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ABSTRACT

Some  argue  the  common  practice  of  inferring  multiple  processes  or  systems  from  a

dissociation is flawed (Dunn, 2003). One proposed solution is state trace analysis (Bamber,

1979),  which  involves  plotting,  across  two  or  more  conditions  of  interest,  performance

measured  by  either  two  dependent  variables,  or  two  conditions  of  the  same  dependent

measure. The resulting analysis is considered to provide evidence that either: (1) a single

process underlies performance (one function is produced) or (2) there is evidence for more

than one process (more than one function is produced). This article reports simulations using

the  simple  recurrent  network  (SRN,  Elman,  1990)  in  which  changes  to  the  learning  rate

produced state trace plots with multiple functions. We also report simulations using a single-

layer error-correcting network that generate plots with a single function. We argue that the

presence of different functions on a state trace plot does not necessarily support a dual-system

account, at least as typically defined (e.g. two separate autonomous systems competing to

control  responding);  it  can  also  indicate  variation  in  a  single  parameter  within  theories

generally considered to be single-system accounts. 
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1. Introduction

The  question  of  how  many  psychological  processes  may  be  contributing  to  a  particular

behavior or effect is often central to research in our discipline. Are there two routes to visual

processing? Do children acquire language through a single system? Is there a separate mental

system for the processing of faces? Are there separate brain regions for semantic and auditory

language processes? Does learning occur implicitly as well as explicitly in humans? All these

questions converge on the common issue of: "how many functionally distinct psychological

processes are we dealing with?" 

The  result  most  often  employed  to  support  the  presence  of  multiple  processes

(multiple  latent  psychological  variables)  is  the  behavioral  dissociation.  The  underlying

rationale will  be familiar  to most researchers in two forms: the single dissociation, which

occurs when one manipulates a given independent variable that affects one dependent variable

and not another; and the double dissociation, which involves two independent variables that

produce  complementary  single  dissociations  on  the  same  two  dependent  variables.  The

demonstration  of  such  dissociations  is  often  taken  to  provide  evidence  for  a  multiple

process/systems hypothesis.  This  inference,  however, has  been shown to  be insecure  (see

Dunn, 2003 for an analysis). Many have argued that the use of bounded variables, such as

accuracy, may result in floor and ceiling effects that can both produce dissociations in the

absence  of  multiple  processes,  and may overlook multiple  processes  in  the  absence  of  a

dissociation (Loftus, 1978), but Dunn (2003) makes a case for there being more fundamental

problems with this approach that go beyond artifacts of this kind. He shows that, whilst one

can infer that a variable has an effect on performance of a given task, one can never infer that

a variable has no effect on the performance of another task. 
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State trace analysis (Bamber, 1979), sometimes referred to as dimensional analysis

(Loftus,  Oberg & Dillon,  2004), is one proposed solution to these ambiguities. Instead of

considering variables in terms of their main effects and interactions, it plots them against one

another and examines the function(s) that the dependent variables follow. If the dependent

variables  follow one,  single  monotonic  function  then  we  can  reject  the  idea  of  multiple

processes. This result is taken to suggest that a single latent variable underlies performance,

providing confirmation of a “simple and elegant” single-function structure (Loftus, Oberg &

Dillon, 2004, p. 838). However, if there is no single monotonic function produced, one must

reject the single-function account and infer that more than one process underlies performance

– where multiple functions are seen on the state trace plot. 

Bamber (1979), Dunn and Kirsner (1988) and Loftus (1978) have all contributed to

the development of state trace analysis. An exponentially increasing number of researchers

have been using state trace analysis in place of the traditional dissociation logic in recent

times,  and  the  method  has  already  been  employed  in  a  diverse  range  of  research  areas,

including  category  learning  (Newell,  Dunn  &  Kalish,  2010;  Newell,  2012),  cognitive

development (Mayr, Kleigl & Krampe,  1996),  the face inversion effect (Loftus,  Oberg &

Dillon,  2004;  Prince  &  Heathcote,  2009),  remember-know  judgments  (Dunn,  2008;

Heathcote, Bora & Freeman, 2010) and the neuroscience of recognition memory (Staresina,

Fell, Dunn, Axmacher & Henson, 2013). 

