lower oligomycin-

sensitive respiratory activity of any cell that controls its energy metabolism predominantly by 

ATP demand [30,31].  Figs 5A and 5B for example demonstrate that 40 µM cycloheximide 

causes an instant and stable decrease of basal respiration in both L6 and human myoblasts. 

Oligomycin lowers respiration further and allows the cycloheximide-induced decrease to be 

normalised to ATP-synthesis-coupled oxygen uptake (Fig. 5D – DMEM). FCCP uncouples 

respiration from ATP synthesis and confirms that the respiratory decrease is secondary to 

lowered ATP demand and not to direct inhibition of mitochondrial electron transfer. At a 

concentration that does not affect the cell respiratory control ratio (Fig. 5C), cycloheximide 

lowers oligomycin-sensitive respiration by about 35% (Fig. 5D), which indicates that L6 and 

human cells use one-third of their total ATP supply to drive protein synthesis. BSA tends to 

lower cycloheximide sensitivity marginally, but palmitate decreases it significantly to ~ 20% 

of total respiration linked to ATP synthesis (Fig. 5D). Consistent with measurement of newly 

made protein (Fig. 3C), palmitate lowers ATP supply reserved for protein synthesis (Fig. 5D). 

In a separate set of experiments we also exposed L6 myoblasts to stearate, a saturated fatty 

acid 2 carbon atoms longer than palmitate, and to oleate and linoleate, the monounsaturated 

and polyunsaturated counterparts of stearate, respectively. Probably owing to different cell 

passage number and subtle differences in experimental conditions, coupling efficiency (Fig. 

6A) and absolute rate of oxidative phosphorylation (Fig. 6B) in BSA-exposed myoblasts were 

a little higher than those observed before (Figs 4C and 4D+7D, respectively). Reassuringly, 

however, these independent results confirm that palmitate significantly lowers the efficiency 

(Fig. 6A) and the rate (Fig. 6B) of mitochondrial ATP synthesis. Stearate has the same effect 

on these parameters as palmitate (Figs 6A and 6B). Oleate and linoleate, on the other hand, 

only tend to lower the ATP synthesis rate (Fig. 6B) and have not effect on coupling efficiency 

(Fig. 6A). Stearate and linoleate significantly lower cycloheximide sensitivity of mitochondrial 

respiration linked to ATP synthesis, but less so than palmitate (Fig. 6C). The small negative 

effect of oleate on cycloheximide sensitivity is not statistically significant. All NEFAs lower 

the absolute ATP supply flux reserved for protein synthesis (calculated by multiplying the 
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cycloheximide-sensitive respiration by P/O – see section 3.2), although the effects of oleate 

and linoleate do not reach statistical significance. 

 

 

Fig. 6 – Effects of saturated and unsaturated NEFAs on ATP synthesis and ATP turnover in L6 

myoblasts. Coupling efficiency of oxidative phosphorylation (Panel A), the rate of total mitochondrial 

ATP synthesis (Panel B), cycloheximide (CHX) sensitivity of respiration coupled to ATP synthesis 

(Panel C) and the absolute ATP supply rate used to fuel protein synthesis (Panel D) were derived as 

described in the text. Data are means ± SEM of 4 experiments. *Differs significantly (P<0.05) from the 

equivalent BSA control. 

3.4 Palmitate causes reallocation of ATP supply 

The close agreement between direct (Fig. 3) and indirect (Fig. 5) measurement of palmitate 

inhibition of myoblast protein synthesis strongly supports the notion that ATP turnover rates 

can be derived accurately from mitochondrial respiratory analysis [30,31]. Therefore, we also 

measured ATP supply used for DNA/RNA synthesis and sodium pump activity by quantifying 

drops in oxygen uptake seen after inhibition of these ATP-consuming processes with 10 µM 

actinomycin D and 380 µM ouabain, respectively. Similar to cycloheximide, actinomycin D 

and ouabain inhibit oligomycin-sensitive oxygen uptake without significant effect on FCCP-

uncoupled respiration (not shown). Normalising inhibitor-sensitive respiration to cell number 

and multiplying it by P/O (cf. section 3.2) yields the absolute ATP supply flux allocated to the 
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respective processes (Fig. 7). On average, rat myoblasts use 47, 31 and 26 pmol ATP per 

min per 40,000 cells to, respectively, fuel protein synthesis, sodium pump activity and 

