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Abstract 22 

The dry weight concentrations of lead in paints on a variety of structures in the urban 23 

and suburban environs of a British city (Plymouth, south west England) have been 24 

determined in situ and ex situ by field-portable x-ray fluorescence spectrometry. Lead 25 

was detected in 221 out of 272 analyses, with overall median and mean concentrations 26 

of 4180 g g
-1

 and 29,300 g g
-1

, respectively, and a maximum concentration of 27 

390,000 g g
-1

. The highest concentrations were observed in extant paints on poorly 28 

maintained, metallic structures, including railings, gates, telephone kiosks and 29 

bridges, in various yellow road line paints, and in paints of varying condition on 30 

public playground facilities (ramps, climbing frames, monkey bars). Occupants of 31 

households in the vicinity of structures that are shedding leaded paint are at potential 32 

risk of exposure from paint particles being tracked in on shoes while children in 33 

contact with leaded paints in playgrounds and recreational areas are at potential risk 34 

from the direct ingestion of paint flakes. Since the issues highlighted in the present 35 

study are neither likely to be restricted to this city, nor to the UK, a greater, general 36 

awareness and understanding of the sources and routes of exposure of exterior leaded 37 

paint is called for. 38 

 39 
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1. Introduction 43 

Because of the well-documented toxic effects of lead, and in particular those that 44 

impact on the development of young children, the use of leaded products has been 45 

restricted or phased out over the past few decades (Mansson et al., 2009; Bierkens et 46 

al., 2011). In the domestic setting, a significant vehicle for Pb poisoning has been the 47 

inadvertent or deliberate ingestion of household paint particles containing various 48 

leaded pigments (Jacobs et al., 2002; Su et al., 2002). Consequently, the Pb content of 49 

consumer paints has come under close scrutiny in the scientific literature and by 50 

regulators and limits on its concentration in formulations have been progressively 51 

revised downwards. In the US, the current limit for Pb in consumer paints has been set 52 

at 90 ppm (CPSC, 2011), and although several countries have since adopted similar 53 

thresholds, the Global Alliance to Eliminate Lead Paint (GAELP) has a goal of 54 

eradicating Pb in paint by 2020 (Kessler, 2014). 55 

 56 

An additional source of Pb exposure in the home environment is from contaminated 57 

external geosolids, like soils and road dusts, that are airborne or tracked in on shoes 58 

and clothing (Alradady et al., 2003; Hunt et al., 2006). External solids are often 59 

contaminated with residual Pb associated with its past use in gasoline (Zahran et al., 60 

2013; Datko-Williams et al., 2014), but an additional source that has received less 61 

attention is extant leaded paint on exterior structures, and in particular on 62 

constructions in poor condition and where paint is readily flaking from the substrate 63 

through weathering and deterioration of the binder (Weiss et al., 2006). Flaking paint 64 

in the external environment may also pose more direct risks to contractors repairing or 65 

repainting structures (Jacobs, 1998), and to children if poorly maintained painted 66 
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surfaces are encountered within or in the vicinity of recreational areas (Mathee et al., 67 

2009). 68 

 69 

In a previous study, a variety of metals in paint flakes sampled from a number of 70 

structures in the centre of Plymouth, a coastal city in south west England, were 71 

measured by inductively coupled plasma (ICP) spectrometry following acid digestion 72 

(Turner and Sogo, 2012). Despite many leaded pigments having been either banned or 73 

voluntarily removed from non-consumer paints in the UK by the 1990s, we 74 

discovered concentrations of Pb in many samples that exceeded the US urban 75 

abatement action level of 5000 g g
-1

 (Horner, 2004). This finding has prompted us to 76 

hypothesise that leaded paint may be a pervasive problem in this city and in the 77 