This increase in popularity may in part be due to the simplicity of state trace analysis,

which provides a compelling visual representation of dimensionality. Each state trace analysis

requires  two  dimensions,  representing  either  one  dependent  variable  measured  under  two

different conditions, or two different dependent variables. As a concrete example, one could

plot recognition accuracy for upright and inverted faces on the x and y axes. Performance is

plotted across the  trace  of the experiment, i.e. across some continuous measure of time or
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number of blocks to produce the function of interest. In our example, this would correspond

to plotting the points representing mean recognition accuracy for upright and inverted faces in

each block of an experiment run over several blocks. These plots can then be made for two or

more  independent  variables  of  interest–  these  are  the  states.  Here  an  example  of  a  state

manipulation  would  be  making  plots  for  1)  performance  on  faces  drawn from one  very

familiar ethnic group and 2) performance on faces from another less familiar ethnic group.

The  points  in  the  scatter  plot  are  usually  given  two-dimensional  error  bars  to  aid  visual

assessment of the case for overlap. The analysis consists of determining whether our two plots

are best described as part of one continuous function, or require two distinct functions to

capture each trace.

Four idealized state trace plots are shown in Fig. 1, which are based on hypothetical

data for the purposes of exposition. Fig. 1C illustrates a single function plot and Fig. 1D a

multiple function plot, the latter of which implies a multiple process account of whatever task

domain is being investigated. The top two graphs (Fig. 1A and 1B) show situations in which

state  trace  analysis  cannot  be  used,  because  of  the  assumptions  and  requirements  of  the

method. State trace analysis assumes that latent psychological variables have a monotonic

effect on performance. Thus, a non-monotonic state trace plot (Fig. 1A) cannot be used to

infer dimensionality. Further, if both traces are monotonic, they must overlap at some point on

the x or y dimension, otherwise one cannot establish whether they follow the same function or

not.  Therefore, there may be four possible outcomes to your analysis: non monotonic; no

overlap; single function; or multiple functions. 

-------------------Insert Figure 1 about here-------------------
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While an increasing number of researchers are discovering state trace analysis and

applying its framework to their research questions, what is not clear is what the status of the

processes  discovered  might  actually  be.  What  counts  as  dissociable  processes  within  the

framework  of  state  trace  analysis?  Must  they  be  two  functionally  separate  processing

systems? If indeed a single function on a state trace plot suggests a single latent psychological

variable underlies performance, does this mean that in perceiving, learning and recalling faces

(not to mention the other motor skills involved in such a task) there is only one cognitive or

neurological process or set  of processes? And are multiple functions produced only when

functionally  different  processes  /  systems  are  evident  between  states?  Newell,  Dunn  and

Kalish (2011, p. 198) point out that "The dimensionality of the state-trace plot reveals the

number of underlying latent variables but says nothing about their nature". Our intention here

is to try cast some light on the possible relationships between the dimensionality of the state-

trace plot  and the nature of  the processes involved by analyzing examples where we are

entirely certain of the nature of the system in question – because it is one we have specified.  

Thus, to attempt to answer these questions this paper will consider the performance of

computational models, whose processes we can both quantify and manipulate. The simple

recurrent  network  (SRN,  Elman,  1990)  will  be  used  to  simulate  a  two-choice  sequence

learning task. Learning will be varied by altering a parameter that controls the rate of change

of the connection weights between units (the learning rate parameter). This will result in a

number of networks that differ only in this parameter, the rationale being that simply speeding

up or  slowing down learning in  the  network  (as  long as  we don't  move into  regions  of

parameter space where the learning algorithm exhibits pathological behavior) should not alter

the basic nature of the network. As such, it should produce simulations that are characteristic

of a single system.  This is a novel application of computational modeling to this area (though

there are parallels in the work of Bullinaria, 2007), and the point of doing this is that our
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understanding of state trace logic predicts that running the same model with different values

of this one parameter would not be thought to be the sort of manipulation that would produce

multiple functions on a state trace plot (e.g. McCarley & Grant, 2008; Reinitz, Séguin, Peria,

& Loftus, 2012; Staresina et al., 2013).  