DNA/RNA synthesis (Fig. 7A). ATP supply reserved by human cells for protein and 

DNA/RNA synthesis is similar to that allocated by their rat counterparts, but human 

myoblasts use comparably little ATP (18 pmol per min per 40,000 cells) to drive the sodium 

pump (Fig. 7B). Given a total ATP supply of 150 pmol ATP per min per 40,000 cells in this 

set of experiments (Fig. 4D), it transpires that ~ 70% and 60% of this supply is used by rat 

and human cells, respectively, to fuel the sum of protein synthesis, DNA/RNA synthesis and 

sodium pump activity (Figs 7C and 7D); the remaining 30-40% drives processes we have not 

assessed and thus remains unaccounted. 

 

 

Fig. 7 – Palmitate reallocates ATP supply. Absolute ATP supply rates (JATP) were calculated as 

described in the main text in L6 (Panels A and C) and human (Panels B and D) myoblasts exposed to 

palmitate (white bars) or BSA (black bars). Oligomycin-sensitive respiration inhibited by cycloheximide, 

ouabain or actinomycin D was used to calculate ATP supply reserved for protein synthesis, sodium 

pump activity and DNA/RNA synthesis, respectively. Data are means ± SEM of 4-6 experiments. 

*Differs significantly (P<0.05) from the equivalent BSA control. Panels C and D: average ATP supply 

fluxes for protein synthesis (black boxes), sodium pump activity (white boxes), DNA/RNA synthesis 

(grey boxes) are the same as those shown in Panels A and B, respectively. The sum of these fluxes 

was subtracted from total ATP supply (Fig. 4D) to derive unaccounted ATP demand (shaded boxes).  
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Palmitate significantly lowers ATP supply for protein synthesis, to about 28 and 24 pmol per 

min per 40,000 cells in rat and human muscle myoblasts, respectively (Fig. 7). The palmitate 

effect on absolute ATP supply is a little more pronounced (40-50% inhibition) than its effect 

on the cycloheximide sensitivity of mitochondrial respiration (Fig. 5D – 33% inhibition), which 

is owing to the different P/O ratios we used for palmitate-exposed and control cells (section 

3.1). Palmitate lowers ATP supply for sodium pump activity by 60-70% and for human (but 

not rat) DNA/RNA synthesis by almost three-quarters (Fig. 7B). Since the palmitate effect on 

total ATP supply is lower than its cumulative effect on ATP turnover, palmitate increases the 

percentage of unaccounted ATP supply in rat (Fig. 7C) and human (Fig. 7D) myoblasts. 

4. DISCUSSION 

The results reported in this paper reveal that palmitate alters mitochondrial ATP supply and 

ATP expenditure in rat and human myoblasts (Fig. 8). The data demonstrate that palmitate 

lowers both the rate and efficiency of ATP supply in these cells (Figs 4 and 6) and, 

importantly, changes how this supply is allocated between ATP-consuming processes (Fig. 

7). Our finding that palmitate and other NEFAs (Fig. 6) remodel ATP turnover is relevant for 

the causality debate as to mitochondrial involvement in obesity-related insulin resistance. 

 

Fig. 8 – Palmitate remodels skeletal muscle bioenergetics. Mitochondrial ATP supply defects 

emerge directly from harmful palmitate effects on fuel combustion or indirectly from effects on ATP 

turnover. 

4.1 Measurement of ATP demand 

ATP turnover measurement from decreases in oligomycin-sensitive respiration provoked by 

inhibition of ATP-consuming processes ([30,31], Fig. 5) requires careful experimental design. 