British urban and suburban environments more generally. Accordingly, the present 78 

investigation employs a field portable x-ray fluorescence (FP-XRF) spectrometer, 79 

configured in a plastics mode and with a thickness correction algorithm for the 80 

analysis of thin layers, to allow a greater throughput of paint analyses on a wider 81 

range of structures in Plymouth. Measurements are made both in situ and ex situ and, 82 

although we specifically target Pb, we also measure Cr because of its occurrence in 83 

many leaded pigments. The results are used to provide an inventory of the types of 84 

structures on which leaded paint is likely to be encountered in the city and in the UK, 85 

and to address the potential sources of Pb exposure to the general public from paint in 86 

the urban and suburban settings. 87 

 88 

2. Materials and methods 89 

2.1. Sampling and sample locations 90 
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Fifteen urban and suburban regions of Plymouth (population ~ 250, 000) that 91 

provided a wide geographical coverage of the city were visited between February and 92 

April of 2015 and during periods of dry weather. In each region, as many paints on 93 

public structures and facilities and on municipal and commercial buildings (excluding 94 

private residences) that were directly accessible from the roadside or pavement were 95 

examined using a FP-XRF spectrometer. On site, painted wooden, metallic and 96 

tarmacked surfaces, including gates, railings, bridges, roads, buildings, posts, 97 

playground facilities, pillar boxes and K6-type telephone kiosks, were photographed, 98 

position-fixed and coded, and the colour, condition and degree of layering of paint 99 

recorded. Surfaces that were in reasonable condition were measured in situ while 100 

those that were visibly flaking were sampled directly or from fragments that had 101 

accumulated on the ground using a pair of stainless steel tweezers. Where distinct 102 

layers of paint or distinct components or colours were observed on a single structure, 103 

multiple measurements were made or multiple samples collected. Samples were 104 

stored individually in labelled specimen bags and returned to the laboratory in a 105 

sealed polyethylene box. 106 

 107 

2.2. XRF analysis 108 

The outer surfaces of the paint fragments and painted structures were analysed for a 109 

variety of metals, of which Pb was the focus of the present study but Cr was also 110 

considered, by energy dispersive FP-XRF spectrometry using a battery-powered 111 

Thermo Scientific Niton XRF analyser (model XL3t 950 He GOLDD+). 112 

 113 

For in situ measurements (n = 58), a smooth, regular area of the painted surface was 114 

wiped clean and dry using a medical-grade wipe before the XRF nose, including the 115 
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measurement window and proximity sensor, was positioned firmly against a 116 

measurement area of 8 mm in diameter. Surfaces were measured for a period of 200 117 

seconds (100 seconds each for the main and low energy ranges) by depressing the 118 

trigger mechanism of the instrument. Spectra up to 50 keV were quantified by 119 

standardless analysis in ‘plastics’ mode and with a thickness correction of 50 m to 120 

yield metal concentrations in parts per million (g g
-1

) and with an error of 2 (95% 121 

confidence). Data were subsequently transferred to a laptop computer in the 122 

laboratory using Thermo Scientific Niton data transfer (NDT) PC software.  123 

 124 

For the analysis of paint fragments in the laboratory (n = 224), the XRF was securely 125 

fixed into a bench top accessory unit and connected via USB and a remote trigger to 126 

the laptop. Individual samples were carefully placed on to a SpectraCertified® Mylar 127 

polyester 3.6 m film using a pair of tweezers and with the outer face downwards, 128 

before the slide was positioned centrally over a 3 mm small-spot collimator above the 129 

detector. Measurements were activated through the laptop under conditions identical 130 

to those described above and with concurrent transfer of data through the NDT 131 

software. 132 

 133 

The Niton XLT3t GOLDD+ series analysers define detection limits that are specific 134 

to the characteristics of the sample and the counting time in terms of 3; 135 

measurements are reported where concentrations exceed this threshold and detection 136 

limits are provided otherwise. Detection limits specific to the paint samples and 137 

analytical conditions of the present study were about 8 g g
-1

 and 15 g g
-1

 for Pb and 138 

Cr, respectively. No XRF reference paints exist that report Pb concentrations on a 139 

w/w basis above 100 g g
-1

. However, analysis of NIST SRM2579a paint films that 140 
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are defined by a wide range of Pb concentrations on a mg cm
-2

 basis (x) returned 141 

results in g g
-1

 (y) that were directly proportional to certified values (y = 3.2x10
4
x; r

2
 142 

> 0.999; p < 0.01). For an evaluation of absolute accuracy, a reference plastic 143 