2. SRN simulation details

2.1 Model construction

The SRN (Elman, 1990) is a recurrent, feed-forward connectionist network (see Fig.

2a) that starts with an input layer of units that are set to either a value of 0 (off) or 1 (on).

When  on,  these  units  feed  activation  forward  (using  the  logistic  activation  function:

Rumelhart, Hinton & Williams, 1986) into a hidden layer, which in turn feeds activation to an

output layer. The hidden unit activations are also copied into a set of context units at the input

layer, whose activations are then fed back into the hidden layer as input on the next trial. This

produces a recurrent loop, feeding the internal representation of the model back into itself and

enabling the model to learn contingencies that do not occur on the same trial (e.g. sequences).

The model learns through back propagating error correction, comparing output activations to

an  expected  response  and  updating  the  weights  between  all  units  within  the  model

appropriately. Performance is calculated by comparing the output activations to their expected

values, taking the difference, squaring and averaging to give a mean squared error (MSE).

Following the human behavioral experiment (Yeates et al., 2013) on which this simulation is

based, 128 networks were run for each simulation, 32 networks for each group (as described

below). 
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The model comprised of two input units and two output units, which represented the

two ‘stimuli’ that  formed  the  sequence  that  the  model  was  trained  on.  The  hidden layer

comprised of 20 units; and hence 20 context units as input. The initial connection weights

were uniformly distributed to random values between -0.5 and 0.5 for each network. The

model’s learning rate was the only parameter manipulated – running networks with different

values. The learning rate parameters used (0.15 and 0.4) were the values given in previous

work by Cleeremans and McClelland (1991) and Jones and McLaren (2009).

-------------------Insert Figure 2 about here-------------------

2.2 Sequence learning task

The  task  was  a  two-choice  serial  reaction  time  (SRT)  task  whereby  one  of  two

locations on either the right or left of the screen flash and this requires a spatially compatible

key press response. These flashes follow a sequence – which in the case of this task has a

probabilistic  structure.  Four  groups  of  networks  were  run  to  simulate  this  task  –  two

experimental and two controls. The control groups were trained on blocks that contained 40

subsequence ‘triplets’ of all the eight possible combinations in a two-choice task: XXX, XXY,

XYX, XYY, YYY, YYX, YXY, YXX. An equal number (5) of each triplet were randomly

ordered and concatenated (e.g. XXYXYYYYYYXX…) within a block so that there was no

obvious delineation of the triplets. In the case of control networks no part of the trial order is

predictive as any subsequent trial type is equally likely. The two experimental groups were

trained on blocks that contained 40 subsequence ‘triplets’ of half of the possible combinations

so that they followed a rule: Group Different - first trial in triplet is opposite to last trial, XXY,

XYY, YYX, YXX; and Group Same - first trial in triplet is same as last trial, XXX, XYX,
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YYY, YXY. An equal number of each (10) were randomly concatenated within a block, and

thus when one considers the trial sequence (e.g. XXXXYXYXYYYYXXX…etc) two-thirds

of experimental trials are predictive. This is because every third trial is 100% predictable, as

the trial that occurred two trials previously signals what the third trial will be for that group in

every instance. On every first and second trial it is equally likely that the trial either follows

this rule or not, thus the overall probability of any given trial following the rule is two thirds.

Networks were trained on 35 blocks (4200 trials) and tested over 5 blocks (600 trials) after

training, where all groups received pseudorandom sequences containing all possible triplets.

This trial number was chosen to match that used in our previous work in order to ensure that

the models learnt the sequences (Yeates et al., 2013). We chose the task we used because we

knew the SRN could simulate it well,  and as such is (in slightly modified form) our best

current model for human performance on this type of sequence learning (Jones & McLaren,

2009; Yeates et al., 2013). As we will see, it also lends itself well to state-trace analysis. 