Comparison between direct and indirect protein synthesis measurement for example reveals 

that ATP supply allocated to this process may readily be overestimated when derived from 

cycloheximide-sensitive respiration [34]. Overestimation depends on cycloheximide level [34] 

and thus likely emerges from nonspecific inhibition of fuel oxidation. Such off-site catabolic 
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effects of ATP demand inhibitors are expected to decrease respiration even when oxygen 

uptake is uncoupled from ATP synthesis with FCCP, so they would lower cell respiratory 

control ratios. At the concentrations we applied, cycloheximide, actinomycin D and ouabain 

did not lower cellular respiratory control, suggesting that inhibition of oligomycin-sensitive 

oxygen uptake by these compounds was only achieved indirectly via their effect on ATP 

turnover. Initial experiments indicated that these compounds indeed inhibit FCCP-uncoupled 

respiration when applied at higher levels (not shown). Direct amino acid incorporation 

measurements show that 25 µM cycloheximide suffices to inhibit protein synthesis [34]. The 

40 µM used here is of the same order of magnitude and provokes an instant and relatively 

stable inhibition (Figs 5A and 5B) that suggests a lack of secondary effects within the 

timescale of our assay. Importantly, cycloheximide sensitivity of coupled mitochondrial 

respiration is decreased by one-third when L6 myoblasts are exposed to palmitate (Fig. 5D), 

i.e., by a magnitude that is identical to the palmitate effect on the protein synthesis rate of 

these cells (Fig. 3C). This close quantitative agreement between direct and indirect 

determination of the palmitate effect on protein synthesis strengthens our confidence in the 

validity of indirect ATP demand measurement. 

4.2 Mechanistic considerations 

Palmitate lowers coupling efficiency of oxidative phosphorylation (Figs 4C and 6A) and 

provokes reallocation of ATP supply (Fig. 7) by mechanisms that are presently unclear. The 

coupling efficiency phenotype likely results from palmitate effects on the proton conductance 

of phospholipid bilayers [35,36]. Palmitate is for example known to induce transient pores in 

the mitochondrial inner membrane [37,38] that will increase proton leak and thus lower the 

proportion of respiration linked to ATP synthesis. The palmitate effect on coupling efficiency 

is arguably small, but it is worth notice in this respect that our experiments were performed 

without serum and insulin. We have recently shown that insulin acutely improves 

mitochondrial function of L6 and human myoblasts by boosting their coupling efficiency of 

oxidative phosphorylation [22]. Such improvement is annulled in palmitate-exposed cells [22] 

– the deleterious effect of palmitate on coupling efficiency will therefore be likely amplified in 

the presence of insulin. 

In human and L6 myoblasts, palmitate lowers ATP supply for protein synthesis and sodium 

pump activity and, in human cells, it also lowers the supply for DNA/RNA synthesis (Fig. 7). 

Broadly speaking, palmitate could affect ATP turnover in two ways. Skeletal muscle has 

remarkable remodelling ability that allows functional adaptation to environmental stimuli via 

activation of diverse signalling pathways [39]. Paths linking nutrient abundance to cell growth 

are influenced by lipids [40] and it is therefore possible that palmitate down-regulates various 

ATP-consuming processes directly. Alternatively, palmitate may provoke new ATP demand, 
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which reprioritizes the distribution of myoblast ATP supply. The second explanation predicts 

that palmitate affects the reported ATP-consuming processes indirectly, and is consistent 

with the increased proportion of unaccounted ATP supply flux seen after palmitate exposure 

(Figs 6C and 6D). Current efforts are focussed on distinguishing between direct and indirect 

palmitate effects on ATP expenditure, and on identifying the additional palmitate-induced 

ATP demand. Activities that possibly account for uninhibited ATP demand are diverse and 

may include proteolysis, actin/tubulin dynamics and Ca2+-ATPases. 