manufactured by Niton (PN 180-554, 13 mm thick polyethylene disk impregnated 144 

with metals) was analysed in quadruplicate and without thickness correction. The 145 

mean measured Pb concentration (± one sd) of 944 (± 12) g g
-1

 compared with an 146 

added Pb concentration of 1002 (± 40) g g
-1

, while the mean measured Cr 147 

concentration (± one sd) of 1090 (±12) g g
-1

 compared with an added concentration 148 

of 995 (± 40) g g
-1

. 149 

 150 

Since Pb and Cr were measured both on painted surfaces in situ and on flakes returned 151 

to the laboratory, a comparison between the two approaches was made on a number of 152 

surfaces where intact areas were adjacent to visibly flaking areas. Despite possible 153 

differences between adjacent areas in terms of thickness of application and degree of 154 

corrosion, coupled with any potential confounding effects associated with the 155 

underlying substrate itself, good agreement was observed between Pb concentrations 156 

measured across a range of surfaces ([ex situ] = 1.40* [in situ]; r = 0.921, n = 10, p < 157 

0.01); for Cr, a weaker relationship based on fewer analyses was observed that was 158 

nevertheless significant ([ex situ] = 0.58* [in situ]; r = 0.630, n = 6, p = 0.05). Note 159 

that in the cases where painted surfaces were measured by both approaches, only 160 

those determined in situ have been reported below. 161 

 162 

3. Results and Discussion 163 

3.1. Structure description and classification 164 
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A summary of the type, number and colours of the painted structures examined in the 165 

present study is given in Table 1. A total of 224 structures were measured and a total 166 

of 272 analyses for Pb were performed, with the numerical difference reflecting 167 

multiple analyses of different regions or layers of the same structure. The most 168 

common categories examined were railings (all metal and including various fences) 169 

and posts (mainly metal and encompassing street posts, lamp-posts and traffic posts) 170 

which were a variety of colours; likewise, gates (including gate posts) and downpipes 171 

were mainly of metal construction and were painted in a number of colours. 172 

Playground facilities embraced a variety of brightly coloured installations, such as 173 

roundabouts, ramps, climbing frames, monkey bars and the supporting posts of slides 174 

and swings, while painted areas of public and commercial buildings of various ages 175 

included walls, doors, window frames and window sills. The iconic K6-type cast iron 176 

telephone kiosks and metallic pillar boxes of different designs were always red, 177 

whereas the painted (road) surfaces of highways, car parks, pavements and manhole 178 

covers, were mainly yellow-orange. Bridges were the largest structures examined and 179 

consisted of footbridges over roads and railways, road bridges over disused railways 180 

and disused rail bridges over roads. Miscellaneous structures not categorised above 181 

included fire hydrants, bollards, waste bins and benches.  182 

 183 

In general, and among the structures examined, the surfaces of the telephone kiosks 184 

and bridges were observed to be in the poorest condition with what was perceived to 185 

be extensive flaking of multiple layers of paint and visible accumulations of paint 186 

fragments on the ground. For this reason, measurements of different layers or regions 187 

of paint were made on all kiosks and on the majority of bridges. Other constructions 188 



 9 

on which multiple measurements were performed included several multi-coloured 189 

playground facilities, and various buildings, posts and railings. 190 

 191 

3.2. Lead concentrations and distributions 192 

Table 2 summarises the concentrations of Pb in paints on the different types of 193 

structures. Overall, Pb was detected in 221 cases (or 81% of all analyses), with 194 

concentrations spanning more than four orders magnitude (ranging from 20 g g
-1

 to 195 

about 390,000 g g
-1

) and exceeding the US urban abatement action level of 5000 g 196 

g
-1

 in 104 instances (or 38% of all analyses). The median, grand mean and standard 197 

error for all measurements were 4,180g g
-1

, 29,300 g g
-1 

and 3,560 g g
-1

, 198 

respectively, but where median concentrations were used to summarise multiple 199 

measurements of the same structure (and n = 175), respective values were 2,700g g
-

200 

1
, 20,500 g g

-1 
and 2,770 g g

-1
. Skewness and excess kurtosis for the entire dataset 201 

were +3.03 and 12.0, respectively (or +2.52 and 6.70, respectively, for data based on 202 

the number of structures measured), indicating a highly skewed, leptokurtic data set 203 

whose variability is due to a relatively small number of extreme differences. 204 