Learning was measured by taking the difference between performance on trials that do

not  follow the  rule  (Inconsistent  Trials)  minus performance on trials  that  follow the  rule

(Consistent  Trials).  As  lower  MSE  represents  better  performance,  higher  values  of  the

Inconsistent-minus-Consistent  measure  denote  better  learning  of  the  trained  sequences.

Control  networks were not trained to a particular  rule,  but  are assigned one as a dummy

variable and the equivalent difference calculated. These control groups are needed to control

for sequential effects (see Anastasopoulou & Harvey, 1999; Jones & McLaren, 2009; Yeates

et al., 2013) as performance on a particular subsequence may be easier than another, thus our

Inconsistent-Consistent  measure  alone  does  not  adequately  index  learning,  it  needs  to  be

evaluated by comparison with the appropriate control differences. A difference between the

difference scores for Experimental and Control networks is therefore calculated, and this is
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used to demonstrate how much the networks have learned about the sequential structure they

have been exposed to. 

2.3 Results

An  ANOVA was  run  in  order  to  demonstrate  whether  learning  had  occurred,

comparing experimental  and control  groups across  training.  The training data  for  Groups

Different  and  Same were  analyzed  separately, with  the  factor  of  condition  (experimental

versus control) alongside the repeated measure block. The SRN exhibited learning for both

experimental groups' sequences at both learning rates as demonstrated by the main effect of

condition in all cases (experimental > control). For the SRN with a learning rate of 0.15 a

main effect of condition was found for Group Different, F(1,62) = 237.1, p < .001, and Group

Same, F(1,62) = 217.8, p < .001. Learning was also evident in the SRN with a learning rate of

0.4 in Group Different, F(1,62) = 354.7, p < .001, and Group Same, F(1,62) = 537.5, p < .001.

Using the simulation data, a state trace analysis was then conducted. This involved

plotting the learning scores of the networks across 7 epochs of training (1 epoch = 5 blocks),

containing 600 trials each (the trace). Performance on the two sequence learning tasks (Group

Different  and  Group Same)  form the  two  dimensions on  the  x  and  y  axes,  respectively.

Performance at  each learning rate  was plotted separately as one of two  states.  Following

McCarley and Grant (2008), a visual inspection of the plot was carried out. The state trace

plot can be seen in Fig. 3A, which on visual inspection clearly shows two separate functions,

rather  than  one  single  monotonically  increasing  function.  This  suggests  that  state  trace

analysis is sensitive to the differences between the two sets of simulations, and therefore that

a purely parametric manipulation (speeding up learning) can lead to multiple processes being

inferred if one employs the state trace methodology. 
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The plot (Fig.  3A) could be analyzed in a variety of ways, from visual inspection

(McCarley & Grant,  2008),  to Spearman’s Rho (Loftus,  Oberg & Dillon,  2004; Prince &

Heathcote,  2009),  maximum  likelihood  estimation  (MLE,  Newell  &  Dunn,  2008),

hierarchical linear regression (Yeates, Jones, Wills & McLaren, 2012) and Bayesian models

(Prince et al., 2012). We settled on a hierarchical linear regression as the preferred method to

examine the number of functions within the plots. Group Different scores were used to predict

Group Same performance. The learning rate was then added as a predictor and a statistically

significant  change in  R-square  taken as  evidence  for  multiple  functions.  The hierarchical

multiple regression demonstrates that the addition of learning rate to the model significantly

improves the  R2
adj  value from 94.6% to 98.1%, ∆R2:  F(1,11) = 23.6,  p  = .001. This model,

Group Different = 0.79(Group Same) + 0.97(Learning Rate) – 0.007, showed significant fit

between model and data, F(2,11) = 343.1, p < .001. This provides good evidence against the

state trace plot being adequately described as one monotonic function. 