4.3 Mitochondrial insufficiency debate 

Despite the incomplete mechanistic understanding of the observed NEFA effects on ATP 

turnover, our finding that palmitate causes a dramatic reallocation of ATP supply in skeletal 

muscle (Fig. 7) informs the mitochondrial insufficiency debate. Our data support the slowly 

emerging awareness [8] that mitochondrial involvement in NEFA-induced insulin resistance 

cannot be evaluated in a meaningful way if metabolic control is ignored. Mitochondrial 

capacity per se may indeed be sufficient to cope with the lipid load in the obese state [11], 

but without energy demand this capacity will be inconsequential. This effective mitochondrial 

insufficiency under conditions of low ATP demand will thus allow accumulation of the 

metabolites that are held responsible for NEFA-induced insulin resistance. We assert that 

the current „oxidative capacity‟, „redox signalling‟ and „mitochondrial load‟ models of skeletal 

muscle insulin resistance [8,17] are conceptually the same: lipid metabolites such as 

diacylglycerol and ceramide [13,14], and ROS [15,16] all, but exclusively, accumulate when 

mitochondrial substrate supply outweighs energetic needs and thus the effective oxidative 

phosphorylation capacity. 

4.4 Concluding remarks 

Our findings highlight that mitochondrial involvement in NEFA-induced insulin resistance of 

skeletal muscle is best considered in context of bioenergetic control. We have revealed new 

significant inhibitory effects of palmitate on energy expenditure of rat and human myoblasts. 

We suggest that the palmitate-decreased rate of ATP supply by oxidative phosphorylation is 

partly owing to inhibited ATP turnover (Fig. 8). In other words, a seemingly compromised 

oxidative capacity may have simply arisen from attenuated ATP demand. We believe it may 

be interesting to explore how palmitate affects skeletal muscle ATP expenditure of different 

patients as a variable NEFA-sensitivity of ATP turnover could be responsible for a differential 

propensity of these patients to develop muscle insulin resistance. 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

16 
 

ACKNOWLEDGEMENTS 

This work was supported by the Medical Research Council [New Investigator Research 

Grant G1100165 to CA] and Plymouth University [salary support for RBN]. Neither MRC nor 

Plymouth University were involved in the design and execution of this study, the analysis 

and interpretation of the data, or in the writing of the manuscript. It was the decision of the 

authors only to submit the manuscript for publication. We thank Prof. Andrew Jones and Mr 

Lee Wiley (Sport & Health Sciences, College of Life & Environmental Sciences, University of 

Exeter) for taking the human skeletal muscle biopsies, Prof. Paul Winyard (Exeter University 

Medical School, UK) for providing licenced facilities to work with human tissue, and Dr Jane 

Carré (Plymouth University, UK) for help with the human muscle cell isolation. 

AUTHOR CONTRIBUTION 

CA conceived and developed the project idea, RBN and CA designed all experiments, RBN 

executed and analysed all experiments, and produced Figs 2-7, and CA wrote the paper and 

produced Figs 1 and 8. 

REFERENCES 

[1] K.G.M.M. Alberti, P. Zimmet, J. Shaw, IDF Epidemiology Task Force Consensus 

Group, The metabolic syndrome - a new worldwide definition, Lancet 366 (2005) 

1059–1062. 

[2] R.H. Unger, Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic 

and clinical implications, Diabetes 44 (1995) 863–870. 

[3] S.E. Kahn, The relative contributions of insulin resistance and beta-cell dysfunction to 

the pathophysiology of Type 2 diabetes, Diabetologia 46 (2003) 3–19. 

[4] D.M. Muoio, C.B. Newgard, Mechanisms of disease: molecular and metabolic 

mechanisms of insulin resistance and β-cell failure in type 2 diabetes, Nat. Rev. Mol. 

Cell Biol. 9 (2008) 193–205. 

[5] G. Boden, Obesity and free fatty acids, Endocrinol. Metab. Clinics North America 37 

(2008) 635–646. 