 205 

For a given type of structure and for all measurements made on such, concentrations 206 

of Pb were highly variable and in most cases distributions were positively skewed, 207 

with median concentrations of a few thousand g g
-1

 for most constructions but an 208 

order of magnitude greater for bridges and telephone kiosks. Individual concentrations 209 

of Pb greater than 100,000 g g
-1

 were determined in 21 cases. Namely, the lowest 210 

painted layers of a number of telephone kiosks (that may have been base paint 211 

primers); paints of various colours on the parapets of two road bridges over a disused 212 

railway and a disused railway bridge over a road; two yellow-orange ‘no parking’ 213 
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lines; a green downpipe on the exterior wall of a small industrial estate; the yellow 214 

railing of a ramp in a playground; the lowest painted layer of a red pillar box; two 215 

yellow car park posts; and black and green flakes sampled from cast iron railings 216 

surrounding a hospital and cemetery, respectively217 
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Table 1: Classification and colour coding of the structures examined in the study.  218 

 219 

 220 

 221 

 222 

 223 

            
  black blue brown green grey/silver red/pink white yellow/orange multiple no. structures no. analyses 

bridges 
   

1 
    

5 6 20 

buildings 1 1 
 

2 2 
 

1 2 2 11 16 

downpipes 1 2 1 4 1 
 

2 
  

11 11 

gates 3 
 

2 4 
 

6 1 4 3 23 27 

pillar boxes 
     

14 
   

14 16 

playgrounds 
 

3 
 

5 
 

7 5 6 
 

26 26 

posts 9 
  

1 12 
 

5 6 2 35 38 

railings 12 5 1 16 7 5 2 
 

2 50 52 

roads 
   

1 
 

1 2 27 
 

31 31 

telephone kiosks 
     

9 
   

9 26 

miscellaneous 1 
  

2 2 
 

1 1 1 8 9 

total 27 11 4 36 24 42 19 46 15 224 272 
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Table 2: Distribution and summary statistics for Pb concentrations (g g
-1

) among the different structures measured. 224 

          

  
no. 

undetected 
< 102 102-103 103-104 104-105 >105 min. max. median 

bridges 2 1 5 1 6 5 94 223,000 30,100 

buildings 2 3 6 3 2 
 

33 9,850 573 

downpipes    
  

7 3 1 1,810 104,000 4,480 

gates 6 
 

7 9 5 
 

166 28,800 1,650 

pillar boxes 1 1 4 5 4 1 42 171,000 2,820 

playgrounds 6 
 

10 3 6 1 116 115,000 1,170 

posts 13 3 7 9 4 2 20 175,000 2,200 

railings 7 6 13 9 12 5 32 198,000 4,280 

roads 12 2 
 

8 7 2 50 142,000 5,020 

telephone kiosks    
 

1 1 20 4 510 389,000 43,200 

miscellaneous 2 3 1 
 

3 
 

74 97,200 982 

total 51 19 54 55 72 21 20 389,000 4,180 

           225 

 226 

 227 

 228 
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Table 3 summarises the Pb results according to colour classification. (Note that 229 

samples and surfaces from the multi-coloured structures listed in Table 1 have now 230 

been divided into their component colours.) Lead was measured in all colour 231 

categories, and the percentage of cases in which Pb was detectable ranged from less 232 

than 65 for grey/silver and white surfaces to more than 90 for blue and red/pink 233 

surfaces. Median concentrations ranged from about 400 g g
-1

 for grey/silver paints to 234 

more than 25,000 g g
-1

 for red paints, and with the exception of blue paints, colour 235 

categories were not normally distributed with positive skewness and positive excess 236 

kurtosis. 237 

 238 

3.3. Leaded pigments and the occurrence of Cr 239 

The wide dispersion of Pb concentrations among the different colours and ages of 240 

structures suggests that a number of leaded compounds are encountered in the paints 241 

analysed. Before being phased out or restricted in use, leaded pigments were used in 242 

paints for colour, opacity and corrosion inhibition, and, in combination with other 243 