2.4 Discussion

The state trace plot (Fig. 3A) demonstrates that increasing the learning rate of the SRN

networks  increases  the  amount  of  learning  of  Group  Same  relative  to  Group  Different

sequences.  This  suggests  that  there  are  multiple  processes  that  underlie  the  SRN's

performance  on the  two  tasks.  These  simulations  demonstrate  that  state  trace  analysis  is

sensitive to the effect that variations in the rate of learning can have on a simple recurrent

network.  Our  result  may  be  analogous  to  one  that  could  be  obtained  by  assessing  task

performance  as  a  function  of  individual  differences,  or  by  manipulating  differences  in

attention, context, or indeed any number of exogenous factors. How are we to interpret this

result in terms of multiple processes or systems, given that the SRN embodies what would
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often  be  considered  to  be  a  single  (associative)  process  account  of  learning?  Obtaining

multiple functions on the state trace plot in these circumstances came as a surprise to us, and,

we imagine, will surprise many researchers with an interest in this methodology. We predicted

that varying the learning rate would simply vary the rate of acquisition of the problems, but

that  the  different  plots  would  nevertheless  form  a  smooth,  coherent  function.  These

predictions have been roundly disconfirmed, and now we have to ask ourselves why this is so,

and what are the implications for state trace analysis?

3. Single layer network

To enable us to investigate further to what extent the state trace plot is sensitive to differences

in model parameters, we chose to simulate the same task on a conceptually simpler model – a

single layer error-correcting network (see Fig. 2b). The idea is that this model will act as a

"control" for the SRN simulations we have just reported. This model lacks any more complex

component  (e.g.  recurrence,  multiple  layers  of  weights)  but  still  learns  through  error-

correction. In this case then, it is hard to see how a state trace plot with multiple functions

could occur when one varies the learning rate parameter. If this turns out to be the case, and

we obtain a single (uni-dimensional) plot in this case, then we will have evidence that it is the

greater  complexity  of  the  SRN  that  led  to  the  multiple  function  plot  in  our  previous

simulations.

3.1 Simulation details

To obtain a single layer network we modified the SRN from the description above so

that 1) the context units were always set to zero, eliminating recurrence and 2) each input unit
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had  just  one  fixed  weight  to  a  corresponding  hidden  unit,  with  the  weight  of  all  such

connections set to a fixed value of 0.5. This effectively reduces the SRN to a single layer,

error-correcting network; albeit  one that is  still  using a non-linear activation function and

otherwise operates in a similar fashion to the earlier SRN. To enable the network to learn the

sequences presented to it, we included two additional input units that provided trial n-1 as

input (as well as the existing units already providing trial n as input) to predict trial n+1 as

output. 

3.2 Sequence learning task and procedure

Both the sequence learning task and procedure followed were the same as described above for

the SRN. 

3.3 Results

An ANOVA was conducted as before to investigate whether learning had occurred.

The single layer networks demonstrated learning (experimental better than control) on both

groups of sequences with both learning rates. The single layer network with a learning rate of

0.15 demonstrates a main effect of condition for Group Different, F(1,62) = 441.3, p < .001,

and Group Same, F(1,62) = 637.6, p < .001. The main effect of condition was also significant

in the single layer networks with a learning rate of 0.4 in Group Different, F(1,62) = 2719.8,

p < .001, and Group Same, F(1,62) = 3285.2, p < .001.

We constructed the equivalent state trace plot to the SRN networks (Fig. 3A) for the

single layer networks, this is shown in Fig. 3B. Visual inspection immediately reveals that this

time  the  plots  seem  to  lie  on  a  single  function,  though  changing  the  learning  rate  has
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obviously had a substantial impact on performance. Analysis of these plots revealed that there

was no evidence that adding learning rate as a factor improved the regression (F(1,11) = 1.13,

p = .3 for the change), confirming that a single linear function adequately describes the data

from  these  simulations.  This  model,  Group  Different  =  1.12(Group  Same)  –  0.002,

demonstrated a significant fit between the model and data,  F(2,11) = 2283,  p  < .001, and

accounted for 99.4% of the variance.