[6] A.R. Martins, R.T. Nachbar, R. Gorjao, M.A. Vinolo, W.T. Festuccia, R.H. Lambertucci, 

et al., Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: 

importance of the mitochondrial function, Lipids Health Dis. 11 (2012) 30. 

[7] J. Szendroedi, E. Phielix, M. Roden, The role of mitochondria in insulin resistance and 

type 2 diabetes mellitus, Nat. Rev. Endocrinol. 8 (2011) 92–103. 

[8] D.M. Muoio, P.D. Neufer, Lipid-induced mitochondrial stress and insulin action in 

muscle, Cell Metab. 15 (2012) 595–605. 

[9] D.M. Muoio, Metabolic inflexibility: when mitochondrial indecision leads to metabolic 

gridlock, Cell 159 (2014) 1253–1262. 

[10] B.H. Goodpaster, Mitochondrial deficiency is associated with insulin resistance, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

17 
 

Diabetes 62 (2013) 1032–1035. 

[11] J.O. Holloszy, “Deficiency” of mitochondria in muscle does not cause insulin resistance, 

Diabetes 62 (2013) 1036–1040. 

[12] K. Morino, K.F. Petersen, G.I. Shulman, Molecular mechanisms of insulin resistance in 

humans and their potential links with mitochondrial dysfunction, Diabetes 55 (2006) 

S9–S15. 

[13] P.M. Coen, B.H. Goodpaster, Role of intramyocelluar lipids in human health, Trends 

Endocrinol. Metab. 23 (2012) 391–398. 

[14] V.T. Samuel, G.I. Shulman, Mechanisms for insulin resistance: common threads and 

missing links, Cell 148 (2012) 852–871. 

[15] N. Houstis, E.D. Rosen, E.S. Lander, Reactive oxygen species have a causal role in 

multiple forms of insulin resistance, Nature 440 (2006) 944–948. 

[16] E.J. Anderson, M.E. Lustig, K.E. Boyle, T.L. Woodlief, D.A. Kane, C.-T. Lin, et al., 

Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin 

resistance in both rodents and humans, J. Clin. Invest. 119 (2009) 573–581. 

[17] K.H. Fisher-Wellman, P.D. Neufer, Linking mitochondrial bioenergetics to insulin 

resistance via redox biology, Trends Endocrinol. Metab. 23 (2012) 142–153. 

[18] A. Wredenberg, C. Freyer, M.E. Sandström, A. Katz, R. Wibom, H. Westerblad, et al., 

Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance, 

Biochem. Biophys. Res. Comm. 350 (2006) 202–207. 

[19] J.A. Pospisilik, C. Knauf, N. Joza, P. Benit, M. Orthofer, P.D. Cani, et al., Targeted 

deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from 

obesity and diabetes, Cell 131 (2007) 476–491. 

[20] C. Zechner, L. Lai, J.F. Zechner, T. Geng, Z. Yan, J.W. Rumsey, et al., Total skeletal 

muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type 

determination and insulin sensitivity, Cell Metab. 12 (2010) 633–642. 

[21] D.G. Nicholls, S. Ferguson, Bioenergetics 4, Academic Press, London, 2013. 

[22] R.B. Nisr, C. Affourtit, Insulin acutely improves mitochondrial function of rat and human 

skeletal muscle by increasing coupling efficiency of oxidative phosphorylation, Biochim. 

Biophys. Acta. 1837 (2014) 270–276. 

[23] J.K. Ching, P. Rajguru, N. Marupudi, S. Banerjee, J.S. Fisher, A role for AMPK in 

increased insulin action after serum starvation, Am. J. Physiol. - Cell Physiol. 299 

(2010) C1171–C1179. 

[24] A.H. Huber, J.P. Kampf, T. Kwan, B. Zhu, A.M. Kleinfeld, Fatty acid-specific 

fluorescent probes and their use in resolving mixtures of unbound free fatty acids in 

equilibrium with albumin, Biochemistry 45 (2006) 14263–14274. 