metal compounds, as driers (Abel, 2000). Some commonly employed leaded pigments 244 

include the primers, red lead, 2PbO·PbO2, and basic lead silicochromate, 245 

PbSiO3·3PbO·PbCrO4·PbO, white lead, 2PbCO3·Pb(OH)2, a pigment that turns black 246 

on exposure to sulphurous gases in the atmosphere, lead chromate, a series of yellow 247 

and orange pigments that can be pure PbCrO4 or mixed phase PbCrO4/PbSO4, 248 

molybdate red, Pb(Cr,S,Mo)O4, and chrome green, PbCrO4/PbSO4·FeNH4Fe(CN)6, a 249 

co-precipitate of lead chromate and Prussian blue. 250 

 251 

It is clear that many of these Pb-based pigments also contain hexavalent Cr, itself a 252 

cytotoxin and genotoxin (Wise et al., 2006). Chromium was detected in 106 paints, 253 
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with median, minimum and maximum concentrations of 443 g g
-1

, 24 g g
-1

and 254 

33,800 g g
-1

, respectively, and a distribution that displayed positive skewness and 255 

excess kurtosis. Chromium was detected in 99 cases in which Pb was detected and 256 

these results are plotted as a scatter chart in Figure 1. Here, data have been coded 257 

according to colour, although no clear trends or groupings are evident on this basis. 258 

Also shown in the figure are ratios of Pb to Cr (on a w/w basis) for the pigments with 259 

the lowest and highest ratios of these metals (namely, about 4 for pure PbCrO4 to 260 

about 24 for basic lead silicochromate). Many of the data lie within these two end-261 

points, consistent with the use of a variety of Pb-Cr pigments in the paints. Data with 262 

ratios of Pb:Cr exceeding 24, including those containing significant quantities of Pb 263 

and no detectable Cr (e.g. many bridge paints; data not shown), suggest the use of 264 

leaded pigments that do not contain Cr, like white lead and the primer, red lead, while 265 

data with ratios of Pb:Cr below 4 suggest the existence of additional, unleaded but 266 

Cr(III)-bearing pigments (e.g. chromium oxide, Cr2O3, and cobalt blue, 267 

Co(Al,Cr)2O4). Relatively low ratios of Pb:Cr and the general dispersion among the 268 

data may also be attributed to the heterogeneous but preferential weathering and 269 

dissolution of Pb over Cr from PbCrO4-based pigments (White et al., 2014). 270 

271 
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Figure 1: Concentrations of Pb versus concentrations of Cr in the different coloured paint samples. The 272 

lines represent the Pb to Cr mass ratios in lead chromate (4:1) and basic lead silicochromate (24:1). 273 

 274 

 275 

 276 
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Table 3: Distribution and summary statistics for Pb concentrations (g g
-1

) among the different colours of paint measured. 

          

  
no. 

undetected 
< 102 102-103 103-104 104-105 >105 min. max. median 

black 4 
 

16 5 8 2 119 158,000 982 

blue 1 2 4 3 6 
 

32 66,100 5,860 

brown 3 
  

2 1 1 1,750 184,000 21,600 

green 9 5 6 13 9 3 54 198,000 2,500 

grey/silver 9 6 6 3 4 
 

20 18,600 398 

red/pink 5 1 11 11 32 7 42 389,000 25,600 

white 7 3 3 5 3 1 30 202,000 2,780 
yellow/orange 13 2 8 12 12 5 50 175,000 4,680 
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3.4. Implications for exposure and the local environment 

This study has revealed a wide range of Pb concentrations in painted surfaces of a 

variety of both contemporary and historical structures in the urban and suburban 

environs of a British city. The highest concentrations (in excess of 100,000 g g
-1