-------------------Insert Figure 3 about here-------------------

3.4 Discussion

With a single layer network, relative performance on Group Same to Group Different

sequences was consistent, regardless of the learning rate. Thus, with these networks, a single

function was visualized on the state trace plot (Fig. 3B) when we varied the learning rate. This

is consistent with a single process account for this learning system as we expected. In the

single layer network, only one set of weights can change, and the rate of change is influenced

by the parameter we varied. In the SRN, however, there are two layers of weights, and in

addition there are recurrent connections that, though they are themselves fixed, nevertheless

have a strong influence on the learning that takes place in the system by virtue of supplying

much of the input that drives that learning. The conclusion we are pushed towards, then, is

that the state trace methodology is sensitive to these differences between our two specimen

networks, and that it is capable of making process distinctions at a much finer grain than may

have hitherto been suspected by researchers employing this methodology.

4. General discussion
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When changing the learning rate parameter of the SRN a multiple function state trace

plot (Fig. 3A) is produced, suggesting the existence of multiple processes within the model.

This  result  went  against  our  intuitive predictions  about  state  trace analysis,  leading us  to

question the requirements for a multiple function plot. A higher learning rate increases the

amount of learning of Group Same sequences relative to those in Group Different for the

SRN, but a simple single layer network performs consistently on Group Same relative to

Group Different sequences, regardless of the learning rate. Therefore, the multiple functions

observed in the SRN simulations are reduced to a single function when the model is altered to

a simple single layer network. This suggests that there are not multiple processes at work in

this case, even though this network, like the SRN, uses non-linear activation functions and a

number of parameters that could be varied to influence learning. Given that when one of these

parameters (the learning rate parameter) is varied, the plots obtained indicate that a single

latent variable or process is responsible for performance on our task in this case, we have an

existence proof that simply adding layers and recurrence to a connectionist network is enough

to transform it from a single-process to a multi-process system in state trace terms.

As suggested above, this indicates that state trace analysis is sensitive to the presence

of  process  differences  at  a  much  finer  level  than  was  perhaps  initially  realized.  One

implication of this result is that state trace analysis can reveal multiple processes within what

might be considered to be a single system. When we take into account the single function

obtained with the single layer network simulations,  a corollary is  that state trace analysis

might not only be capable of distinguishing at a relatively gross level between, for example,

an associative system and another system based on a different kind of computation, but could

also distinguish between varieties of associative network. 



16

We are  not  usually  in  the  situation  of  knowing  exactly  what  the  computational

specification of the system that we are dealing with is, as was the case here. When we apply

state-trace analysis to data derived from humans or other animals, the aim is to tease out the

processes involved in task performance so that we are then able to construct better models of

human or infra-human learning. Here, we were able to manipulate our models so as to help us

interpret  the  results  of  our  state-trace  analysis.  What  are  the  implications  now  for  the

application of state-trace analysis to experimental data where the underlying processes are

unknown?

We believe that our findings compel us to qualify the conclusions that can be drawn

from  a  state  trace  plot  that  reveals  multiple  functions.  Clearly,  as  Newell  et  al.  (2011)

acknowledge, one cannot securely infer the presence of two functionally dissociable systems

from a two-function state trace plot. We have demonstrated in a concrete way that it could

simply reveal that performance is based on a single, multi-process system, if variation in the

state variable differentially affected those processes, and altered their relative contributions to

performance. This possibility, in turn, makes it somewhat harder to interpret a plot with a

single function as well.  The reason is that, if multiple functions can be a consequence of

parametric variation altering the relative contributions made by different processes, then a

single function could be produced by the change in the state variable affecting these processes

equally. If  their  relative  contributions  are  not  changed,  then  we might  expect  state  trace

analysis to indicate a single, monotonic function, suggesting that only one process need be

invoked. The fact is, however, that this result might be due to a single process, or to a set of