[25] D.C. Dieterich, A.J. Link, J. Graumann, D.A. Tirrell, E.M. Schuman, Selective 

identification of newly synthesized proteins in mammalian cells using bioorthogonal 

noncanonical amino acid tagging (BONCAT), Proc. Nat. Acad. Sci. 103 (2006) 9482–

9487. 

[26] C. Affourtit, M.D. Brand, Measuring mitochondrial bioenergetics in INS-1E insulinoma 

cells, Meth. Enzymol. 457 (2009) 405–424. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

18 
 

[27] M.D. Brand, D.G. Nicholls, Assessing mitochondrial dysfunction in cells, Biochem. J. 

435 (2011) 297–312. 

[28] J. Barlow, V. Hirschberg Jensen, C. Affourtit, Uncoupling protein-2 attenuates 

palmitoleate protection against the cytotoxic production of mitochondrial reactive 

oxygen species in INS-1E insulinoma cells. Redox Biol. 4 (2015) 14–22. 

[29] M.D. Brand, The efficiency and plasticity of mitochondrial energy transduction, 

Biochem. Soc. Trans. 33 (2005) 897–904. 

[30] F. Buttgereit, M.D. Brand, A hierarchy of ATP-consuming processes in mammalian 

cells, Biochem. J. 312 (1995) 163–167. 

[31] M.J. Birket, A.L. Orr, A.A. Gerencser, D.T. Madden, C. Vitelli, A. Swistowski, et al., A 

reduction in ATP demand and mitochondrial activity with neural differentiation of 

human embryonic stem cells, J. Cell Sci. 124 (2011) 348–358. 

[32] P.G. Arthur, J.J. Giles, C.M. Wakeford, Protein synthesis during oxygen conformance 

and severe hypoxia in the mouse muscle cell line C2C12, Biochim. Biophys. Acta. 

1475 (2000) 83–89. 

[33] P.J. Randle, Regulatory interactions between lipids and carbohydrates: the glucose 

fatty acid cycle after 35 years, Diab. Metab. Rev. 14 (1998) 263–283. 

[34] W. Wieser, G. Krumschnabel, Hierarchies of ATP-consuming processes: direct 
compared with indirect measurements, and comparative aspects, Biochem. J. 355 
(2001) 389–395. 

[35] V.P. Skulachev, Uncoupling: new approaches to an old problem of bioenergetics, 

Biochim. Biophys. Acta. 1363 (1998) 100–124. 

[36] V.N. Samartsev, Fatty acids as uncouplers of oxidative phosphorylation, Biochemistry 

Mosc. 65 (2000) 991–1005. 

[37] G.D. Mironova, E. Gritsenko, O. Gateau-Roesch, C. Levrat, A. Agafonov, K. 

Belosludtsev, et al., Formation of palmitic acid/Ca2+ complexes in the mitochondrial 

membrane: a possible role in the cyclosporin-insensitive permeability transition, J. 

Bioenerg. Biomembr. 36 (2004) 171–178. 

[38] G.D. Mironova, N-E.L. Saris, N.V. Belosludtseva, A.V. Agafonov, A.B. Elantsev, K.N. 

Belosludtsev, Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions 

across the mitochondrial membrane, Biochim. Biophys. Acta. 1848 (2015) 488–495.  

[39] R. Bassel-Duby, E.N. Olson, Signaling pathways in skeletal muscle remodeling, Annu. 

Rev. Biochem. 75 (2006) 19–37. 

[40] R. Zoncu, A. Efeyan, D.M. Sabatini, mTOR: from growth signal integration to cancer, 

diabetes and ageing, Nat. Rev. Mol. Cell Biol. 12 (2010) 21–35. 

 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

19 
 

 

Graphical abstract 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20 
 

Highlights 

• Lipotoxic palmitate exposure lowers rate and efficiency of myoblast ATP synthesis. 
• Palmitate decreases the activity of major ATP-consuming processes in myoblasts. 
• Palmitate causes reallocation of ATP supply in human and rat myoblasts. 