) 

were often associated with relatively old, metallic (cast iron and steel) structures that 

were observed to be in a poor state of repair and that often had distinct layers of 

flaking paint resulting from aging, weathering and abrasion of the surface. In these 

cases, Pb concentrations were usually highest in the lowest, and presumably oldest, 

layers, an effect exemplified by the distribution of Pb concentrations among the 

different coloured or shaded surfaces of a road bridge in Figure S1 and a telephone 

kiosk in Figure S2. This effect may be attributed to the reduction in the Pb content of 

progressively newer paints (including the use of leaded primers as the oldest 

basecoat), or to an increase in the degree of weathering of non-leaded components of 

the paint with increasing age. A more surprising observation, however, was the high 

incidence of concentrations that exceeded the urban abatement action level of 5000 g 

g
-1

 (Horner, 2004) on painted surfaces that were largely intact and that appeared to 

have been applied relatively recently. Examples of the latter included a range of 

facilities in children’s playgrounds (one installation was date-stamped as March 

2009), posts and bollards used to demark the entrances of car parks, several small, 

sprung entrance gates to recreational facilities, and bright yellow paint on the footway 

of a pedestrian bridge. 

 

From an environmental standpoint, flaking of leaded paint will result in both the 

direct (particulate) and indirect (through dissolution-readsorption) contamination of 

local soils, road-dusts and pavement dusts. Contamination of surface waters may 
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occur indirectly through the gradual dissolution of Pb from paint flakes into rainwater, 

an effect accentuated by low pH and the presence of natural and anthropogenic 

complexants, and the subsequent transport of aqueous Pb by storm-water drains 

(Davis and Burns, 1999). Human exposure associated with flaking leaded paint may 

be a concern for residents and schools in the immediate vicinity of structures in a poor 

state of repair (Weiss et al., 2006). In the present study, private houses were observed 

within 20 m of many of the structures in the poorest condition and whose painted 

surfaces were associated with the highest concentrations of Pb; we also noted that one 

of the railings shedding paint and containing Pb at a concentration in excess of 25, 

000 g g
-1

 served to enclose a school play area. In these cases, Pb may enter the 

indoor environment as fine, airborne dust and through paint flakes and contaminated 

soil tracked indoors on shoes and clothing. Track-in and soil resuspension appear to 

be the main vehicles for the introduction of external Pb into the contemporary 

household (Laidlaw et al., 2014) and flaking paint from external structures (and in 

particular, metallic railings and elevated steel structures like bridges) has been 

identified as a major contributor to these routes (Weiss et al., 2006; Lucas et al., 

2014). The potential for Pb to be tracked into the household is also a concern for 

families of contractors involved in the repair, maintenance or restoration of structures 

containing extant leaded paint (Virji et al., 2009) and for members of the public who 

use telephone kiosks that are in a poor state of repair and that have significant 

accumulations of paint flakes on the floor. 

  

Perhaps the greatest concerns arising from our research are the wide occurrence and 

high concentrations of Pb in paints on public playground facilities. Here, the risks are 

greatest for peeling or chalking paint on structures that children are in direct contact 
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with, like poles, rails, climbing frames and monkey bars, and to infants under 72 

months old because of their tendency to mouth foreign objects and the relatively high 

absorption of Pb in their gastrointestinal tract (Kennedy et al., 2014). Lead poisoning 

in a 5-year old child resulting from the biting and ingestion of paint chips from 

playground equipment in Montreal was described by Health Canada (1994), with the 

recommendation that painted surfaces be carefully stripped using solvent and 

repainted using lead-free paint. Leaded paint has since been reported on equipment in 

contemporary public play-parks in Japan (Takaoka et al., 2006) and South Africa 

(Mathee et al., 2009) but the present study appears to be the first to document its 

occurrence in Europe. 

 

From the discussion above, it is clear that the general findings of the present study are 

unlikely to be specific to the city of Plymouth or to the UK. Thus, since the phasing 

out of leaded gasoline, exterior paint, in itself or as a component of contaminated soil 

dust, may represent one of the most significant routes of Pb exposure in the urban and 

suburban settings. Despite guidance and regulations on the use and removal of paint 

containing Pb being incorporated into governmental policy (e.g. Health and Safety 

Executive, 2002), a greater awareness of the pervasiveness of exterior leaded paint is 

required, both for the public and for employers dealing with the renovation, repair, 

maintenance or decoration of a wide variety of painted facilities. In particular, means 

of reducing the inherent risks and managing and regulating Pb in paint on public 

structures and facilities need to be more clearly and robustly addressed by the relevant 

authorities and stakeholders. 
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