(in this case) correlated processes. We find ourselves with the possibility of one state trace

analysis suggesting that a multi-process explanation is required for task performance, whereas

another on the same system might indicate that a single process would suffice. Given that this

could, in principle, be the case, how then are we to proceed?
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Our tentative answer to this question is to abandon the one function = single system,

multiple functions = multiple system dichotomy, and instead adopt an approach couched in

terms of sets of processes that can act like a single system/process in some circumstances, but

reveal their multiple process nature in others. If a state trace plot reveals multiple functions –

then there are multiple processes involved. If, another analysis using a different state variable

but otherwise employing the same paradigms now produces a single function, then this should

not be taken to contradict the earlier finding, but simply indicates that in these circumstances

the multiple processes are equivalent to one single process because the state variable affects

them in a non-differential fashion. We can never be sure that there is only one process in play

given a single function on a state trace plot, as on our analysis, the definitive result is always

the one with multiple functions. But multiple functions do not necessarily signify functionally

separable processes at a gross level (i.e. completely different types of computation). Instead,

we can allow that there might be different sub-types of the same computational process as in

our SRN example, where recurrence, and learning of the non-linear mappings from the input

to the hidden units and the hidden to the output units were the processes differentially affected

by changing the learning rate. 

To further  clarify our  new understanding of what  we mean by "process",  another,

illustrative example can be extrapolated from the work of Wills  and McLaren (1997) and

Jones, Wills and McLaren (1998). Both these papers make the case for a competitive process

that translates the categorical outputs of a network into a real-time response using a winner-

take-all approach. This could be added to the simple single layer network considered here,

and  would  constitute  another  process  that  could  be  discovered  by  means  of  state-trace

analysis,  without  actually  being a  qualitatively different  kind of computation.  Hence,  one

interpretation of a "process" is that it can refer to part of the architecture of a model that

performs a certain computation as in this case. Another, equally valid possibility is that it
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could be just what it says, a process, that acts within a model architecture but is governed by

its own parameters so that it can decouple from other processes that are also at work. For an

example of what we mean by this see McLaren and Dickinson's (1990) discussion of how

Hebbian and anti-Hebbian processes might interact within a connectionist network.

With these caveats in mind, we conclude that state-trace analysis still has something to

offer our discipline. It allows us to test the hypothesis that two functionally separable sets of

processes  contribute  to  performance  on  a  given  task  (analysis  must  produce  a  multiple

function plot to be consistent with this assumption as long as steps are taken to ensure that

these processes do not co-vary). It also enables us to detect multiple processes within single

systems, allowing a more detailed analysis of that system's components. Thus, we believe that

state trace analysis can still be a valuable methodological tool in the behavioral scientist’s

armory.
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Figure Captions

Figure 1: Hypothetical state trace plots, showing four possible outcomes of a state trace 

analysis of Dimension 1 against Dimension 2 for State 1 and State 2. The top two state trace 

plots demonstrate instances where no conclusions regarding dimensionality may be made, as 

the states are either non-monotonic (A) or do not overlap (B). The bottom two plots 

demonstrate hypothetical single function (C) and multiple function (D) outcomes.

Figure 2: Model architectures for both the SRN (top panel, A) and the single layer network 

(bottom panel, B). Circles represent units within the model with three black dots representing 

further units not shown. The SRN has two input units, representing the two stimuli that make 

up the sequence the networks are trained on at time t. The single layer network requires these 

units as well as a further two input units in order to learn these sequences, which provide 

information about the two stimuli on the previous trial, at time t – 1. Both models have two 

output units and twenty hidden units. The SRN has a further twenty context units, whose 

activations are constantly set to zero in the single layer network, effectively removing them 

from the model architecture (shown here for illustrative simplicity). Weighted connections 

that update through error-correction are shown by dotted lines. Fixed connections, whose 

weights do not alter, are shown by solid lines. 

Figure 3: Top panel (A): state trace plot of mean performance of Group Different against 

mean performance of Group Same by 128 SRN networks with a learning rate of 0.15 and 128 

SRN networks with a learning rate of 0.4 across 7 epochs of training (1 epoch=5 blocks). 

Error bars give 1 SE. Bottom panel (B): similar plot for single layer networks run with the 

same learning rate parameters (see text for additional details). 
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Figure 2.
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Figure 3.
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